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Abstract
In this paper, we propose aself-stabilizing token cir-
culation algorithm in $\mathrm{a}\mathrm{d}$-hoc networks. We propose
aconcept of dynamic reconfiguration tolerant self-
stabilization as an extension of self-stabilization for
discussing correctness of distributed algorithms that
allows dynamic change of network topology. Inm-
itively, starting from any initial configuration, ady-
namlc reconfiguration tolemt self-stabflizing alg0-
rithm guarantees a propeny $P$, as long as the net-
work topology dynmically changes within aconstant
C. me definition is the same as the one of self-
stabilization, if we define $C$ as “the network is sta-
ble”.)

The token visits processes in depth-first search
manner along a spanning tree. If anetwork config-
uration is stable, our algorithm obtains aminimum
spanning tree in at most $2n(n-1)$ steps, and the token
visits processes along the minimum spanning tree.

The proposed algorithm guarantees that the token
visits each node at least once within every $6(n-1)$
steps, if the interval of edge disconnections is at least
$6(n-1)$ steps.

1Introduction
Ad-hoc networks consist of mobile teminals with
$\mathrm{w}\dot{\mathrm{n}}$eless communication devices. There is no pre-
existing inffasffucmre for communication, and a ter-
minal is connectable to an $\mathrm{a}\mathrm{d}$-hoc network without
configuing it. This is afascinating feature for end-
users, but is aseed of the following technical difficul-
ties, when to implement applications in $\mathrm{a}\mathrm{d}$-hoc net-
works: (1) since there are no access points that route
messages among mobile teminals, ffie mobile temi-
nals must route messages by themselves; (2) since
the network topology rapid.ly changes as “mobile”
teminals migrate, commumcation protocols must be
adaptive to dynmic changes of topology; (3) since a
teminal may join or even leave the $\mathrm{a}\mathrm{d}$-hoc network
while participating in $\mathrm{m}$ application job, communica-
tion protocols must be robust against communication
faults such as anetwork partition.

Aself-stabilizing system is anon-masking fault
tolerant disffibuted system such that it tolerates any
finite number of transient faults [2, 6, 3]. There have
been proposed many self-stabilizing algorithms, but
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most of ffiem assume that the network topology be
static. In fact, it is easy to observe that some con-
straint is necessary to introduce on the possible behav-
ior of anetwork for an algorithm to achieve amean-
ingful task.

1.1 Our contribution
Whether or not aself-stabilizing algorithm for an ad-
hoc network is correct depends on how the network
dynamically changes. For agiven constraint $C$ on
dynamic change of the network, we hence say that a
system is dynamic reconfiguration tolerant (DRT for
short) self-stabilizing (under $\sigma$), if the system works
as acorrect self-stabilizing system as long as the net-
work change does not violate $C$.

Under some moderate network reconfiguration
constraint $C$, we propose astateless $DRT$ self-
stabilizing token circulation algorithm for $\mathrm{a}\mathrm{d}$-hoc net-
works Unlike the algorithm by Chen and Welch [1],
our network change constraint $C$ allows network to
change while the system is converging. Unlike $\mathrm{e}$ alg0-
rithms based on random walks, our algorithm deter-
ministically circulates atoken along a spanning tree,
and hence the worst case waiting time for the token
is deterministically bounded by $O(n)$ . You may wish
to assign to each edge atransmission cost. If the net-
work remains static, the token is eventually circulated
along minimum spanning tree. The circulation cost
is thus at most twice as much as the optimal cost (i.e.,
the solution to the travelng salesman problem) when
the cost satisfies the triangle inequality.

Another advantage of our algorithm is short con-
vergence time. Unlike the random walk approach,
we do not make use of acollision-and-elimination
scheme to remove redundant tokens. Instead, an ini-
tiator issues apriority to atokeoe and the elmina-
tion is done by an initiator based on the priority. The
convergence time to eliminate unnecessary tokens is
determistically bounded by $.O(n)$ , and the spanning
tree along which the token is circulated converges to a
minimum spanning tree in $O(n^{2})$-time, if the network
remains static. There have been proposed some al-
gorithms for consffucting the minimum spanning ffee
$[4, 5]$ , but ffiey are not applicable for our purpose of
designing astateless protocol.

Token circulation algorithms based on random
walk are in general space efficient. Our algorithm

数理解析研究所講究録 1375巻 2004年 274-281



275

uses $O.(n\log n)$ bits for a token, and a variable of con-
stant size at each initiator, but no memory is necessw
for a non-initiator, which is more space efficient than
the algorithm by Chen and Welch [1].

This paper is organized as follows: Section 2
presents a computation model of distributed system.
In Section 3, we propose a stateless self-stabilizing
token circulation algorithm in $\mathrm{a}\mathrm{d}$-hoc networks, and
then prove its correctness in Section 4. In Section 5,
we give concluding remarks.

2 The Model

2.1 Network Model

We consider a system consisting of $n$ mobile ter-
minals with wireless communication devices. We
model such a system by a set of processes $V=$
$\{p_{1},p2, \ldots,p_{n}\}$ with unique identifiers. For each pr0-
cess $p_{i}$ , let $N_{i}$ be the set of neighbor processes that $p_{i}$

can directly $\mathrm{c}$.ommunicate with. We assume that ev-
ery communication channel is bidirectional; $p_{j}\in N_{i}$

if and only if $p_{i}\in Nj\cdot N_{i}$ ’s for all $p_{i}\in V$ define a
network $G=(V,E)$ , where $(p_{i},p_{j})\in E$ if and only if
$p_{j}\in N_{i}$ .

To each edge $(p_{i},p_{j})\in E,$ we assign a positive
weight (or cost) denoted by $w_{i,j}(=w_{j,i})$ . The weight
$wij$ may also dynamically cliange. We can how-
ever assume that the weights $Wij$ are unique with-
out loss of generality, since otherwise, we can use
ffiples $(\mathrm{w}\mathrm{i}\mathrm{j},\mathrm{p},\mathrm{q})$ as unique weights instead, where
$p=\dot{\mathrm{m}}\mathrm{n}\{p_{i},p_{j}\}$ and $q=$. $\max\{p_{i},pj\}.\cdot$ The minimum
$\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{m}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$ ffee ls thus uniquely detemmed.

Since teminals may change ffieir locations, $N_{i}$

may dynmically change and so may $G$ accordingly.
$\mathrm{a}\mathrm{l}\mathrm{l}p_{j}\in N_{i}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}1\mathrm{y}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}.\mathrm{A}\mathrm{c}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{i}\mathrm{a}iw_{i},\mathrm{a}\mathrm{s}- \mathrm{W}\mathrm{e}\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{f}N_{i}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}$

sumption is that they never change while a token is
visiting $p_{i}$ .

Our network is synchronous in the sense that 1) all
local clocks show the sme time, and 2) there is an
upper bound $\delta$ on the communication delay between
two neighboring processes, where 6 is available for
the processes. Without loss of generality, we assume
that $6=1$ (unit time) in the rest of this paper.

Changes of network topology may occur in our
model. Suppose that the system is pmitioned into
several sub-networks and this situation continues for
ever. $\Pi \mathrm{e}\mathrm{n}$ all what a process in a sub-network can
hope is to circulate a token among the processes in
the sub-network. A change of the network topology
may be viewed ffom the process as a join or a leave
of another process to or ffom the (sub-)network. We
thus consider $V$ as the set of all processes that have
chances to participate in the system, and assume that
the size $|V|=n$ is also available for the processes.

We discuss stateless algorithms in the sense ffiat
non-initiators do not need to $\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{t}\dot{\mathrm{m}}$ local variables.
However that non-initiators need to temporff.i$\mathrm{y}$ use
local variables to process a token. We assume ffiat
processes aUocate memory to local variables when
a token arrives, and release them when the token
leaves.

2.2 Dynamic reconfiguration tolerant
self-stabilization

We now define dynmic reconfiguration tolerant self-
stabilizing systems.

Definition 1 A system is $a$ dynamic reconfiguration
tolerant ($DRTfor$ short) self-stabilizing system with
respect to a specification $P$ under a dynamic network
reconfiguration constraint $C$ if the $fo$llowing condi-
$\dot{\hslash}ons$ are satisfified.
1. Convergence: $For$ any initial confifiguration and

for any computation staning from it, the system
eventually satisfies $P$, if network configuration
changes $fo$ llow $C$.

2. Safety: For any initial confifiguration that satisfies
$P$ and $for$ any computation starting from it, the
system remains to satisff $P$, as long as network
configuration changes $fo$llow $C$.

If we adopt a constr$\dot{\mathrm{m}}\mathrm{t}$ “no ffansient error and
network reconfiguration occur” for $C$, a DRT self-
stabilizing system with respect to $P$ under $C$ is ob-
viously a conventional self-stabilizing system with
respect to $P$ . Let 7, $C,S$ and $L$ be an mitial condi-
time, a dynalnic network recoffiguration constant $\mathrm{t}$,
a (safety) property and a (liveness) property, respec-
tively.

Definition 2 A system is said to be $(I,C,S)$ -safe if$S$ is
always true $for$ any computation starting with an ini-
tial confifiguration that satisfifies $I$, as long as network
confifiguration changes $fo$llow $C$.

Definition 3 A system is said to be $(I,C,L)$-live if $L$

becomes true $evenn\ell aNyfor$ any computation starting
with an initial confifiguration that satisfifies $I$, provided
that network confifiguration changes$fo$ llow $C$.

These two concepts will play central roles in the
correctness proofs of our algorithms. Some $\mathrm{p}\dot{\mathrm{n}}\mathrm{n}\dot{\mathrm{u}}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$

properties of $(I,C,P)$ -safety and $(I,C,P)$ -liveness are
summarized below.. If a protocol is $(I,{}_{1}C,S)$-safe and $(7_{2},C,\mathrm{S})$-safe

then $A$ is $(I1\vee I,{}_{2}C,S)$-safe.. If a protocol is $(I,C,S_{1})$-safe and $(I,C,S_{2})$ -safe,
then $A$ is $(I,C,S_{1}\Lambda s_{2})$-safe.. If a protocol $A$ is $(I,C,S)$ -safe, then $A$ is $(I\Lambda$

$I’,C,S)$ -safe for any $I’$ , and $(I,C\Lambda C’,S)$ -safe for
any $C’$ .. If a protocol $A$ is $(I_{1},C,S_{1})$-safe and $(S_{1},C,s_{2})-$

safe, then $A$ is $(I_{1},C,S_{2})$ -safe.. If a protocol is (Il , $\mathrm{C},L$)-live and $(I_{2},C,L)$-live,
then $A$ is $(I1\vee I,{}_{2}C,L)$ -live.. If a protocol is $(I,C,L1)$-live and $(I,C,L2)$-live,
then $A$ is $(I,C,L1\Lambda L_{2})$-live.. If a protocol $A$ is $(I,C,L)$ -live, then $A$ is $(I\wedge$

$I’,C,L)$ -live for any $I’$ , and ($I,C$ A $\mathrm{C},\mathrm{L}$)-live for
any $C’$ .. If a protocol $A$ is $(I_{1},C,L1)$ -live and $(L,{}_{1}C,L2)-$

live, then $A$ is (Il , $C,L_{2}$)-live.
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3 The Algor\’ithm
This section presents a stateless and DRT self-
stabilizing token circulation algorithm that $\mathrm{c}\dot{\mathrm{n}}$culates
a token along the minimum spanning tree edges in an
$\mathrm{a}\mathrm{d}$-hoc network.

3,1 Overview
A process who is interested in token circulation be-
come an initiator. Hence more than one process may
become an initiator. ffle algorithm consists of two
threads, one for an initiator and the other for all pr0-
cesses, including initiators, who receive a token. Def-
$\ddot{\mathrm{m}}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of the token is shown in Figure 1.

These two threads are hence executed as two
ffireads in a single process of the initiator.
1. Initiator threads, This thread, whose code is given

in Figure 2, is executed by an initiator $p_{i}$ . Process
$p_{i}$ continues executing this thread as long as it is
mterested in the token circulation.

2. Token thread: This thread is executed by any pr0-
cess $Pi$ who receives a token. The code is shown
in Figure 4, with a macro defined in Figure 3. This
thread immediately teminates when the token is
sent to a neighbor process or is discxded.

In the descriptions of code, we use Java-like $t7\gamma-$

search consffucts to describe an exception for tine-
out error and signal handling. Because only initiators
maintain local states, we can consider the pair of the
token and the code for token thread as an agent that
ffavels processes in a network. By $p.m$, we denote the
local variable $m$ at an initiator process $p$.

We would like to give readers a roug idea to main-
tain the $\mathrm{m}\ddot{\mathrm{m}}\mathrm{m}\mathrm{u}\mathrm{m}$ spanning ffee using a stateless alg0-
rithm. Other features will be discussed later.

An initiator process generates a token and forward
it to its neighbor. As part of its infomatiou the t0-
ken carries a ffee that spans the processes it has vis-
ited in tems of the set of tree edges. When the t0-
ken is initialized by an $\mathrm{m}$\ddot tiator, the token canies an
empty edge set, i.e., empty tree. The token is sent
by a process $p_{i}$ in a depth-first graph search manner
to its neighbor $pj$ . When $p_{j}$ receives the token for
the first time, it updates the ffee edge set in the token
by adding an edge $(p_{i},p_{j})$ . Note that $p_{j}$ is selected
so that this addition does not create a cycle. After a
while, the token will carry a spanning ffee edge set
$T$ , which however may not be the ninmlum spanning
ffee.

After a spanning ffee is constructed, whenever the
token returns to its initiator, the initiator process im-
proves the weight of the spanning ffee by replacing
an edge in the oeee with a non-tree edge which im-
proves the weigt of the ffee. Such a non-tree edge
is searched dumg ffie last ffaversal of the tree. We
improve the cost of a spanning ffee by replacing one
edge per circulation’ and the $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{m}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$ ffee eventually
becomes $\mathrm{m}$

. imum.
One may think that more edges should be replaced

in a circulation. Unfortunately, such a scheme does
not guarantee that the token come back to ffie initiator
within a reasonable interval. That is why updatin $\mathrm{g}$ a
spanning ffee during a circulation changes ffie route
the token visits. As a result, the initiator must choose
larger timeout value for regenerating a token to cope

with token loss. This makes recovery ffom token loss
slow. Although such a worst case is unlikely to hap-
pen $\mathrm{m}$ practice, we give theoretical guarantee in this
paper.

3.2 Token structure
Since our algorithm is stateless, a token caies all
data necessary for circulatioL including the current
spanning tree. The data smcture of a token is given
in Figure 1. Let $t$ be a token.. t.tree: The set of ordered edges that represents a

rooted (ordered) tree, along which $t$ is circulated.. $t.type\in$ {probe, echo}: The direction of traver-
sal. Token $t$ is being sent toward a leaf when
t.type $=$ probe, and is being echoed back to the
root when $t$ . $type=$ echo.. t.wgt The weights of edges in $t$ . tree.. t.age: The age of $\mathrm{f}$ , whose value is initially 0 and
is mcremented by one, whenever $t$ is sent ffom
a process to another. The age is reset to 0 when
the token returns to its $\ddot{\mathrm{m}}$tiator. Thus a token
whose age goes beyond some threshold value can
be eliminated, since its $\mathrm{m}$\ddot tiator would have al-
ready left the network.. $t.ini.\cdot$ The identifier of initiator.. t.id: ne identifier of $t$ assigned by the imitia-
tor selected ffom an integer set $\{0, 1,\ldots,M-1\}$ ,
where we assume that $M$ is large enough so that
more than $M$ tokens never exist in the network at

. a tine. 1. t.alte. The edge $e$ is a candidate edge to improve
the weight of $t$ . tree such that 1) $e$ has found $\mathrm{m}$ this
ffaversal, 2) $e\not\in t:tee$ , and 3) ffie unique cycle in
$t.tree\cup\{e\}$ contains an edge with a weigt larger
than \’e $\mathrm{s}$ . The value is reset $\mathrm{t}\mathrm{o}[perp] \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}$ the $\ddot{\mathrm{m}}\dot{\mathrm{u}}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}$

starts a new round of circulation.. t.altw: The weight oft.alte.

3.3 Network parameters and functions
The codes for $p_{i}$ use the following network parm-
eters and functions. Network parmeters are as fol-
lows:. $N_{l}$ : Set of current neighbors of $p_{i}$ .. $w_{i,j}$ : Current weight of edge $(p_{i},p_{j})$ .

Note that $N_{i}$ and $w_{i,j}$ may autonomously change
their values during the execution. Let $p_{j},p_{k}\in N_{i}$ be
two neighbors of $p_{i}$ . Then we say ffiat $p \int$ is smaller
than $pk$ if $w_{i,j}<with$ in ffie followmg.

The ffinctlons are as follows:. Procs(t): me process set of t.tree, i.e., the set of
processes that $t$ has visited.. Root{t): ${\rm Re}$ root of t.tree.. Parent(t, $p_{i}$) : ne pxent of $p_{i}$ in t.tee. If $p_{i}$ is
ffie root ffien Parent(t, $p_{i}$ ) $=[perp]$ .

$1\mathrm{A}s$ wiu be leaf ffom the algorithm given in $\sec\dot{\mathrm{b}}\mathrm{o}\mathrm{n}3$ , ffiis
assumption is removable and $M$ can be set any value $\geq 2$, at the
expense of the convergence $\dot{\mathrm{d}}\mathrm{m}\mathrm{e},\cdot$ the algorithm guamtees that the
number of tokens is reduced to least $/\mathrm{M}\mathrm{t}\mathrm{h}$ in every 1 ticks, once
ffie network becomes stable.
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Message format of token: (type, tree, $wgt$, age, $id$ , $ini$ ,
$tpe$ : {probe, echo}
tree: set of pairs (process identifier, process $1|$

$wgt$ : set of triples (edge weight, process iden
age: integer –Number oftraversed edges in $t$,

$id$ : integer –Token identifier
$ini$ : process identifier $-Idenrifier$ ofthe inil
alte: (process identifier, process identifier) $0\mathrm{l}$

altw : edge weight –Weight ofalte.

Figure 1: The data sl

. Children(t, $p_{i}$) $:{\rm Re}$ set of children of $pi$ in $t$ . tree.. FirstChild$(t,p_{i})$ : The smallest child of $p_{i}$ in
t.tree. If $p_{i}$ has no children in t.tree, then
FirstChild$(t,p_{i})$ $=[perp]$ .. NextChild(t.’ $p_{i},p_{j}$): The smallest child mong
those of $p_{i}\mathrm{m}$ t.tree larger than $p_{j}$ .. $\mathcal{D}eeNeighbors(t,p_{i})$ : A set of neigh-
bor processes of $p_{i}$ in t.tree. By def-
imition, we have TreeNeighbors$(t,p_{i})$ $=$

Parent(t, $p_{i}$) $\cup Children(t,p_{i})$ .. Alive(t): The predicate that returns true if and
only if t.age $\leq a$ . The age is the number of edges
that $t$ has ffaversed after visiting the initiator for
the last time.

The value of $a$ is discussed later, depending on
the degree of $\mathrm{d}\mathrm{y}\mathrm{n}\mathrm{a}\mathrm{n}\dot{\mathrm{u}}\mathrm{c}$ change of network topol-
ogy.

3.4 Token behavior
We explain the behavior of the token as if the token
is a mbile agent that travels nodes in the network.
(Below, we use the tem “node” and “process” inter-
changeably.) The code for the token is shown in Fig-
ure 4.

A token moves in nodes in a depth-first fashion.
It never gives up traveling nodes even if the network
topology dynamically changes. In such a case, a t0-
ken looks for a new route based on the local view of
the topology. Exceptional events that a token gives
up traveling (i.e., token is discarded) are (1) the ex-
istence of an initiator process with higher priority, or
(2) expiration of lifetime of a token.

Initially a ffee in the token is empty, and it grows
as it visits a new process. The token is typed probe
(resp. echo) if the token is forwarded from a parent
to a child (resp. ffom a child to a parent).

As described above, suppose that an $\mathrm{m}$\ddot tiator $p^{*}$

creates a new token $t$ with t.type $=$ probe, and the
token is sent to the smallest neighbor (line 8-11 of
Figure 2).

4 Correctness and Performance
First, we discuss general properties of the proposed
algorithm.

Theorem 1 The length of a token is $O(n\log n)$ bits,
where $n$ is the number ofprocesses.

$lte,altw\rangle$

$\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{r}\rangle$ Directed edges ofa spanning tree.
. tifler, process identifier) –Weights ofthe directed edges.
lhe current circulation.

riator.
$\mathrm{r}[perp]$ –Candidate$for$ the minimum spanning tree edges.

ffucture of a token.

Lemma 1 For any initia 1 confifiguration in which no
token exist in the ne work, evenMalty at least one t0-
ken is generated. $\square$

Regardless any dynmic change of network con-
figuration, atoken $t$ is discarded only.when (1) it ar-
gives at $\mathrm{n}$ initiator process whose pnority is higer
than that of $t$ , or (2) its age reaches its lifetime. This
is ffue even if edge weigts and network topology
dynamically changes. We fomally state ffiis fact $\mathrm{m}$

terms of $(I,C,S)$ -safety and $(I,C,L)$-liveness as fol-
lows.. $I_{1}^{S}$ : There is only one token $t$ in the network,

$p^{*}.m=tid$: ’ and $t$ is generated by an initiator $p^{*}$

whose pnority is the highest mong all initiators.. $c_{1}^{S}$ :
-A set of neighbor processes $N_{i}$ never change

when $t$ is visiting at $p_{i}$ for each $p_{i}$. $s_{1}^{S}$ : Token $t$ remain $\mathrm{s}$ to exist if its age is less than
the lifetime and timeout time of $p^{*}$ expires.

Note: The consffaint $c_{1}^{S}$ implies that $N_{i}$ never be-
comes empty since it includes $p_{j}$ which is the previ-
ous process $t$ visited.

Lemma 2 The proposedprotocol is $(I_{1}^{S},C_{1}^{S},S_{1}^{S})$ -saf$\square e$

.

4.1 Dynamic network without edge dis-
connections

$\mathrm{F}\mathrm{i}\mathrm{r}\mathrm{s}\zeta$ we consider a case that there is only one initiator
in the network. Later, we discuss the case that there
are more than one initiator in the network.

We define $I_{1}^{D}$ , $c_{1}^{D}$ and $L_{1}^{D}$ as follows.. $I_{1}^{D}$ :
-There is an initiator $p^{*}$ in the network, whose

priority is the highest among au imitiators,
-There is only one token $t$ in the network gen-

erated by $p^{*}$ such that $p^{*}.m=t.id$,
- $t.age+4(n-1)\leq a$ holds, where $n$ is the

number of processes.. $c_{1}^{D}$ :
-A set of neighbor processes $N_{i}$ never change

when $t$ is visiting at $p_{i}$ for each $p_{i}$ .
-No new initiator process whose priority is

higher than that of $p^{*}$ appear
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Variables of an initiator $p_{i}$ :
$m$ : integer initially 0; –Token identiffier

Code for an initiator $p_{i}$ :
$2l.\cdot$. $\mathrm{w}\mathrm{h}\mathrm{U}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{y}\mathrm{f}$

$-initiate$ new circulation by generating a new,

3: wait; –Waitfor any token to arrive (with timout)
4: $\}$ catch (Signal) { $-A$ token visits this process. This
5.$\cdot$ ; –Do nothing. Waitfor next arrival $ofa$ token.
6: $\}$ catch (TimeoutException) $\{$

7.$\cdot$ $m:=(m+1)$ mod $M$; Assign new token identifie
$S$: $t:=\langle \mathrm{p}r\mathrm{o}\mathrm{b}\mathrm{e},\emptyset,\emptyset,0,m,p_{i},[perp],\infty\rangle$

$\mathit{9}$ Let $p_{k}$ be a process in $N_{i}$ such that $w_{i,k}$ is the smaUest
$\mathit{1}\mathit{0}.\cdot$ send $t$ to $pk$ ;
$\mathit{1}2ll.\cdot$ }}

Figure 2: Initiator $\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{e}_{\mathrm{t}}$

-Edge disconnections never happen,
-There is always a connected path in the net-

work ffom a process $t$ locates to $p^{*}$ ,

-There may be any number of dynmic edge
additions and weight changes, and

-The number of connected processes in the net-
work never increases.. $L_{1}^{D}$ : Token $t$ eventually returns to $p^{*}$ .

$\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{w}.\mathrm{o}\mathrm{r}\mathrm{k}\mathfrak{t}\mathrm{o}\mathrm{p}\mathrm{o}1\mathrm{o}\mathrm{g}\mathrm{y}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{d},\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{s}- \mathrm{N}\mathrm{o}\mathrm{t}\mathrm{e}.I^{D}\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}\mathrm{a}\mathrm{n}\dot{\mathrm{m}}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}-$

comections. Thus, the initial value of $t$ . fee may not
be a correct tree. Intuitively, the $(I_{1}^{D},\mathrm{C}_{1}^{D},L_{1}^{D})$ -liveness
states that the token visits $p^{*}$ wiffiin $4(n-1)$ edge

$\sigma \mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{a}\mathrm{l}\mathrm{s}$ , even if edge weights and edge additions
dynmically occur.

Lemma 3 The proposed algorithm is $(I_{1}^{D},C_{1}^{D},L_{1}^{D})-$

live, and $Te$ token returns to $p^{*}$ within $4(n-1)edge\square$
traversals.

Consider when $t$ arrives the initiator $p^{*}$ , as dis-
cussed in the previous lemma. In case the root of
t.tree is not $p^{*}$ , which implies that $p^{*}$ was deleted
$\mathrm{f}$ or $t$ . tree, $p^{*}$ resets $t$ and starts the next round.

In case ffie root of $t$ . tree is $p^{*}$ , the ffee held in $t$ . tree
may still containprocesses and edges that do not exist.
This is why $t$ may have not visited all ffie processes
before it amves at $p^{*}$ .

Therefore, one more round is required so that $t$

can visit all the processes to hold a spanning ffee in
t.tree. Below, we consider the behavior of the alg0-
nthm when $t$ visits $p^{*}$ .. $I_{2}^{D}$ :

-There is an $\mathrm{m}$\ddot tiator $p^{*}$ in the network, whose
priority is the higest mong all initiators,

-There is only one token $t$ in the network gen-
erated by $p^{*}$ such that $p^{*}.m=$ t.id,

-Token $t$ locates at $p^{*}$ , and
-t.age $=0$.. $c_{2}^{D}=c_{1}^{D}$.

$.$

$L_{2}^{D}$ : ${\rm Re}$ token $t$ returns to $p^{*}$ with a $\mathrm{s}\mathrm{p}\mathrm{m}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$ ffee
$\mathrm{m}$ t.tee, and each process is visited at least once.

token.

1. Token is handled by the token thread.
event is noniffied by the token thread.

$,’ r$.

$:j$

$\mathrm{a}\mathrm{d}$: code for an in itiator.

Lemma 4 Assume that $a\geq 2(n-1)$ and $\tau$ $>2(n-$
$1)$ . Then, the proposed algorithm is $(I_{2}^{D},C_{2}^{D},L_{2}^{\overline{D}})$ -live.
The token retums to $p^{*}$ within two rounds, each of
which requires at most $2(n-1)$ edge traversals. $\square$

Akve lemma makes clear the reason why we do
not improve a spanning tree duing a round. If we re-
place ffee edges during a round, there is no guarantee
to return the mitiator wiffiin $2(n-1)$ .

Even if the network topology is stable, edge
weights are likely to change. Next we show a prop-
erty of ffie proposed algorithm under such change of
network configuration.. $I_{3}^{D}$ :

-There is an $\mathrm{m}$\ddot tiator $p^{*}$ in the network, whose
priority is the higest mong all initiators,

-There is only one token $t$ in the network gen-
erated by $p^{*}$ such that $p^{*}.m=$ t.id,

-Token $t$ locates at $p^{*}$ ,
-t.age $=0$. and
-t.tree contains a spanning tree.. $C_{3}^{D}=C_{2}^{D}(=C_{1}^{D})$.

$.$

$L_{3}^{D}$ : The token $t$ retum to $p^{*}$ with a $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{m}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$ ffee
$\mathrm{m}t$ . fee and each process is visited at least once.

Lemma 5 Assume that $a\geq 2(n-1)$ and $\tau$ $>2(n-$
$1)$ . $T$ en, the proposed algorithm is $(I_{3}^{D},C_{3}^{D},L_{3}^{\overline{D}})$ -live.

$salsThe$.
token $re$ urns to $p^{*}$ within $2(n-1)$ edge

$\pi aver-\square$

Lemma $\epsilon$ Assume that $a\geq 2(n-1)$ and $\tau$ $>2(n-$
$1)$ . Then theproposed algorithm is $(I_{2}^{D},C_{2}^{D},I_{2}^{\overline{D}}\wedge L_{2}^{D})\sim\square$

live and $(I_{3}^{D},C_{3}^{D},I_{3}^{D}\wedge L_{3}^{D})$ -live.

We define a safety property $s_{3}^{D}$ as follows..
$\mathrm{W}t\mathrm{i}_{\mathrm{c}\mathrm{h}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\dot{\mathrm{m}}\mathrm{s}\mathrm{a}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{n}\dot{\mathrm{m}}\mathrm{g}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{e}\mathrm{i}\mathrm{n}}^{\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{n}1\mathrm{y}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{n}}s^{D}$ tt $\mathrm{i}.\mathrm{n}tre$teh.e network

We have the following theorem
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1. macro UpdateToken $\equiv$

2: $\{$

3: $//\mathrm{I}\mathrm{M}\mathrm{P}\mathrm{R}O\mathrm{V}\mathrm{B}$ A SPANNING TREE.
4 $\cdot$ if (t.alte $\neq[perp]$ ) { –There is an edge to improve th
5: $t$ . tree $:=$ t.tree { $\mathrm{r}$ . alte}; –Temporarily $t$ .tree
6.$\cdot$ Find an edge $e$ in t.tree such that
7.$\cdot$ t.tree-{e} is a spanning tree and its $\mathrm{w}\mathrm{e}\mathrm{i}_{\Leftrightarrow}\sigma$

$\mathit{8}.\cdot$ t.tree: $=$ t.tree $\{e\}$ ;
9.$\cdot$ Delete ffom $t.wgt$ the weight of edge $e$ ;

10: Add into t.wgt edge t.alte with weight t.altw;
11:

$//\mathrm{R}\mathrm{B}\mathrm{F}\mathrm{R}\mathrm{B}\mathrm{S}\mathrm{H}\}$

T$\mathrm{H}\mathrm{B}$ TOKBN FOR THE $\mathrm{N}$BXT ROUND O $\mathrm{F}$12:
13: if $(p_{i}=t.ini)$ $\{$

14: $m:=(m+1)$ mod $M$;
15: $t.id:=mj$ –Assign new token identifier.
I6: t.age: $=0j$ –Reset token age.
1 $7$ $\}$ –If$pi$ ( $the$ root oft.tree) is not the initiator 0.
18.$\cdot$ $t$ $:=$ $\langle$prObe, $t$ .tree, t.wgt $t$ .age, t.id, t.ini, $[perp]$ , $\infty\rangle$

$j$ –

$\mathit{1}\mathit{9}$ $\}$

20: mcro $FindCandidate\equiv$

21: $\{$

22: if (t.alte $=[perp]$)
23: Let $T\mathrm{k}$ t.tree
24: else
25: Let $T$ be a spanning tree with the smallest weigll
26: Let $T’$ be a spanning tree with the smallest weight an
27: if (weight of $T’<$ weight of $T$) $\{$

28: Let $p\ell \mathrm{k}$ a process that yields $T’j$

29: return $p\ell j$

30: $\}$

31: $\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}[perp] j$

32.$\cdot$ }

Figure 3: Macro defi

Theorem 2 Assume that $a\geq 2(n-1)$ aM $\tau$ $\geq 2(n-$

$1)$ . Then, theproposed algorithm is dynamic reconfifig-
uration tolerant self-stabilizing with respect to a spec-
$ififica\dot{\hslash}on$ $S_{3}^{D}$ under a dynamic ne work

$reconffiguratio_{\square }n$

constaint $c_{1}^{D}$ .

Corollary 1 Assume that $a\geq$ $2(n-1)$ and $\tau\geq 2(n-$

$1)$ . Suppose that an initial configuration satisfies $I_{3}^{D}$

and network dynamically changes with a constraint
$c_{3}^{D}$ . $T$ en, for each process $p_{i}$ , $tk$ interval that a t0-

$atinitiatorsisatleast4kenvisitSp_{i}isatmost4t_{n-1)}^{n-1)}.$’ifthe timeout
$value\tau\square$

Note that t.tree may not become a $\mathrm{m}\ddot{\mathrm{r}}$um span-
ning ffee if edge weights change dynmically.

4.2 Dynamic network with edge dIscon-
nections

In the previous subsection, we considered a case just
after edge disconnection happen and no more edge
disconnection happen thereafter. Now we consider a
case that edge disconnection dynamically occur.

We define $c_{4}^{D}$ and $s_{4}^{D}$ a$\mathrm{s}$ follows. Note that $c_{4}^{D}$

differs from $C_{1}^{D}(=C_{2}^{D}=C_{3}^{D})$ only in the condition of
edge disconnections.. $c_{4}^{D}$ :

le spanning tree.
$ee$ has a cycle.

bt is the smallest;

? TOKBN CIRCULATION.

oft, t.age and $t.id$ are unchanged,
.Assign new token identifier and reset the token age.

ht among subgraphs of $t.tree\cup t.alte$

among subgraphs of $T\cup\{(pi,p\ell) : p\ell\in Ni-TreeNeighbors(t)\}$ ;

inition for token ffiread.

- A set of neighbor processes $N_{i}$ never change
when $t$ is visiting at $p_{i}$ for each $p_{i}$ .

- No new initiator process whose priority is
higher than ffiat of $p^{*}$ appear,

-Any $\mathrm{n}$.umber of edge discomections may hap-
pen smultaneously, provided that the time m-
terval between such events is at least $6(n-1)$ ,

- There is always a connected path in the net-
work ffom a process $t$ locates to $p^{*}$ ,

- There may be any number of dynmic edge
additions and weight changes, and

- The number of connected processes in the net-
work never increases.. $s_{4}^{D}$ :

- Only one token $t$ exists (and it remains to ex-
ist).

Therem 3 Assume that $a$ $\geq 6(n-1)$ and $\tau$ $\geq 6(n-$

$1)$ . Then, the proposed algorithm is dynamic reconfifig-
urarion tolerant self-stabilizing with respect to a spec-
iffiarion $S_{4}^{D}$ under a dynamic network reconfiguration
constaint $c_{4}^{D}$ . The token visits each process with

$in-\square$

terval at $mst$ $6(n-1)$ .

Next, we consider a case ffiu edge disconnections
happen more frequently. We define $c_{5}^{D}$ a $\mathrm{d}$ $\mathrm{P}_{4}$ as fol-
lows.
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When a token $t$ arrives at $pi$ ffom $p_{j}$ :
1. $t:=$ receive;
2: t.age:$=t.age+1;$ –Increment the age by one.
3: if ($pi$ is an initiator) $\Lambda((t.ini>pi)\vee((t.ini=pi)\Lambda(t.id\neq m)))$ { Discard the token based on priority.
4.$\cdot$ Discard $t$ ;
5: } else if $(\ovalbox{\tt\small REJECT} live(t))$ -The token is too old to alive.
6: Discard $t$ .
7.$\cdot$ } dse $\{$

8.$\cdot$ if ($p_{i}$ is an initiator)
$\mathit{9}$ signal; Restart tim-oM timer ofthe initiator thread.

10: //EXTEND THE SPANING TREE 1P $pi1\mathrm{S}$ NOT INCLUDED YET.
11: if (t.type $=$ probe) $\Lambda((pj,pi)\not\in t.tree)$ { This is thefifirst visit to $pi$ .
12: $t$ . tree: $=t.tree\cup\{(pj,pi)\}j$ t.wgt: $=t.wgt\cup\{(pj,pi,wi(p_{j}))\}$ ; –Exend the spanning tree.
13: t.alte $=[perp]$ ; t.altw $=\infty$; –Reset the candidatefor impmving the spanning tree.
14: lf $(t.ini=p_{i})$ –The token visits an initiator $pi$ which was disconnectedfrom $t$ .tree.
15: $t$ : probe) $\emptyset$ , 0, $m,pi,[perp],[perp],[perp]$ , $\infty\rangle$ –Reset $t$ and start new round.
16:

$//\}\mathrm{C}\mathrm{H}\mathrm{B}\mathrm{C}\mathrm{K}1\mathrm{P}$

NBTWORK tOPOlOgy AND BD$\mathrm{G}\mathrm{B}$ WHIGHTS ARB CHANGBD.17:
18: for each $p_{k}\in$ (Children(ty $pi)-Ni$) $-A$ child $p_{k}$ is disconnectedffiom $p_{i}$ .
19: Delete a subtree rooted by $p_{k}$ from t.tree, and update t.wgt accordingly;
20: if (Parent(ti $p_{i})\not\in N_{i}$ ) –Parentprocess is discomectedffiom $p_{i}$ .
21: t.tree: $=$ a subffee oft.tree rooted by $p_{k}$ , and update t.wgt accordingly;
22: for each pk $\in TreeNeighbors(t,p_{i})$ $\{$

23: if (the weight of $(p_{k},p\iota)$ in t.wgt is different ffom $Wi(pt)$ )
24: Update the weight of $(p_{\mathrm{A}}.,p_{i})$ in t.wgt to $\mathrm{k}$

$\mathrm{w}\mathrm{i}(\mathrm{p}\mathrm{k})$

25:
$//\}\mathrm{F}1\mathrm{N}\mathrm{D}$

A CANDIDATE EDGE TO IMPROVE THE SPANNING TREE.26:
27: if (Ni-Procs(t)=\emptyset ) $\{$

28.$\cdot$ $pp:=$ F\iota \acute ndCand&te $\cdot$, $-pl$ is in $N_{i}-TreeNeighbors(t)$ or equals 1. (See FigureS.)
29: if $(p\ell\neq[perp])$ { –Bener candidate isfound.
30: $t$ . $alte=(pl,p\ell)jt$ .altw- $w_{i}(p\ell)$ ;
31: }
32:

$//\}$

FIND A DESTINATION O$\mathrm{F}$ THE TOKEN.33:
34: if (Ni-Pmcs(t)\neq \emptyset ) { There is a neighborprocess not in the spanning tree.
35: t.type: $=$ probe; $pk:=\mathrm{a}$ process such that $wi(pk)$ is the smallest mong $p_{k}\in N_{i}$ Procs(t)
36: $\}$ dse if ($p_{i}$ is a leaf process of t.tree) $\{$

37: t.type: $=$ echo; $pk$ $:=$ Parent(t, $pf$ ) $j$ Send $t$ back to the parent $(p_{k}=p_{j})$ .
$\mathit{3}\mathit{8}$ $\}$ else $\{$

39: if (t.type $=$ probe) { -The token is sentffiom the parent.
40: $pk:=FirstChild(t,p\mathrm{i})j$ –Forward the token to thefifirst child.
41: $\}$ else { -The token is sent backffiom a child (t.type $=$ echo).
42: $pk$ $:=$ Ne Chitd(t, $pl$ , $pj$); –Forward the token to the $nen$ child.
43:

$\mathrm{i}\mathrm{f}\}$ $(pk \neq[perp])$

{ –There is $n$ $t$ child toforward.44.
45.$\cdot$ $t.type$ :probej Forward the token ofprobe $\theta pe$ to the child.
46: $\}$ else { –No $mre$ next child to forward $(p_{k}=[perp])$ .
$\mathit{4}7$ ir ($pi=$ Root(t)) $\{$

$r\epsilon.\cdot$ UpdateToken; –The end $ofa$ round. Improve the spanning tree, andpreparefor the next round. (See FigureS.)
$\ell \mathit{9}.\cdot$

$p\mathrm{t}$ $:=FirstChild(t,pi)j$ –Fomard token $t$ to thefifirst child.
so.$\cdot$

$\}$ else $\{$

$\mathit{5}l$ :
$\}pk$

$:=Parent(t,pi)j$ Non-root sends th token $bck$ to its parent.
$\mathit{5}2$

53: $\}$

54:
$//\}\mathrm{F}\mathrm{O}\mathrm{R}\mathrm{W}\mathrm{A}\mathrm{R}\mathrm{D}$

THB TOKEN.55.$\cdot$

56.$\cdot$ send $t$ to $p_{k}$ ;
57.$\cdot$ }

Figure 4: Token thread: $\mathrm{c}\mathrm{M}\mathrm{e}$ for a process who receives a token.
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. $C_{5}^{D}$ : the same as $c_{4}^{D}$ , except the time inter-
val between edge disconnection events is at least
$4(n-1)$ , and. $S_{5}^{D}=S_{4}^{D}$

Theorem 4 Assume that $a\geq 6(n-1)$ and $\tau$ $\geq 6(n-$

$1)$ . Then, theproposed algorithm is dynamic reconfifig-
urarion tolerant self-stabilizing with respect $ro$ a spec-
ifification $s_{5}^{D}$ under a dynamic network reconfiguration
constraint $C_{5}^{D}$ . $\square$

Note that the value $6(n-1)$ is the $\mathrm{n}\dot{\mathrm{u}}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{m}$ inter-
val of edge disconnections so that the token visits each
proce$\mathrm{s}\mathrm{s}$ : There are many pattems for edge discomec-
ti me with interval less than $6(n-1)$ that guarantees
the safety property $s_{4}^{D}$ .

Observation 1 Theorem 3 holds even ifany number
of edge disconnections happen at any time provided
that each disconnected edge is not a tree edge.

4.3 Stable network
Next, we consider that the network is stable. In this
case, the token eventually computes a minimum.span-
ning tree, and it travels processes along a minmum
spanning ffee.

We define $I_{1}^{S},C_{1}^{S}$ a $\mathrm{d}$ $L_{1}^{S}$ as follows. Because stable
network is a special case of dynmic network, we as-
sume that the liveness propeny $L_{3}^{D}$ holds in the initial
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ .. $I_{1}^{S}$ :

- There is an initiator $p^{*}$ in the network, whose
priority is the highest mong aU initiators,

- There is only one token $\mathrm{f}$ in the network gen-
erated by $p^{*}$ such ffiat $p^{*}.m=t.id$,

- Token $t$ locates at $p^{*}$ ,
- t.age $=0$, and
- t.tree contains a spanning tree.. $c_{1}^{S}$ :
- A set of neighbor processes $N_{i}$ never change at

each process and edge weights never change
(i.e., network is stable), and

- No new initiator process appear.. $L_{1}^{S}$ : Token $t$ eventually obtains a minimum span-
nmg ffee in $t$ . tree.

Theorem 5 The proposed algorithm is $(I_{3}^{D},C_{3}^{D},L_{3}^{D})-$

live, and $L_{3}^{D}$ $b$ecomes true within $2(n-1)^{2}edge\square$

traversals.

Once a $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{m}\dot{\mathrm{u}}\mathrm{n}\mathrm{g}$ tree is computed, the token travels
the same route in each round, as long as the network
is stable. Thus, we have the following corollary.

Corollary 2 Suppose that the network is stable and
a token holds a minimum spanning tree is computed.
Then the interval that a tokn visits a process is $2(n-\square$

1).

4.4 Process join
Consider when a new process $p_{i}$ joins to the network.
The token $t$ visits one of neighbor process, say $p_{j}$ , of
$p_{i}$ , it moves to $p_{j}$ because $p_{i}$ is not in $t$ . tree. Thus, new
process is eventually included in a spanning ree by
smply adding an edge $(p_{i},p_{j})$ . Because the number
of $\mathrm{p}\mathrm{r}.\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{s}\mathrm{m}$ a network increases by one, the token
requires addition two edge traversals to ffavel along a
spanning tree,

In case some processes may join to the network,
the value of $\alpha$ (lifetime of a token) and $\tau$ (timeout
value) must be changed such that $n$ is the upper bound
on the number of processes in the network.

5 Conclusion
In this paper, we proposed a concept of dynmic re-
configuration tolerant (DRT) self-stabilization as a
theoretical framework of distributed algorithm for dy-
$\mathrm{n}\mathrm{a}\mathrm{n}\dot{\mathrm{u}}\mathrm{c}$ $\mathrm{a}\mathrm{d}$-hoc networks. Then, we proposed a deter-
ministic and stateless DRT self-stabilizing token cir-
culation algorithm for dynamic $\mathrm{a}\mathrm{d}$-hoc networks. Our
algorithm computes a minmum spanning ffee for less
communication complexity. By our algorithm, ffie
interval of the token visit for each process is $O(n)$ ,
which is deterministically bounded. In addition, the
timeout value of initiator is also $O(n)$ which implies
that the recovery ffom token loss is fast. In conffast,
token circulation by random walks, the interval of the
token visit is not detemimistically bounded, and re-
covery ffom token loss is slow, $O(n^{3})$ .

We believe that our framework can be used for
distributed algorithms for dynamic $\mathrm{a}\mathrm{d}$-hoc networks.
Design and verification of algorithms under the
ffamework is left for future works.

References
[1] Yu Chen and Jennifer L. Welch. Self-stabilizing

mutual exclusion using tokens m mobile ad hoc
networks. In Proceedings ofDIAM, 2002.

[2] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed conffol. Communications ofthe ACM,
17(11):643-644, November 1974.

[3] S. Dolev. Self-stabilization. The Mrr Press, $2\propto D$ .
[4] R. G. Gallager, P. A. Humblet, and P. M. Spira. A

distributed algonthm for minimum-weight span-
ning ffees. ACM Transactions on Program-
ming Languages and Systems, $5(1):66-77$, Jan-
uaq 1983.

[5] J. A. Garay, S. Kutten, and D. Peleg. A sub-
linear tre e distributed algorithm for minimum-
weight spanning trees. SIAM Joumal on Com-
puting, 27(1):302-316, Febmary 1998.

[6] F. C. Gartner. Fundmentals of fault-tolerant
distributed computing in asynchronous environ-
ments. ACM computing Surveys, 35:43-48,
1998.


