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Abstract

Although many problems in MAX-SNP admit a PTAS for dense graphs, that is not the
case for Vertex Cover, which is MAX-SNP hard even for dense graphs. This paper presents
a randomized approximation algorithm for Vertex Cover on dense graphs which is probably
optimal: Let $\epsilon$

$=\overline{d}$/IS where 1 and A are the average and maximum degrees of a given graph
G. $G$ is said to be dense if its $\overline{d}$ is $\Omega(n)$ . (i) Our algorithm achieves an approximation factor of
$2- \frac{\epsilon}{1+\epsilon/2}$ for dense graphs, which improves the best-known bound by Karpinski and Zelikovsky.
(ii) It achieves the same factor for a wider range of graphs, i.e., br the graphs whose $\Delta$ 狛

$\Omega(n\frac{1\mathrm{o}\mathrm{g}1\mathrm{o}\mathrm{g}n}{1\mathrm{o}\mathrm{g}n})$ .

1 Introduction
It is often true that although there is no good algorithm for general instances, there does exist
an excellent algorithm for an important subclass. A typical example of such a subclass is dense
graphs with an average degree of $\Omega(n)$ . Recently, it has been shown [1] that a variety of NP-hard
optimization problems, such as ${\rm Max}$ Cut and Steiner Tree, admit polynomial time approximation
schemes (PTASs) for dense graphs, while the existence of such schemes for general instances of
these problems would imply $\mathrm{P}=$ NP.

Dense graphs obviously constitute an important subclass since, information theoretically, d-
most all graphs are dense. Therefore we are naturally interested in whether or not other popular
optimization problems, like Vertex Cover, have a similar property. Unfortunately, it is highly un-
likely that Vertex Cover has a PTAS for dense graphs since the problem is still MAX-SNP hard for
dense instances [4]. Nevertheless, it is an interesting question whether or not Vertex Cover can be
approximated within a factor of $\alpha$ which is significantly smaller than two. The reason is much the
same as before: For general instances, whether or not Vertex Cover has a $($2 - $\epsilon)$ approximation
algorithm is one of the major open questions and many researchers conjecture negatively. Karpinski
and Zelikovsky [10] affirmatively answered this question with the algorithm whose approximation
factor is $\ovalbox{\tt\small REJECT}^{2}2-1-\overline{d}/n$ where $\overline{d}$ is the average degree of the given graph. Unfortunately, however, this

approxi mation factor quickly approaches to 2.0 while density decreases; it remains unanswered
whether it is possible to take more substantial advantage of the density condition.

Our Contribution. Against this curiosity, this paper answers positively. Let $\epsilon$ $=\overline{d}/\Delta$ . We
present a randomized approximation algorithm which, with high probability, yields an apprnina-
than fiwtor of $2- \frac{\epsilon}{1+\epsilon/2}$ and runs in polynomial time if $\Delta$ is $\Omega(n^{1_{0}1}\#_{\mathrm{o}\mathrm{g}n}^{\mathrm{p}\mathrm{o}\underline{n}})$. Thus the algorithm is
quite attractive when $\epsilon$ is close to one. For example, it approximates within a factor of 1.334 if
the graph is regular, which remains true even for “quasi-dense” graphs whose degree is sub-linear
in $n$ (but the computation time increases within polynomial). We can achieve a similar factor for
random graphs if they satisfy the same density condition. Note that the approximation factor of
the previous algorithm [10] gets close to 2.0 even for regular graphs if their density decreases.
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Our algorithm depends on the same basic idea as the previous one by Karpinski and Zelikovsky
[10]. Although it includes nontrivial extensions using recursion and randomization, the technique
itself is fairly standard. Even so, our algorithm is probably optimal as mentioned above, which
would indicate that it is relatively easy to take full advantage of the density condition in the case
of Vertex Cover. This finding is another important contribution of this paper.

Previous work. For general Vertex Cover, finding any maximal matching in the given graph
and choosing the all vertices in the matching yields a fact0r-2 vertex cover. However, no approxi-
mation algorithm of factor $2-\epsilon$ is known for any constant $\epsilon$ $>0.$ The current best approximation
algorithm was found by Halperin [7] whose approximation factor is $2- \frac{21\mathrm{n}1\mathrm{n}n}{1\mathrm{n}n}$ . And all the known
algorithms’ approximation factor converge to 2 when $|V|$ is sufficiently large.

However for the restricted version of the problems, many good approximation algorithms exist.
For graphs whose maximum degree is bounded by $\Delta$ , Hochbaum [9] presented 2-z2 factor using a
coloring method. Exploiting $\mathrm{H}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{d}6\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{n}$ and Radhakrishnan’s [6] approximation algorithm for the
Independent Set problem, one can obtain factor of $2- \frac{\log\Delta+O(1)}{\Delta}$ . Using semidefinite programming,
Halperin [8] asymptotically improved these results by presenting an approximation algorithm of
factor $2-(1-o(1)) \frac{21\mathrm{n}1\mathrm{n}\Delta}{1\mathrm{n}\Delta}$ . For small $\Delta$ , Berman and Fujito [3] achieved afactor of $2- \frac{5}{\Delta+3}$ . For
planar graphs this problem admits PTAS [2]. Karpinski and Zelikovsky [10] showed that there is
an approximation algorithm of factor $2/(2-\sqrt{1-\epsilon})$ for dense graphs. They also showed that for
everywhere-dense graphs, i.e., for graphs whose minimum degree is at least $\epsilon|V|$ , we can obtain an
algorithm of factor $2/(1+\epsilon)$ .

For the negative direction, Hastad [8] showed that it is $\mathrm{N}\mathrm{P}$-hard to approximate Vertex Cover
within a factor of less than $7/6=$ 1.1666. Dinur and Safra [5] improved this lower-bound to
$10\sqrt{5}-21=$ 1.3606. Even for graphs whose maximum degree is bounded by A $\geq 3,$ this problem is
still APX-complete and for large $\Delta$ it is $\mathrm{N}\mathrm{P}$-hard to approximate within 7/6 [4]. In [4], it is shown
that Vertex Cover is ${\rm Max}$-SNP hard (and hence does not have a PTAS) even for dense graphs. As a
most recent result, Khot and Regev [11] showed that, if a certain conjecture about the PCP theory
is true, we can prove the nonexistence of 2-\epsilon factor approximation algorithm for Vertex Cover.

2 Notation and Basic Ideas
The Minimum Vertex Cover problem (MVC) is, for a given graph $G=(V, E)$ , to obtain a set
$C$ of vertices (called a vertex cover) such that (i) $C$ contains at least one endpoint of every edge
and (ii) $|C|$ is as small as possible. Opt{G) denotes the size of a smallest vertex cover and if an
algorithm $A$ always finds a vertex cover $C$ such that $|C|/$ Opt{G) $\leq r,$ we say that $A$ achieves an
approximation factor of $r$ . We usually require that $A$ runs in polynomial time.

Our notations are standard: the number of vertices $(=|V|)$ , the average degree $(=2|E|/|V|)$ ,
and the maximum degree are denoted by $n$ , $\overline{d}$ and $\Delta$ , respectively. $\mathrm{N}\{\mathrm{v}$ ) denotes the set of the
neighbors of the vertex $v$ and in this paper, $N(v)$ does not include $v$ itself $\deg(v)$ denotes $|\mathrm{N}(\mathrm{v})$ $|$ .
If we need to show the underlying graph $G$ explicitly, we use the notations such as $n_{G}$ , $\overline{d}_{G}$ , $\Delta_{G}$ ,
$N\{v$) and $\mathrm{N}\{\mathrm{v})$ .

In [10], Karpinski and Zelikovsky found the following simple and elegant property about a
minimum vertex cover $C$: Suppose that we can take $k$ vertices $v_{1}$ , $v_{2}$ , $\ldots,$

$<$)$k$ such that $\deg(v_{i})\geq k$

for all $1\leq i\leq C.$ Then either (i) $\{v_{1}, /)2, \ldots, v_{k}\}\subseteq C,$ or (ii) $N(v_{i})\subseteq C$ for some $1\leq i\leq k,$ is
true. (Reason: For any $v\in V,$ either $v\in C$ or all vertices in $N(v)$ are in $C$. Hence the negation
of (ii), i.e., $N(v_{i})$ \not\subset $C$ for all $i$ , implies (i).) Therefore, if we consider the family of the $k+1$
sets, $\{v_{1},v_{2}, \ldots,v_{k}\},N(v_{1}),N(v_{2})$ , $\ldots$ , $N(v_{k})$ , then at least one of them, say $W$ , is included in $C$ .
Furthermore, suppose that $k=\Omega(n)$ . Then it turns out that we can yield an approximation factor
of strictly less than two, by taking $W$ as a part of the vertex cover and then applying the standard
2-approximation algorithm [10] against the remaining graph. (Note that we do not know which $W$

is a part of $C$ . So, we have to check all the $k+1$ possibilities and take a best result.) The question
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Algorithm DVC-Apx(t, $i$ , $G$)
1. if $i<t$ then
2. let $\mathrm{H}(\mathrm{G})=\{v\in \mathrm{V}(\mathrm{G})|\deg(v)\geq$ r(G),
3. pick up $2(\log n)^{2}$ vertices ffom $H(G)$ uniformly at random and

let $U_{G}$ be the selected vertices.
4. let $\mathcal{V}_{G}=\{H(G)\}\cup$ {N(v) $|v\in U_{G}$ }
5. foreach $\mathrm{y}$ in $\mathcal{V}$G, $1\leq j\leq 2(\log n)^{2}+1$ do
6. select $r$: vertices from $V_{j}$ uniformly at random and let $V_{j}’$ be the selected vertices.
7. $C_{j}:=V_{J}’\cup$ DVC-Apx(t, $i+1$ , $G-V_{j}’$).
8. end
9. return $\min\{C_{1}$ , $C_{2}$ , . . . , $C_{2(\log n)^{2}+1}\}$ .
10. else if $i=t$ then
11. apply $\mathcal{V}$C2 to $G$ and let $C$ be the resulting vertex cover.
12. return $C$ .
13. end

Figure 1: algorithm DVC-Apx

is how we can achieve such a large $k$ . Fortunately, it is quite easy if the graph is dense: Sort the
vertices by their degrees and take $u_{1},u_{2}$ , $\ldots$ , u7 from the largest one until we have $k>\deg(u_{k})$ .
Then a simple calculation guarantees that $k=$ O(n) if $\overline{d}=$ O(n), thus [10] gives the algorithm
whose approximation factor is $\frac{2}{2-\sqrt{1-\overline{d}/n}}$ .

Our new algorithm is an extension of this algorithm based on the following idea: (i) $\overline{d}/n$ in
the approximation factor can be replaced by $\overline{d}/\Delta$ . (ii) If the original graph is dense, then the
remaining graph $G$’ after removing the vertex set $W$ is still somewhat dense. Hence we can use
the same algorithm for $G’$ . If we repeat this procedure $t$ times, then we can take more vertices
in $C$ than before, but at the same time, our search space becomes larger, i.e., from $O(k)=O(n)$
previously to roughly $O(n^{t})$ . (i\"u) To reduce this search space, we introduce randomization. Instead
of considering the $k+1$ sets, $\{v_{1},v_{2}, \ldots, v_{k}\},N(v_{1})$ , $N$ Vk}, . . . , $\mathrm{N}(\mathrm{y}\mathrm{k})$ , we consider only $2(\log n)^{2}+$

$1$ sets, { $v_{1},v_{2},$ $\ldots$ Vk}, $\mathrm{N}(\mathrm{y}\mathrm{k})$ , $N(v_{\dot{\mathrm{a}}_{2}})$ , ... , $N(v_{i_{2(}}\mathrm{l}’ \mathrm{g}n)^{2})$. Here, the last $2(\log n)^{n}$ sets are selected
uniformly at random from the original it sets. Intuitively speaking, if some $v_{i_{f}}$ does not belong to
$\mathrm{G}$ , then we have $N(v_{i_{f}})\subseteq C$ and there is no problem. Otherwise, if all $v_{i_{1}}$ , $v_{\dot{8}2}$ , .. . , $v_{i_{2(\log n)^{2}}}$ belong
to $\mathrm{G}$ , then it follows that almost all vertices in $\{v_{1}, v_{2}, \ldots, Vk\}$ are in $C$ with high probability, which
is again desirable for us. Note that the search space is reduced to $O((\log n)’)$ .

3 New Approximation Algorithm

Before starting arguments, we define a function $7(\mathrm{G})$ as:

$\gamma(G)=\{$

$(1- \frac{\Delta}{n}\geq 2\mathrm{z})\overline{d}$

( $1- \frac{\Delta}{n}<$ 2A)
This function represents how many vertices our algorithm can extracts from the given graph $G$ .

Figure 1 shows our algorithm DVC Apx(t, $i$ , $G$). Our algorithm has a recursive structure and
its maximum level of the recursion is given by integer $t\geq 0.$ For a given graph $G=$ $()\}$ , we first
call DVC-Apx(t, 0, $G$). If $t$ is set to 0, then the algorithm is equal to the standard 2-apprdximati0n
algorithms which is denoted by $\mathrm{V}\mathrm{C}_{2}$ . Otherwise it recursively calls DVC-Apx(t, 1, $G’$ ) for some $G’$ .

Before explaining DVC-Apx(t, $i,$ $G$), we need to define the functions $r(G)$ , $\deg(\mathrm{i})$ and sequences
of numbers {th}, $\{\overline{d}_{t}\}$ and $\{\mathrm{r}\mathrm{v}\}$ . Recall that our key operation is to take high-degree vertices
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(denoted by $u_{1}$ ,U2, $\ldots$ , $u_{k}$ in the previous section). $r(G)$ determines the minimum degree of those
vertices and is defined as follows:

$r(G)=n_{G}(1-\sqrt{1-\frac{\overline{d}_{G}}{n_{G}}})$

In our aigothrm, we repeat removing vertices which are included in a minimum vertex cover and,
in doing so, we have to estimate the decrease of the sum of the degrees. For that purpose we define
&g(i) as

$\deg(\mathrm{i})$ $= \min\{\Delta,n-i\}$ .
This represents the upper bound of the degree of ith removed vertex since, all vertices have degree
at most A and ith removed vertex has degree at most the number of remaining vertices minus 1,
which is $n-i.$

$n_{l},$ -i and $r_{\dot{*}}$ denote the numbers of vertices, a lower bound of the average degree, a lower bound
of $r(G)$ of a graph $G$ and the sum of the number of removed vertices at the recursion level $i$ . They
are defined as follows:

$n_{t+1}$ $=$ $n-s_{i}$ ,

$\overline{d}_{t+}1$ $=$ $\frac{\overline{d}n-2\sum_{k=1}^{s}deg(k)}{n_{i+1}}$

.,
$r_{\+1}$

. $=$
$\frac{\overline{d}_{t+1}}{1+\sqrt{1-\frac{\overline{d}_{l+1}}{n_{t+1}}}}$

,

$s_{i+1}$ $=$ $\sum_{i+1}^{k=1}r_{k}$ ,

where $n_{1}=n_{G}$ , $\overline{d}_{1}=\overline{d}_{G}$

’ $r_{1}$ $=$ r(G) and $5^{\mathrm{j}}1$ $=l_{1}$ for the original graph $G$ . Before proceeding, we
show basic properies of these sequences.

Lemma 1. $n_{t}\geq\overline{d}_{\dot{l}}$ and $r_{i}\geq\lrcorner\overline{d2}$ hold for each i.

Proof. Consider removing $k$ vertices from a graph $G$ and let $G’$ be the resulting graph. Then the
decrease of the sum of the degrees, i.e., $-6n;-\overline{d}_{G’}n_{G^{t}}$ is at most $\sum_{\mathrm{j}=1}^{k}$ &g(j). Since $G’$ has $n-k$

vertices, the sum of the degrees of $G’$ is at most $(n-k)^{2}$ . Therefore, the sum of the degrees of $G$

is upper-bounded by $\sum_{j=1}^{k}de9(j)+(n-k)^{2}$, which means

in $\mathrm{s}\sum_{j=1}^{k}deg(j)+(n-k)^{2}$ .

And this leads to
$n-k \leq\frac{\overline{d}n-\sum_{j=1}^{k}deg(j)}{n-k}$ .

Setting $k=s:,$ we can prove $r\mathrm{h}$

$\geq\overline{d}i$ .
Next we show that $r_{\dot{l}}\geq\overline{\#}$ for each $i$ . This can be shown easily by the definition of $r_{\dot{l}}$ and

$\%\geq\overline{d}i$ .
$\square$

One can see that the algorithm follows the basic idea given in the previous section almost
exactly. $H(G)$ is the set of “high-degree” vertices. $\mathcal{V}_{G}$ is the family of $2(\log n)^{2}+1$ vertex sets. In
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the previous overview of the algorithm, we consider the whole vertex set $V$ in $\mathcal{V}_{G}$ as a candidate
to be a part of $C$ , remove it from $G$ and go to the next level. Actually we select $r_{i}$ vertices from
$V$ uniformly at random and remove only those $r_{i}$ ones from $G$ . This is just for simpler analysis, in
other words, it is enough for achieving our approximation factor to remove this number of vertices.
One can easily see that each $C_{j}$ in line 7 is a vertex cover of $G$ at that level. If the level is $t$ ,
then we directly obtain a vertex cover of $G$ by using $\mathcal{V}$C2. Since each computation path splits into
$(2(\log n)^{2}+1)^{t}$ paths at each level, we have $(2(\log n)^{2}+1)^{t}$ computation paths in total. Apparently
DVC-Apx(t, 0, $G$) gives a correct vertex cover of the original graph $G$ . In the next section, we
analyze its size.

4 Analysis of Approximation Factor

In this section we evaluate the approximation factor of DVC-Apx described in the previous section.
Actually, we prove the following theorem.

Theorem 1. Given a graph $G$ , whose average degree is $\overline{d}=\overline{d}_{G}$ and the maximum degree is $\Delta=\Delta_{G}$ ,
DVC-Apx yields an approximate solution for $G$ whose apprvimation factor is at most

$\frac{2}{1+\{1-(1-\frac{\Delta}{2n})^{t}\}\gamma(G)}$

in time $O((\log n)^{2t})$ .

Especially, since $(1-;)^{x}$ $<$ 1/e, by setting $t=O(n/\Delta)$ , the approximation factor obtained by
DVC-Apx can be arbitrarily close to $\frac{2}{1+\gamma(G)/n}$ . The correctness of the computation time is obvious
ffom the recursion structure given in the previous section, which is $O((\log n)^{O(n/\Delta)})$ under the same
setting. Thus we have the following corollary.

Corollary 1. Suppose that A $=\Omega(n^{1}\Leftrightarrow_{\mathrm{g}n}^{1\mathrm{g}\underline{n}})$ . Then our algorithm runs in polynomial time and its
apprvirnation factor is $\frac{2}{1+\gamma(G)/2}$ .

In the following we focus on the analysis of the approximation factor, for which we need several
lemmas.

Lemma 2. Let $G=(V,E)$ , $C\subseteq V$ be one of the minimum vertex cover of $G$ and $W$ be a set of
vertices $s.t$. $|W|=n_{1}+n_{2}$ , $|W\cap C|\geq n_{1}$ and $|W$ -C$|\leq n_{2}$ . Then we can construct a vertex cover
whose approirnation factor is at most $\frac{2}{1+_{n}^{\underline{\hslash}_{\mapsto-n}}}$.

This lemma is a generalization of Lemma 4.1 in [10]. In [10], the case that $n_{2}=0$ $(W\subseteq C)$ was
considered and the Lemma 2 can be proved similarly. Hence we omit the proof here. By using this
lemma, we can concentrate only on finding a set of vertices which has a large fraction of vertices
in $C$ .

Consider the recursion tree generated by the execution of DVC-Apx on $G$. For a path $P$ from
the root to a leaf in this tree, let $G_{i}^{P}$ be the input graph at the ith level (see Figure 2). We
denote by $W_{\dot{1}}^{P}$ the set of removed vertices at level $i$ on $P$ and let $W_{P}= \bigcup_{\dot{\mathrm{s}}=1}^{t}W_{i}^{P}$ . Note that
$\mathrm{C}_{=1}|\mathrm{F}^{P}|=\sum_{\dot{\iota}=1}^{t}$ r: and $G_{i+1}^{P}=G_{i}^{P}-W_{i}^{P}$ holds for each $i$ . In the rest of the paper, when we
say a ”node” in the tree, it often means the input graph in that node. Note that the root of tree
is $G_{1}=G.$ We often omit the superscript $P$ from these notations when the underlying path $P$ is
clear ffom the context.

Lemma 3. For any path $P$ and any level $i$ we have $n_{G_{*}}=n_{t},\overline{d}_{G_{l}}\mathit{2}$ $\overline{d}_{\mathfrak{t}}$ and $\mathrm{r}(\mathrm{G}\{)\geq r_{i}$ .
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Figure 2: a recursion tree

Proof. By induction on $i$ . For $i=1,$ these equalities hold by the definitions. For $i32$ , since
$G_{\dot{\iota}+1}=G_{\dot{l}}-W_{\dot{l}}$ , we have $n_{G_{*+1}}.=$ n{Gi) $-r_{\dot{\gamma}}=n_{\dot{*}}-r_{\dot{l}}=n_{\dot{\mathrm{a}}+1}$ . Hence $n_{G_{t+1}}=n_{\dot{|}+1}$ . Since the

average degree of $G_{\dot{\iota}+1}$ is at least $\frac{\overline{d}_{G}n_{G}-2\Sigma_{b=1}^{\epsilon_{l}}deg(k)}{n_{G_{t+1}}}$, we have

$\overline{d}_{G}.\cdot+1$ $\geq$ $\frac{\overline{d}_{G}n_{G}-2\sum_{\dot{k}=1}^{s}deg(k)}{n_{t+1}}$

$=\overline{d}_{t+1}$ .
Therefore, $\overline{d}_{G_{t+1}}$ $\mathrm{a}$ $\overline{d}_{t+1}$ holds. For $\{r_{j}\}$ , using $n_{G_{t+1}}=n_{i+1}$ and $\overline{d}_{G}\dot{.}+1$ $\geq\overline{d}_{\dot{*}+1}$ , we have

$r(G_{i+1})$ $=$
$\frac{\overline{d}_{G_{t+1}}}{1+\sqrt{1-\frac{\overline{d}_{G_{t+1}}}{nc_{+1}}}}.\cdot$

$=$
$\frac{\overline{d}c_{+1}}{1+\sqrt{1-\frac{\overline{d}_{G}}{n_{t}}}}$

.
$.+1+1$

$\overline{d}_{t+1}$

$\geq$

$\overline{1+\sqrt{1-\frac{\overline{d}_{+1}}{\overline{n_{l+1}}}}.\cdot}$

$=r_{i+1}$ ,

which proves the lemma. 0

Lemma 4. Let $P$ be any path from the root to a leaf in the recursion tree and $G_{1}$ , $G_{2}$ , $\ldots$ , $G_{t-1}$ be
the nodes along P. For every $G_{i}$ , with probability at least $1- \frac{1}{n^{2}}$ , the family $v_{G}.\cdot$ contains at least
one set 173 $\mathrm{s}$.t. $|5$ $\cap C|\geq(1-1/\log n)|V_{j}|$ .

Proof. If $|H(G_{i})$ $\cap C|\geq(1- 1/ \log n)|H(G_{i})|$ , then the claim holds with probability 1 since $H(G_{i})\in$

$\mathcal{V}$G$t$ and $H\{Gi$ ) satisfies the conditions. Otherwise, i.e., if $|H(G_{i})$ $\cap C|<(1-1/\log n)|H(G_{\dot{l}})|$ , then
the set $U_{G_{t}}$ of randomly chosen vertices contains a vertex $v\mathrm{s}.\mathrm{t}$ . $v\not\in C$ with high probability. Indeed,
when $|\mathrm{H}(\mathrm{G}\mathrm{i})$ $\geq 2(\log n)^{2}$ , the probability that $UGi$ contains such a vertex is:

$\mathrm{P}\mathrm{r}[\exists v\in U_{G}. -C]]$

$\geq$ 1-
$\prod_{v\in U_{G_{l}}}\mathrm{P}\mathrm{r}[v\not\in U_{G_{*}}. -C]$ $\geq 1-(1- 1/ \log n)^{2(\log n)^{2}}$

$\geq$ $1-( \frac{1}{e})^{2\log n}=1-\frac{1}{n^{2}}$.

If $|H(G_{i})|<2(\log n)^{2}$ , this probability is 1 since $\mathrm{U}\mathrm{G}$ . $\mathrm{H}(\mathrm{G}\mathrm{i})$ and $|H(G:)-C|>|H(G:)|/$ $\log n>0.$

For such a vertex $v$ $(C, NGi(v)\subseteq C$ , which means $|N_{G}$: $(v)\cap|=|\mathrm{V}_{G},.(v)|>(1-1/\log n)|N_{G}.(v)|$ .
Thus the claim holds. Cl
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Lemma 5. For any computation path $P$ of height $t$ , the sum of the degree of the removed vertices,
$i.e.$ , $\sum 7_{k=1}^{\epsilon_{t}}$ $deg(k)$ , is at least $(1-(1- \frac{\Delta}{2n})^{t})\overline{d}n$ .

$deg(k)$

$\backslash \backslash \backslash \backslash \backslash$

$\backslash$

$\backslash \backslash \backslash \backslash$

A——————— $\cdot$

$n$ $k$

Figure 3: $\deg(\mathrm{k})$

Proof. Let $4$. $=\overline{d}$n - 2 $\sum_{k^{l}=1}^{\mathit{8}}deg(k)$ , which intuitively represents the lower bound of the number of
remaining edges. We first prove that $a_{t}$ decreases exponentially. To do so, we show the following
inequality.

$\frac{a_{i+1}}{a_{i}}\leq 1-\frac{\Delta}{2n}$ . (1)

Supposing this inequality holds, we can show that $a_{t} \leq(1-\frac{\Delta}{2n})^{i}a_{0}=(1-\frac{\Delta}{2n})^{i}\overline{d}n$ and the lemma
will be proved. Hence from here we will prove equation (1).

First, cq $-a_{\dot{*}+1}=2 \sum_{k=s_{\mathrm{f}}+1}^{\epsilon_{t+1}}$ &g(tC) can be lower-bounded by

$r_{i+1^{\frac{\ g(s_{i})+deg(s_{i+1})}{2}}}$ . (2)

This can be seen in Figure 4 because $\sum_{k=s_{i}+1}^{\epsilon_{i+1}}deg(k)$ equals to the gray area and expression (2)
equals to the underlying trapezium.

$\backslash \backslash .\backslash \backslash \backslash ..\backslash \backslash \backslash \backslash$ $\backslash .\backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash \backslash$
$\backslash \backslash \backslash \backslash \backslash \backslash \backslash ..\backslash \backslash \backslash$

1 2 3

Figure 4: gray area represents $\sum_{\dot{k}=*\mathrm{r}+1}^{\partial}.+1$ $\deg(\mathrm{k})$

case 1. The case $s_{i}<s_{i+1}\leq n-\Delta$, it follows that $\ g(s_{\dot{*}})=\ g(s_{i+1})$ $=$ A. Therefore,

$\sum_{k=\epsilon \mathrm{s}+1}^{\epsilon \mathrm{a}+1}deg(k)$ $\geq$ $r_{i+1^{\frac{\Delta+\Delta}{2}}}$
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$=$ $r_{i+1}\Delta$

$\geq$
$\frac{\overline{\iota}_{+1}}{2}$

.
A

$=$ $\frac{\overline{d}n-2\sum_{k^{i}=1}^{s}deg(k)}{n_{i+1}}$ . $\frac{\Delta}{2}$

$=$ $\frac{a}{n_{\mathrm{t}+1}}\dot{.}\frac{\Delta}{2}$

$\geq$
$\frac{a_{t}}{2}\frac{\Delta}{n}$ .

Here we used Lemma 1 and the definition of $\overline{d}_{t}$ .
case 2. The case $s_{\dot{*}+1}>$

$\mathrm{f}\mathrm{f}\mathrm{i}-\Delta$ $\geq s_{i}$ , $deg(s_{\dot{*}})=\Delta$ and $deg(s_{i+1})$ $=n-s_{i+1}$ . Therefore,

$\sum_{k=\epsilon\iota+1}^{\epsilon_{\mathrm{t}+1}}deg(k)$ $\geq$ $r_{i+1}^{\mathrm{i}^{S}+1}\Delta+n_{2}-$

$\geq$ $\frac{a_{t}}{2}\frac{\Delta+n-s_{i+1}}{2n_{t+1}}$

$\geq$ $7$ $( \frac{\Delta}{2n_{i+1}}+\frac{n-s_{\mathrm{i}}-r_{i+1}}{2r_{4+1}}.)$

$\geq$ $\frac{a_{t}}{2}(\frac{\Delta}{2n_{i+1}}+\mathrm{i}n_{i+\mathrm{l}}-r_{+1})2\mathrm{n}_{t+1}$

$\geq$ $\frac{a_{\dot{*}}}{2}\frac{\Delta}{2n_{\dot{\iota}+1}}$

$a_{i}\Delta$

$\geq$

$\overline{2}\overline{2n}$
.

Here we used $n_{t+1}=n-s_{i}$ and $n_{i+1}\geq$ $r_{if1}$ .
case 3. Finally, the case $s_{i+1}>s_{i}>n-\Delta,$ $\ g(s_{i})=n$ - $S$: and $\ g(s_{\dot{l}+1})=\mathit{1}\mathit{9}$ - $s_{+1}$ . Thus

$\sum_{k=s_{t}+1}^{s_{t+1}}$ &g(k) $\geq$ $r_{i+1^{\frac{n-s_{i+1}+n-s_{i}}{2}}}$

$\geq$ $\frac{a_{t}}{2}\frac{2n-s_{i+1}-s_{i}}{2n_{i+1}}$

$=$ $\frac{a_{t}}{2}\frac{2(n-s_{i})-s_{\dot{\iota}+1}+s_{i}}{2n_{i+1}}$

$=$ $\frac{a_{\mathrm{t}}}{2}(1-\frac{r_{\iota+1}}{2n_{i+1}})$

$\geq$ $\frac{a_{t}}{4}$ .

Here we used $t:\leq n_{t}$ .
Thus in any case $a_{t}-a_{t+}4$ $= \sum_{k=s_{*}+1}^{\epsilon_{t+1}}$. degfa) $\geq\yen$ $\cdot\pi\Delta$ holds since $\varpi\Delta=\min$ { $\frac{\Delta}{n}$b , $\frac{\Delta}{2n}$ , $\mathrm{J}$ } Therefore

it follows that $a_{t+1}\leq(1-c)a_{t}$ and we have shown that $a_{*}$
. decreases exponentially. $\square$

Using this lemma, we next show that $s_{i}$ converges to $\gamma(G)$ and the difference $\gamma(G)-s_{i}$ also
decreases exponentially.

Lemma 6. For any computation path $P$ of height $t$ , the surn of the number of removed vertices,
$i.e.$ , $| \mathrm{T}_{P}|=\sum_{k=1}^{t}r_{\mathrm{t}k}$ , is at least $(1-(1- \frac{\Delta}{2n})^{t})\gamma(G)$ , where $c= \min\{\frac{\Delta}{2n}, \frac{1}{2}\}$ .
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Proof, In Lemma 5, we have shown that 2 $\sum_{k=1}^{s}$
. $deg(k)$ converges to $\overline{d}n$ exponentially. This implies

that $s_{i}$ converges to the value of the solution of the following equation:

2 $\sum_{k=1}^{x}$ dig(kl) $=\overline{d}$n. (3)

So let us first solve this equation. To solve this, we have to consider two cases. One case is the
case $1- \frac{\Delta}{n}\geq\frac{\overline{d}}{2\Delta}$ , in which $\deg(\mathrm{k})$ $=$ A holds for au $k$ . This can be shown as follows. Let $x_{0}$

be the solution of the above equation and suppose that $deg(k)=n-k$ holds for some $k\leq x_{0}$ .
$Bn$

Then it follows that $x>n-\Delta\geq\not\subset\overline{d}n$ and $\overline{d}n=2\sum_{k=1}^{x}eg$( c) $>2 \sum_{k=1}^{\mathrm{g}}$ $\deg(\mathrm{k})=dn$. This is a
contradiction and $\deg(\mathrm{k})=$ A holds for all $k$ .

The other case is $1- \frac{\Delta}{n}<\frac{\overline{d}}{2\Delta}$ , in which for some $k$ it holds that $\deg(\mathrm{k})=n-k$ . This can be
shown similarly.

In the first case, i.e. $1- \frac{\Delta}{n}\geq\frac{\overline{d}}{2\Delta}$,

2 $\sum_{k=1}^{x}$ $\deg(\mathrm{k})$ $=2x\Delta$

holds and we obtain $x= \frac{\overline{d}n}{2\Delta}$ by solving (3). In the second case, $1- \frac{\Delta}{n}<\Pi 2\overline{d}$ , we have

2 $\sum_{k=1}^{x}\ g(k)=2 \Delta(n-\Delta)+2\frac{(\Delta+(n-x))(x-(n-\Delta))}{2}$ .

This can be seen by the gray area of Figure 5. Solving (3) by using the above equality, we have
$x=n-\sqrt{\Delta(2n-\Delta)-\overline{d}n}$. After all, we have shown that $s_{i}$ converges to $\gamma(G)$ .

Figure 5: the gray area represents $\mathrm{i}\mathrm{I}_{k=1}^{x}$ $\deg(\mathrm{k})$

Next we $\mathrm{w}\mathrm{i}\mathrm{U}$ show that the rate of convergence is also $(1-\mathrm{A})$ . To show this, we prove here
that the following inequality holds for each $i$ .

$\sum_{k=1}^{s}.deg(k)\geq\frac{\overline{d}n}{\gamma(G)}s_{\dot{1}}$ (4)

Supposing this inequality, we have $s:\geq(1-(1-c)^{i})\gamma(G)$ and the lemma will be proved.
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This can be easily shown by seeing Figure 6 since the upper curve represents $\sum_{k=1}^{s}\dot{.}deg(k)$ and
the lower line represents $\frac{\overline{d}n}{\gamma(G)}s_{i}$. For $0\leq x\leq n-\Delta$ , $\sum_{k=1}^{x}$ $deg(k)= \Delta x\geq\frac{\overline{d}n}{\gamma(G)}x$ holds by definition
of $7(\mathrm{G})$ For $x>n-\Delta$ , $\sum_{k=}^{x}1$ $deg(k)=\Delta(n-\Delta)+(\Delta+(n-x))(x-(n- \mathrm{A}))/2$ and let $f(x)$

be the right hand side of the equation. Since $f(x)$ is convex upward and $f(x)> \frac{\overline{d}n}{\gamma(G)}x$ holds for
$t=n-\Delta$ , $7(\mathrm{G})$ , we have $/( \mathrm{x})>\frac{\overline{d}n}{\gamma(G)}x$ for all $n-$ A $\leq x\leq\gamma(G)$ . Hence equation (4) holds and
the lemma proved.

$\overline{d}n.$ ..–.——–

1

1

$\Delta(n-\Delta)$ $—-\cdot---$

$1||1$

$l$

$|1\mathrm{t}|$

$1||$

$\prime 1|\mathrm{I}11$

$|\iota^{\mathfrak{l}}$

$n-\Delta$ $\gamma(G)$

Figure 6:

0

Lemma 7. For every $V_{j}\in \mathcal{V}_{G}\dot{.}$ , $|V\mathit{5}|2$ $r_{j}$ .

Proof Recall that $H(G)=\{v|\mathrm{d}(\mathrm{v})\geq r(G)\}$ . For each $v\in U_{G}‘$ ’ therefore, we have $d(v)\geq r(G_{i})$

and $|N_{G_{\mathrm{J}}}(v>)|\geq$ r(Gi). By lemma 3, $r(G_{i})2$ $r_{i}$ holds, which also means $|N_{G}$.$\cdot$ (v) $|\mathit{2}$
$r_{i}$ . To prove

$|\mathrm{H}(\mathrm{G}))|\geq r(G_{i})$ , suppose for contradiction that $|H(G)|<r(G_{i})$ . This means only $|H(G)|$ vertices
have a degree at most $n_{G_{t}}$ and $n_{G}\dot{.}-|H(G)$ $|$ vertices have a degree less than $r(G)$ . Now the total
sum of the degree of vertices in $G_{i}$ is bounded by

$\sum_{v\in V(G:)}d_{G}\dot{.}(v)$

$<$ $|H(G)|nc_{:}+$ $(n_{G_{t}}$ $-|\mathrm{H}(\mathrm{G})\mathrm{r}(\mathrm{G}\mathrm{i})$

$=n_{G_{t}}r(G_{\dot{*}})+(n_{G_{l}}-r(G_{i}))|H(G_{i})|$

$<$ $n_{G_{l}}r(G_{i})+(n_{G}.\cdot-r(G_{\dot{*}}))r(G_{i})$

$=$ $(2n_{G_{l}}-r(G_{i}))r(G_{i})$ .

Here the second inequalty holds since $r(G_{i})\leq\overline{d}_{G}.\cdot\leq n_{G_{2}}$ . Since $\overline{d}_{G_{t}}n_{G_{5}}=\sum_{v\in V(G_{l})}d$ $(v)$ , it

follows that $\overline{d}_{G}$. $n_{G_{l}}<(2n_{G_{l}}-r(G_{i}))r(G_{i})$ . Solving this inequality we obtain
$r(G)< \frac{\overline{d}_{G_{*}}}{1+\sqrt{1-\overline{d}_{G_{l}}/n_{G_{t}}},\square }.$,,

which contradicts the definition of $r(G)$ .

By this lemma we can always select $r_{i}$ vertices in the 7th line of the algorithm. Hence $|W_{P}|$ $=$

$\sum_{i=1}^{t}r_{i}$ for any path $P$ .
Lemma 8. Let C be one of the minimum vertex covers of G. Then, with high probability, there is
a path Ps.t. $|W_{P}.\cap C|$ es at least (1-o(l)) $\sum_{i=1}^{t}r_{i}$ .
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Proof. We call a path $P$ a good path if, at every node $G_{i}^{P}$ . $\mathcal{V}_{G_{i}^{P}}$

$\mathrm{h}\mathrm{s}$ a set $V_{7}$
$\mathrm{s}.\mathrm{t}$ . at least $1- \frac{1}{\log n}$

ffaction of $V_{j}$ is in $C$ . Recall that for some set $V_{j}’\subseteq V_{J}$ of randomly chosen vertices $\mathrm{s}.\mathrm{t}$ . $|V\mathrm{J}$’ $|=r_{i}$ ,
$G_{i+1}^{P}=G_{i}^{P}-$ $\mathit{7}$

’ holds.
We can observe that, by Lemma 7 the probability that a recursion tree has at least one good

path of height $t$ is at least $(1-^{t}$ and $t$ is obviously at most $n$ since $|G_{i}|>|G_{i+1}$ $|$ holds for any
$i$ . Thus this probability is at least $(1-\overline{n}^{\mathrm{T}})^{n}1$ . Note that since $(1- \frac{1}{x})^{x}\geq$ l/2e for sufficiently large
$x$ , the probability is greater than $(1/2e)^{1/n}$ , which is almost equal to 1 for sufficiently large $n$ .

Next let $P$ be a good path on the tree generated by the algorithm and we consider the probability
that $|W_{P}\cap C|>$ $(1-1/ \log n)\sum_{i=1}^{t}r_{i}$ . Let $W_{P}=$ {Xl,X2, $\ldots$ , $v_{1}W_{P}1$ } be the set of all the removed
vertices along path $P$ and $X_{i}$ be the random variable $\mathrm{s}.\mathrm{t}$ . $X_{i}=1$ if $v_{i}\in C$ and $X_{i}=0$ otherwise.
Then $X=$ $\mathrm{g}!\mathrm{j}\mathrm{r}|X_{i}$ is a random variable that represents $|W_{P}$ $\cap C|$ . The expectation $\mu$ of $X$ is

$\mu=E[X]=E|\sum_{i=1}^{|W_{P}|}X_{i}|=\sum_{i=1}^{|W_{P}|}$ E $[X] \geq(1-\frac{1}{\log n})\sum_{i=1}^{t}r_{i}$.

This is because each vertices in $W_{i}^{P}$ is randomly chosen from some $V_{j}$ which has at least 1-1/ $\log n$

fraction of vertices in $C$ . Next we estimate the probability that $X$ deviates from its expectation.
Since $X_{1}$ , $X_{2}$ , . . . , $X_{|W_{P}|}$ can be seen as independent Poisson trials, we can use Chernoff Bound to
imply that

$\mathrm{P}\mathrm{r}[X<(1-1/\log n)\mu]<e^{-}\mathrm{p}$ $<e^{-}\mathrm{d}$ $=e^{-o(\frac{\mathrm{a}}{(\log n)^{2}})}$ .

Here, the second inequality follows $\mathrm{f}$ om $\mu\geq$
$(1- \frac{1}{\log n})\sum_{i=1}^{t}r_{i}\geq(1-\frac{1}{\log n})r_{1}\geq\frac{(1-\frac{1}{1\mathrm{o}\mathrm{g}n})\overline{d}}{2}$ by

Lemma 6. Hence the probability we are considering is at least:

$(1-7)^{t}$ $(1-e^{-O}\mathrm{G}_{\mathrm{l}\circ}\mathrm{g}n))$ $)$ .

Since we are now considering (almost) dense graphs, this probability is almost equal to 1 for
sufficiently large $n$ . Thus the lemma follows. $\square$

Putting these lemmas all together, we can now prove the theorem. By Lemma 8, with high
probability, there is a path $P\mathrm{s}.\mathrm{t}$ . $|W_{P}\cap C|\geq(1-o(1))|W_{P}|$ , which means $|W_{P}-C|\leq o(1)|W_{P}|$ .
Then by Lemma 2 the approximation factor of DVC-Apx is at most

$\frac{2}{1+\frac{(1-o(1))|W_{P}|-o(1)|W_{P}|}{n}}=\frac{2}{1+\frac{(1-o(1))|W_{P}|}{n}}$ .

Next, by Lemma 6, $|W_{P}|$ is at least $($ 1 - (1 - $\frac{\Delta}{2n}$ )’ $)\mathrm{v}(G)$ . Therefore we have

22
$1+ \frac{(1-- o(\overline{1}))|W_{P}|----}{\overline{n}}--\neg-1+(1-o(1))\{1-(1-1-\frac{\Delta}{2n})^{t}\}\gamma(G)--$

.

That completes the proof of Theorem 1.

5 Concluding remarks

There are a few remarks we could not mention so far: (i) Although we have mainly discussed the
case that $\Delta=\Omega(n_{1\mathrm{o}n}^{1\mathrm{o}\mathrm{l}_{\frac{\mathrm{o}}{\mathrm{g}}}})\mathrm{A}\mathrm{L}^{n}$ , the algorithm works for smaller $\Delta$ if we allow super-polynomial running
time. Especially, if $\Delta=$ $(\log\log n)$ , then the algorithm achieves the same approximation factor
(i.e., strictly less than two if $\overline{d}$ils is constant) in time $2^{o(n)}$ . (ii) The approximation factor is strictly
less than two only if $\overline{d}/\Delta$ is constant. This condition can be slightly relaxed as follows: Namely,
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suppose that we can obtain a graph $G$’ such that $\overline{d}_{G^{J}}/b_{G^{t}}$ is constant by removing $o(n)$ vertices
ffom the original graph $G$ . Then we can apply our algorithm to $G$’ and can obtain an answer (a
vertex cover) for the original $G$ by adding the $o(n)$ removed vertices to the answer for $G’$ . One can
see easily that this still gives us a factor of less than two.
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