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ABSTRACT. We consider the problem of the simultaneous lineariza-
tion of commuting singular analytic vector fields in K*, K = C, R,
with non-semisimple linear parts. We investigate the solvability
under compatibility conditions of overdetermined systems of lin-
ear homological equations. We also examine the influence of the
presence of Jordan blocks for intersections of foliations defined by
two commuting real vectors fields in R?" with odd-dimensional
spheres.
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1. INTRODUCTION

We investigate simultaneous linearization of d of commuting analytic

vector fields X!,... , X% having a common singular point at 0 € K",
K=C or K=R with

(1.1) X7 = (X7 ZXJ 8y F=1,...,d,

and

(12)  Xi(z)=Alz+Ri(z), Ri(z)=0(z]?), |z| = 0.

where A7 € M,,(K) (the set of all n x n matrices with entries from K),

R € C¥(Q : K*), @ C K" being an open neighbourhood of 0 € K*,
C“(Q : K*) stands for the space of the analytic vector valued functions
from ) to K". We emphasize that we do not require semisimpleness of
the linear parts A7, j =1,...,d.
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Grant-in-Aid for Scientific Research (No. 11640183), Ministry of Education, Science
and Culture, Japan. E-mail: todor@unica.it
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A more general and invariant setting is to consider a germ of singular
infinitesimal K? (d > 2) actions of class CB with K = C or K = R,
and B = 00, B = w or B = k for some k > 0, namely a Lie algebra
homomorphism

(1.3) p: K — G5,

where G" denotes a d-dimensional Lie algebra of germs at 0 € K™ of
analytic vector fields vanishing at 0. We denote by Act(K? : K") the
set of germs of singular infinitesimal analytic K¢ actions in 0 € K. It
is well known (e.g., cf. [5], [9]) that, by choosing a basis e;,... ,e4 in
K", the infinitesimal action can be identified with a d-tuple of germs at
0 of commuting vector fields p(e,),... ,p(es). Given p € Act(Kd K")
and a basis e;,... ,eq in K? we set X7 = p(e;), 5 =1,...,d. We can
define, in view of the commutativity relation, the actlon

(1.4) p: K% x K* — K",
p(s;z) = X, 0---0Xi(z)
(1.5) = X;, 0. X74(2), s=(s1,-..,84),
for all permutations o = (ay,...,04) of {1,...,d}, where X! denotes

the flow of X7. We denote by py., the linear a,ctlon formed by the linear
parts of the vector fields defining p.

We shall investigate the linearization of p, namely, whether there
exists an analytic diffeomorphism z = y + v(y),

(1°6) v(y) = Z vay”, vy € C,

a€Z%(2)
such that u conjugates simultaneously X!,...,X? into their corre-
sponding linear parts X},,... , X, . Here y* = ¢ ... y2 for a multi-

index a € Z7, and a € Z%}(2) means |a| := a; +...+ 0, > 2. It is well
known that this is means that the unknown function (or forma power
series) v satisfies a system of d homological equations

(1.7) La,v(z) == (Ajz,0:)v — Ajv = Ri(z + v(z)), j=1,...,d

Let K3{z} (respectively, KZ[z]) be the set of n vector functions of
convergent (respectively, formal) power series of z € K* without con-
stant and linear terms. We will also investigate the solvability of the
linear version of the system (1.7)

(1.8) Lav(z) = fi(z), j=1,...,d

where f = (f!,..., f%) € (K?{z})?. Similar equations appear in the
study of simultaneous normal forms for commuting holomorphic maps.
We note that if d > 2 the system becomes overdetermined. We recall



that in [9], [17], [29] (see also [7], [8], [30], where normal forms in the
presence of symmetries have been investigated) the. linear parts were
supposed to be diagonalizable, while in [35] the existence of analytic
first integrals was required. We point out that even for a convergent
normal forms of a single analytic vector field or a biholomorphic map
in the Siegel domain the results have been usually proved under the
assumption of semisimple linear parts cf. [2], [13], [20]. On the other
hand, the celebrated results of A. Bruno [3] for convergent normal forms
are proved for some cases where the linear part of a singular analytic
vector field admits Jordan blocks (the so called (A) condition) plus the
arithmetic Bruno condition (w).

Recently, linearization of single maps and vector fields in a Siegel
domain with nontrivial Jordan blocks in the linear part have been in-
vestigated (cf. [11], [15], [33], see also [1] where Jordan blocks appear
not in the linearization of biholomorphic maps but in an interplay be-
tween holomorphic dynamics and singularity theory). We refer to [15],
[11], [32] for divergent solutions of a single linear homological equation
(d = 1) in the presence of Jordan blocks, implying, in virtue of the gen-
eral abstract approach in [23], [27], to nonlinerazition results for maps
and vector fields (i.e., divergent formal transformations y + v(y)).

We mention as another motivation recent results on the solvability in
Gevrey classes of first order linear singular equations admitting Jordan
blocks (see [16], [21], [22]).

The second goal of our investigations is to generalize results on the
intersections of complex flows in the Poincaré and the Siegel domain
with odd-dimensional spheres cf. [6], [19], where the linear part is
supposed to be diagonalizable). We will outline the new phenomena in
the presence of nontrivial Jordan blocks.

One essential ingredient of our approach is to rely on a classical result
for the simultaneous reduction of commuting matrices to an upper tri-
angular form (e.g., see [25] where this has been used in the study of the
action of commuting hyperbolic diffeomorphisms of the n—dimensional
torus T™). More precisely, we can find a positive integer m < n such
that K" is decomposed into a direct sum of m linear subspaces invariant

under all A =VX,(0)({=1,...,d):
(1.9) Kt=I"+... 4+ I, diml*% =s;,j=1,...,m,
S1+--+ 8, =n.
The minimal polynomial of the Jacobian matrix A® over % is a

power of an irreducible polynomial p;¢(z) over C (respectively, over R).
The matrices Al,..., A% can be simultaneously brought in an upper
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triangular form, and we write again A‘ for the matrices,

Al Ouxs; oo Osyxsm
(1.10) A= O”,"‘“ 45 0”.’“”‘ . £=1,....,d
Oupxor Ouxes - AL
If K = C, the matrix Af is given by
(1.11)
X Ay A,
Al = (_) '\_" e A”?’J l=1,...,d,7=1,...,m,
0 0 .. X
with A5, A% € C. Next, if K = R we have, for every fixed j €

Jvp

{1,... ,m} two possibilities: firstly the minimal polynomials of all A*
on I’/ are powers of monomials: p;(t) = (t—A5)*, X eR, £=1,...,d.
Then all A% (£ =1,...,d) are given by (1.11) with X} € R. Secondly,
there exists £, 1 < £ < d such that the minimal polynomial of Af- on I%
is a power of irreducible quadratic polynomial with complex conjugate
roots A; +iué. Then s; = 25; is even and A is a §; x §; square block
matrix

(1.12)
Ro(Mpd) AR ... AD
23
Af — 0 R2()\eaﬂj) Af]J , /= 17. ,d,
0 0 e Rz()\J,[.LJ)
where
(1.13) Ry(A\,p) := ( _A'u ’)f ) , A pu€R,

and the matrices
(1.14) A = R2()‘l]’/'1‘lj) /\[1,/1[] € R = 1 ,d,l S r< -§:7,
are 2 x 2 real matrices provided §; > 2.

We define the diagonal part of A% by A%(diag) := /\‘ ; (respectively,
Aj(diag) := diag {Ry(X, pt), .. Rg()\ 1 15} prov1ded K=CorK=
Rand M eR,2=1,...,d (respectlvely, K =R, s; =24; and pf # 0
for at least one € {1 ,d}). The nilpotent parts are defined by

Al(nil) := AL — A’(dzag) We decompose in a natural way the linear
actlon into the dlagonal part pgisy and the nilpotent part png.



Throughout the paper we assume that d vectors in K" formed by
the diagonal parts (respectively, the diagonal elements of the 2 x 2
real matrices in the real Jordan block form) if K = C" (respectively,
K = R) are linearly independent. Following the decomposition (1.10)
(respectively, (1.11)) we define AJ by

(1.15) o= (AL M) eK™,  k=1,...,d
Clearly
(1.16) Al ... X4 are linearly independent in K™,

which implies
(1.17) d < m.

One can easily see that (1.16) is invariantly defined.
We also define

(L18Y = (OF ..o X N M) eKY, k=1, ,d
n; times n,, times
The decomposition (1.9) leads in a natural way to the following no-
tations: give a = (ay,... ,a,) € Z% we write a = (a',... ,a™), where
odeZf j=1,...,m. Weset a@ = (|o}|,...,|a™|) € Z}. Given a

positive integer k we define Z7(k) = {a € ZT; |a| > k}.
Set

119)55(a) = Y (wa)—X, j=1,...,m, &€ Z}(2)
(1.20) (&) = min{@(&),...,on(&)}, &€ Z}(2),
(1.21)w;(a)

(12)w(@) = min{wr(a),... wa@)}, o€ ZL),
Note that
(1.23) wla) = @&(a), ya € Z5(2).

I
-~
3
©
Q
g
|
p o
LS
<
I
Pt
3

Definition 1.1. We say that the X*,... , X% are simultaneously non-
resonant if

(1.24) w(a) # 0, Vo € Z7(2).

If (1.24) holds we say in short that the action p is simultaneously non-
resonant.
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Clearly the simultaneously nonresonant condition is invariant under
the change of the basis A!,... , A%

The first main result of our paper concerns the solvability of the
system of linear homological equations (LHE) given by (1.8) in the
presence of nontrivial Jordan blocks in some the linear parts A7. This
is done in section 2.

Formal linearization results and an analogue of simultaneous lin-
earization under a simultaneous analogue of the Poincaré domain are
presented in section 3.

Finally, we discuss transversal intersections with odd-dimensional
spheres of 2 dimensional flows defined by two commuting real matrices
in section 4.

2. OVERDETERMINED SYSTEMS OF HOMOLOGICAL EQUATIONS

The main goal of these section is to derive an explicit algorithm for
compatibility conditions involving the RHS f’, j = 1,...,d, in order
the system (1.8) to be at least formally solvable.

Theorem 2.1. Assume that Al,..., A% are simultaneously nonreso-
nant. Then (1.8) is formally solvable if and only if f satisfies
(2.1) La;fr = La,fj, 5Lk=1,...,d.

In that case there ezists a unique formal solution S[f] € C3[z] for
every f € (C3[z])®. In addition, if S[f] is convergent (i.e., belongs
to C3{z}) for every f € (C3{z})? then the following simultaneous
arithmetic condition holds:

v ‘ . .
02) i explelal)o(e) = _inf exp(elal)io(@) > 0

for every e > 0.

Proof. If A; are semisimple, namely A; = diag {M,... M}, per
J=1,...,n, and the system of LHE is equivalent to

23)  (VM,e) = Mvag =F14, j=1,...,d, k=1,...,m

for a € Z7(2), where M := (M1,,,..., M 1, ) € Z% , with 1, standing
for (1,...,1) e N°, p e N and

_ Vas1 f Vask,1
(2.4) Vg = : €C", Vo= : e C*
Va;m Vaik,1

We .are working in C, if K = R and the vector fields are real, as in
the case of single nonresonant vector fields, the unique solution of the



homological equations will be real valued as well. Note that in view of
the definition of & and M we have

(2.5) Moy =M, &), j=1,.. ,da€cZ(2)
Then the compatibility condition (2.1) are written as follows
(2.6)

((M,a) — A’)ak—((,\‘,a)-—Ai)fi;k, jl=1,...,d, k=1,...,m

and we have

| j
2.7 k= L L
27 Vet = (ra) — )

for some j = j(a, k) provided
(28) <’\j7 Ot) - )"ljc 7£ 0,

k=1,...,m,a € Z7(2). We note that the simultaneous nonresonance
condition implies that for every given k € {1,...,m}, a € Z%(2) we
can find j satisfying (2.8). Moreover, in view of (2.3) the definition of
Vask 18 independent from j and the following estimate holds

maxj:l,...,d |fi,k|
maXj=,.. ¢ (A, a) = ]
and then the proof of (2.2) is stralghtforward

In the general case, when nontrivial Jordan blocks appear we need
a decomposmon of the lattice Z*. Let g be expanded into the power

series, g(z) = Z|a|>2ga . Set

(2.10) g = {ga}ia=s

for 8 € Z%(2), k = 1,... ,m. We define the linear finite dimensional
spaces of polynomials '

(2.9) [vagk| <

(211) Sf = {Z ga;kxa;ga;k € an}
|a=p
(2.12) $F = {Z gat%; ga € C"}
|a=5
By the simultaneous upper trla.ngular canonical form of A;,...,An
we get that the system of LHE acts invariantly on S? and Sﬁ for g8 €
Z%(2), k=1,... ,m. Next, we have a crucial representation

(2.13) (4;,0:) Y Gawz®= Y (¥, @) = M)gask + Mi(a)[g5]

«€Z?(2) «€Z7 (2)
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where

(2.14) M (a) is a linear nilpotent operator in Sg
fora€Z2(2),j=1,...,d,k=1,...,m. In particular.
(2.15) Mi(a)[gd] =0 if a=a®

where oi® = (a'?,... ,0™0), o*? = (]o*|,0,...,0). Note that the si-
multaneous nonresonance condition and (2.14) we get both the explicit
recurrent definition of the compatibility conditions on the right—hand

sides fJ as well as the explicit resolution of the overdetermined systems
of LHE. |

Next, we get readily an analogue in the commuting case of a formal
simultaneous linearization.

Theorem 2.2. Let the action p satisfy the simultaneous nonresonant
nonresonant condition (1.24). Then there exist a formal change of the
variables ¢ = u(y), such that it linearizes simultaneously X*,... , X?.
Moreover, for every integer N > 2 we can find a polynomial change of
the variables z = u™(y) such that

(2.16) VX7 = (Ajy+ RV (y),9,), j=1,...,d

where

(2.17) R¥(y)=0(y"*h),  j=1,....4,

Here uNX stands for the transformation of the vector field X (de-

{iyned in the)z coordinates = (z,,... ,,)) in the new coordinates y =
Lreve s Yn).

3. CONVERGENT SIMULTANEOUS POINCARE-DULAC NORMAL
FORMS

We will say that the family of commuting vector fields X?,... , X¢ (or
equivalently, the action p) satisfies the simultaneous Pincaré condition

if and only if there exist real numbers ¢; j = 1,... ,d such that
d
(3.1) Aj = Z c;A? is a vector field in the Poincaré domain.
J=1 ‘
We have

Theorem 3.1. Let the action p satisfy the simultaneous Poincaré con-

dition and (1.24). Then p is linearizable via an analytic transforma-
tion.



Proof. Choose an index j such that ¢; # 0, where cy,... ,¢cq are the
numbers in (3.1). Then we replace X’ by
. d
X = Z c; X7,
j=1
The vector fields X1,... X7=1, X7, Xi*1 ... X? are pairwise commut-

ing. In view of the classical Poincaré-Dulac theorem we can find an

analytic change of the variables z = u(y) such that X7 is transformed
to

wXi=Yi= (Aj+Resj(y),8y)

where Res’(y) is a polynomial of resonant monomials. By the simul-
taneous nonresonace condition (1.24) and Theorem 2.2 we obtain that
Res?(y) = 0 (possibly after additional polynomial change of the vari-

ables, we use the same letter X7) and
Y. 0=uX= (Ak+0(|y|N)3) k#3

The commutativity is coordinate invariant property. On the other
hand, if N is large enough, the LHE defined by the vector field in (3.1)
is nonresonant acting on homogeneous polynomials of degree > N. In
view of the analyticity and the commutation with Y*, k € {1,... ,m},
k # j, we obtain that all Y*, k € {1,... ,m}, k # j, must be linear as
well. We conclude the proof by observmg that Y7 = u, X7 is a linear

combination of Y7 and YE, ke {l,...,m}, k#3J. , =

Remark 3.2. Comparing with the case of a single LHE, cf. [15], the
presence of Jordan blocks in commuting vector fields requires appar-
ently new approach for dealing with the simultaneous Diophantine type
conditions appearing when the simultaneous Poincaré condition is not
satisfied. We refer to [18], where such problems are investigated by
using ideas from the theory of the simultaneous Diophantine approzxi-
mations (cf. [12], [26], [28], [34]). We mention also that the simulta-
neous arithmetic condition (2.2) for the convergence of the solutions of
the linear system (1.8) is less restrictive than the simultaneous Bruno
type condition in [29] (cf. [31] for similar comments about the Bruno
condition for the Siegel centralizer problem). In fact, in view of the
impossibility in the general case to reduce commuting matrices in the
same canonical Jordan block structures (cf. [14] for the description of
the centralizers of matrices), additional difficulties appear in showing
convergent normal forms for X*,... ,X? when d > 2 and some of the
matrices A',... , A% admit nontrwzal Jordan blocks (see [18]).
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4. TRANSVERSAL INTERSECTIONS FOR 2-DIMENSIONAL LINEAR
ACTIONS IN R*"

We are interested in the intersections of real 2-dimensional integral
manifolds of two commuting linear singular vector fields in R** with the
unit sphere $?"~!. If the intersection is transversal, it defines in a nat-
ural way integral curves of a smooth tangential nonsingular vector field
X on $?"~1, We recall that such problems have been investigated for
linear complex flows in C* under non degeneracy assumptions excluding
the presence of Jordan blocks, cf. [19], where it is shown in particular
that if all eigenvalues are distinct, belong to the Poincaré domain and
no two of the eigenvalues of A lie on the same line through the origin,
then the intersection of the linear flow with S?"~!(r) is transversal,
induces a nonsingular smooth tangent vector field X, which admits
exactly n closed orbits. For further generalizations and deep results
for intersections of complex flows in the Siegel domain with %"~} we
refer to [5], [6], see also [24]. In particular, for n = 2, the problem for
transversal intersections is related to the Seifert conjecture, namely the
existence of cycles of smooth non-vanishing vector field on S3.

Our aim is to generalize some of the aforementioned results for a
particular classes of 2 — D linear actions in R*™ admitting allowing
Jordan blocks. We consider 2-D linear action p in R?", defined by
two commuting 2n x 2n matrices A and B which satisfy the following
condition

(4.1) Az and Bz are linearly independent for every z € R*"\ {0}.

For the sake of simplicity, we assume that A and B are reduced
simultaneously to the same type of real Jordan canonical form. The
general case is investigated in [18]. Although this condition is more re-
strictive than the simultaneous reduction to the upper triangular form,
we are in more general situation with respect to the aforementioned pa-
pers since we recover as a particular case 1-D complex linear flows in

C" = R?" viewed as 2-D real linear action. More precisely, we suppose
that

Al 02n1 X2ng L 02n1x2nm
02n2x2n1 A2 v 02n2x2nm

42) A

02nmx2n1 OanXZ'nz Am
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Bl 02n1 X2ng e 02n1 X 2n4n
02n2><2n1 B2 oo 02n2 X2Nm
O2nmx2n1 02nmx2n2 e Bm
where

A; = Ry(aj,B;)In;(2) + R(pj, 05)Nny(2),
Bj = RZ(Eja"?j)Inj(2)+R(/-"j”\j)Nnj(2)a

namely,
Ra(0j,8;) Ra(kjsAj) ... Oaxa
wo a | O EesB) e
Oz Oz - Ra(038;)
Ry(&5m;) Ra(psvi) - Oaxa
45) B, = e Ballpm) o Baleh#)
02',(2 O2x2 . O2x2

with o, 8;,&,n5,4; € R for j = 1,... ,m. We define in an obvious
way

(4.6) Ani = A — Agiag, Briit = B — Biiqg,
Ajnit = Aj— Ajgiag, Bjnit = B — Bjdiag,

Set :
(4.7) ['(s,t;z) = exp(sA+tB)z, s,teR

We denote by F[p] = F[A, B] the foliation by the 2-D integral man-
ifolds of the linear action, defined by

FlA,B] = |J F.A, B
z€R2n
(4.8) F.[A, Bl = {EF(S,t;z); s,t € R}.

We will be interested in the transversality of the intersections
F.[A, B[ S?""!, 2 € §%~!. Werecall that F[A, B] interesects transver-
sally §%n-1 iff

(49) (Az,2)| + [(Bz2)| £0, 2 5%

A linear vector field (Az, d.) intersects S2"~! transversally iff S2"!
iff
(4.10) |(Az,2)| #0, =z §*!
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In view of (4.2), (4.3), (4.4), (4.4) we introduce, as in the introduc-

tion, the natural decomposition

(4.11) R = IP™ 4...4 1",

with dimI*™ = 2n;, and I*™ being invariant for A; and B;.
Lemma 4.1. The condition (4.1) holds if and only if
(4.12) ain; — Bi&i #0,  j=1,...,m,

Proof. Let (4.1) be true. If (4.12) does not hold, then Ry(e;,03;)
is a constant times of R,(;,n;) for some j € {1,...,m}. Thus, for
every z € ]Img' we get that Az and Bz are linearly dependent. This
contradicts to the assumption (4.1). Suppose now that (4.12) is valid.

If there exists z # 0 such that Az and Bz are linearly dependent, by
(4.2), (4.3), (4.4), (4.5) and (4.12) we get that 22 =0for j =1,... ,m,

which contradicts z # 0. Hence (4.1) is true. O
We denote by 77 : R?* — I?" the natural orthogonal projection, j =

1,...,m, and we set 2/ = #9(z) = (2I,... ,23.), 7 = (24, 7hq) € R?,

k—l .,nj, 3 =1,... ,m. Clearly we have

(4.13) R*™ >z = 71'1(z) + o+ 7™(2) = (24, 23, 2™),

which leads to

(4.14) esA+th — (esA1+tB1 Zl, 68A2+th 22, e esAm-i-thzm)tf"

Next, in view of (4.4), (4.5), we can write
e3AittB; i 5% ttés U(sﬁj + t")j)ln ‘(2)65Aj,nil+tBj,'nilzj
M
(4_15) eAini+tBjnil ,J

zz =1 (e-1)!Re H(skj 4 tug,shg + tVJ)Zz

— 2 (z- ! 1(3’% + tuj, sA; + tVJ)Ze
zj
n 2 (s 2\(¢=1)/2 , .
E[JI ((smj+tu,) -l-((l—)\l;-tuj) ) ((f—-yl)qﬁj(s,t))zg

n ™ 2 8 v 2\ (L~ ~2)/2 .
_ | T, Qb i) PG (2 - 2)5(s, 1)) 2

']
2],
where
SKj + Ly

cos @;(s,t) = ,
1) V(s + )2 + (sh; + tu;)?
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Aj + ty;
sin @;(s,t) = ST ,
V(skj +tp;)? + (shj + tv;)?
for j = 1,...,m provided (sx; + tpu;)? + (sA; + tv;)? # 0. We recall
that U(p) stands for the 2 x 2 rotation matrix Ry(cos ¢, sin ).

Before addressing the transversality issue in the presence of Jordan
blocks we consider the following example of a linear complex flow

Lo = (w1 + ew;) 0y, + w20y,

in C2. It corresponds to the linear complex action defined by the matrix

(éi), e € C.

Straightforward calculations imply that Lo is transversal to S® if and
only if |e| < 2.

We will generalize this fact for the 2-D linear real actions p defined
by A, B satisfying (4.2), (4.3), (4.4), (4.5).

Theorem 4.2. Let F[Agiag, Baiag] be transversal to S**~'. Then the
following properties hold:

i) there exists a constant Cy > 0 such that the foliation F[A, B]
intersects S*"~! transversally provided

(4.16) max { K24+ A2 44 /u2 + 2} < G,

Ji=1,.

with the convention k; = A\; = u; =v; =0 if n; = 1.
i1) suppose in addition that (Ag,,z,0,) intersects transversally, i.e.
(4.10) holds. Then (Az,d,) intersects transversally S**! iff

(4.17) ;| > 2d(n;)4 /K2 + A2, j=1,...,m,

where

(4.18) d(k) := max lz1z9| + ... |Zp—12k],

for k > 2 with the convention d(1) = 0.
1) we can always find two real constants ¢, and ¢, such that (¢ Agiggz+
¢2Biiagz, 0;) intersects transversally S**~1, namely

(4.19)
either minj=; . m 10 + c2€; > 0 or max;—;,.. mc1a; + c2; < 0.

Proof. By the transversality we have

co:= min (|(Adiag2,2)| + |{Baiagz,2)|) > 0.

eszn -1
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Next, in view of

m

(Mz,2z) = (Muiagz, z) + (Mpaz,z),= Z((My,dwgz z) + (Mjniz, 2))

: i=1
for M = A, B, we get the estimates

(Aimiz,2)] < (/W + Y12, (B, 2)| < max {3/ 4 2 }al,

we get
(420) min [(Az2)|+[(Bz,z)|
2 Co— max ( max [(Ajmaz’,27)|+ max [(Bima?’,2°)|).
1=l,..,m 21652751-1 2165'2”1_1

We can write

ki —)s
(% )=y

(4 %) = vheve)

(respectively,

with

K
cos(p;) = T sm(%) =
prowded \/ K2 + A2 # 0 (respectively,

cos(;) = , sin(y;) =
Vi EE

provided ,/u? + v? # 0). Thus

n,l

(4.21) (Ajmiz,z) = V& +)\§Z(z U(S"J)zul
=1
n;—1

V K+ vy Z(Zf, U(¢J)Zg+1>

=1

with the convention (Ajniz,z) = (A; .z, z) = 0if nj = 1. The
definition of d(k) and (4.20), (4.21), (4. 22) lead to

(42,2)] + (Bz,2)| 2 o= max ({(1/w2 + X2 + 1/ + 22)d(ny)}

(4.22) (Bjnitz, z)

i



45

for z € §?"~1, which yields (4.10) by choosing

-1
o= o (o ({5430 + /i + 2}

Next, we deal with ii). We assume without loss of generality that

a; >0,5=1,...,m. Then we have
(Az,z) = Z(Ajzj,zj)
ji=1

m—1

= Y (o5l + /62 + A2 D (2, U(93) 7))
j=1 =1

and
(4.23) zjéggf_l(Ajzj,zj) = o;+d(n;)y/k] + A}
(4.24) zjemszi%_l(Ajzj, 2y = a; —d(n;) K2 + A2

for j=1,...,m. The proof of (4.17) is complete.
In order to proof iii), we need the following lemma on quadratic
forms

Lemma 4.3. Let a = A[z] and Blz] be two quadratic form defined as
follows

P n
Alz] =P — 2",  Blz]= aiz}— Y bz}
s=1 k=p+1
where ' = (z1,...,2p), ' = (Tp41,-.-,2n), 1 < p < 1, aj,bx €R,
Jj=1...,p,k=p+1,...,n. If
(4.25) {r e R*"\0; Alz] = B[z] =0} =0

we can find ¢y, c; € R such that ¢y A[z] + c; Blz] is positz’ve.

Proof of the lemma. In view of (4.25), we may assume without loss of
generality, multiplying with —1 if necessary, that |2/|? — |z"|* > 0, z =
(z',z") # 0 implies B[z] > 0. Therefore, we have ap := min a, > 0.

s=1,..,p

Set by = ming—p4;, . 5 bx. Letting |2'| = |z”| we get that
Blz] = (ap — b)r* > 0,

min
l='|=|z|=r>0

which yields ag > b3. We can choose and fix 0 < ¢ < 1 to satisfy
(1 —€)ag > bp. Then

—(1 — €)aoA[z] + Blz] > 0, z € R"\0,
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since a; — (1 —€)ag > 0 and (1 —€)ag > bo > b for all j =1,...,p,
k=p+1,...,n, which concludes the proof of the lemma, and hence
the proof of iii). 0

Remark 4.4. The sharpness result for the transversality of a single
vector (4.17) is true for the 2-D foliation defined by a complez flow.
However, in general we may have transversality in the presence of Jor-
dan blocks without restrictions on the nilpotent part, as the following
ezample shows

1 010 0 -1 a O
0101 1 0 0 a
A= 0 010 » B= 0 0 0 -1
0 001 0 0 1 0

for all a # 0. More complete analysis of such problems is carried out
in [18].

In view of (4.19) we will assume without loss of generality that if
F[A, B] intersects transversally S**~! then

(4.26) a;>0 j=1,...,m,

We observe that we have always at least m cycles on the intersection
of $?*~1 with a 2-D linear foliation F[A, B], defined by commuting A
and B. The intersections F[A, B]().5%"! are defined implicitly by the
equation

(4.27) F(s,t;2) == || B2 =1 =0

for z € §%n-1,

Proposition 4.5. The intersection of the 2-D linear foliation F[A, B]

with S?"~1 admits m nontrivial closed curves £y,... 4, which are de-
fined by
(4.28) briz=27"(t) =(0,...,0,2(¢),0,...)",

2L (t) = (U((—Brbe/ak + me)t)2,0,... ,0)",

where zf € R?, ||2F|| =1, k=1,... ,m.



Proof We choose 2% = (2¥,0,...,0) € [2nk (5?1 and set zF*9 =

eig eig

0,...,2~% .0,...,0)". Then

Y “eig

( 0 )
0
(4.29) T(s,;25%) = | exp(aks + &t)U(Brs + nit) La(ne) 25,
0
\ 0 /
(4.30) exp(ags + &xt)U(Bks + nkt)lg(nk)zfig
exp(aks + fkt)U(,@ks + nkt)zf
0
0

Since

(431) [[D(s, 5 59) 12 = exp(2ans + 26ut) |U(Bes + mit)2E]]?
= exp(204s + 2&;t)r?
we obtain that F(s,t;2%°9) = 0 if and only if as + £t = 0. O

We introduce a new notion of resonances related to the nilpotent
part which will play an essential role in the sharp estimates for the
number of periodic orbits of nonsingular tangential vector fields on
S?=1 of F[A, B] provided the SPC condition holds, which imply after
a suitable change the generating matrices A and B, that a; > 0 for all
k=1,...,m.

Definition 4.6. We shall say that that the nilpotent part of the action
[A, B] is nonresonant if for every k € {1,... ,m}, such that n; > 1

(4.32) (ki — €xkr)? + (arve — Expr)® # 0

or equivalently, the vectors (ag,&x), (Kk, Ak) and (pg,vk) do not lie on
a line passing through the origin.

Remark 4.7. The definition above is invariant with respect to the
choice of the matrices A and B. Moreover, one verifies that all nilpotent
parts of linear 1-dimensional complez linear actions are nonresonant
(passing to 2-D real whenever ny > 1). Therefore such phenomena ap-
pear only for 2-D real actions. Of course, the definition is void if both

41
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A and B are semisimple. Detailed investigations of the resonances of
the nilpotent parts are done in [18].

Next, we investigate the integral curves of a nonsingular tangent
vector field X in S?"~! obtained by by the transversal intersection
F[A, B].

Theorem 4.8. Let A, B satisfy (4.19), (4.26) and satisfy the small-
ness condition for its nilpotent part which implies that F[A, B] inter-
sects S*~1(r). Then if (4.82) holds and if

(4.33) aplj — i€ 0 fordljk=1,...,m, k#j,

then X admits exactly m periodic orbits defined by (4.28). Let now z ¢
I2%. Then the curve {[2] defined by F(s,t;z) = could be parameterized

etg *

by the implicit function theorem by s = 0(t) = 6(t, z) and

- (4.34) Lz] : Z(t) = T'(0(2),t; 2), teR,
1s not periodic and satisfies the following properties
(4.35) t 1)1+m°° dist(Z(t),O[¢[k(2)]) = ©
(4.36) tgr_noo dist(Z(t),O[k(z)]) = 0

where k(z) (respectively k(z)) stands for the largest (respectively) small-
est integer k € {1,... ,m} such that z* # 0. Here O[{;] = {ZE,,(2) :
t € R} stands for the orbit of the periodic curve {.

Neat, if at least one of the two conditions ({.82) and (4.33) is not
satisfied, then X has infinitely many periodic orbits.

Finally, F[A, B](5%~(r) defines a Hopf foliation, i.e., every orbit
of X is periodic, provided the vectors (a;,(3;), j = 1,... ,m, lie on a
half-line containing the origin, i.c.,

(4.37) -Ei:...:&l—::'r

1251 Qm,

for every k € {1,... ,m}, such that n; > 1, we have

(4.38) (akpr — Errer)® + (v — EAe)? = 0

and ByT — i, k = 1,... ,m, are rationally dependent, i.e., there exist
integers py, ... ,pm and a positive real number w such that

(4.39) Prr—m _ _ BnT—m _

41 Pm



Proof. Set 1, = &x/ak, k =1,...,m. Without loss of generality we
may assume that

(4.40) n<1mn<...<7,.

First we observe that the definition of 75 and 4.40) imply that (4.33)
is equivalent to

(4.41) n<...<Tm fm>1,

Next, if (4.41) is true, we define

(4.42) 8o 1= min 1(7'j+1 —-7;)>0 ifm>1,
i=1,...,m—

By a; > 0 and the smallness of the nilpotent parts we may assume
without loss of generality that F,(s,t;z) > 0. Therefore we determine
uniquely, by the implicit function theorem applied to (4.45), a real
analytic function s = () = 6(¢; 2), t € R such that

(4.43) F(6(t),t;2) := ||®WA+B 12 _ 2 =0 teR.

Set
re(t) = Ok(t) + 7it, k=1,...,m.

In view of the definitions of k = k(z) and k = k(z) and (4.14), (4.15),
we can write

k
”ea(t)A+tBZ“2 — Z “ee(t)Ak+tBkzk”2

k=k

k
— Z ezake(t)+2£ktIleg(t)Ak,nil+tBk,nilzk”2

k=k

k
(4.44) = Z 2ok (07xt|| N [t 2]
k=k :

where Ni[t; z*] is defined by
(4.45)

49

U(8(t)Br + tne) ) (@mttns P+t D2 17 1) a0, (9(2), £)) 2F

(-1)!

U(6(2)Bx + tne) Son, bt +CON+ ) D% 179 9Ng, (0(2), 1)) 2

(=1

U(B(t)Bs + tn) %,

Next, for given zF € I*™ 2* # 0, we define by nj(z) the largest
integer ¢, 1 < £ < ng, such that 2§ # 0. In particular, if nx > 1 and
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ni(z) < ng, we get that Ni[t; z¥] is given by
(4.46)
ny(z K v (e=1)/
[ UO(t)8y + tny) ok Clbewtnn) =00 VDR 17 (g — 1) (0(2), 1))} )
(

Ty, (2 s v 2 -2)
U(8()Bs + tne) k( ) ((8(2) k+tuk)2+((ea(t1)))"k+t x)2) =272 U((€ - 2)¢i(8(2), 1)) 2E

V(B8 +tme) 7y
0
\ 0 | )

We observe by the definition of n}(2) that there exists a positive con-
stant Cy = Ci(2*) such that the following estimates are true

IVt 2 > Ot (B(t)mi + tua)? + (B(2) M + ta)?) % 7072
')'1.+ Z)—
(ANl 2 < Cr (B@)kk + tui)® + (B(E)Ax + B )2) O 7D/2
provided (8(t)kx + tur)? + (O Me +ti)2 > 1, k=1,...,m

_ Now we write two crucial decompositions associated to the choice of
k and k, by using the the definition of § and (4.44)

(448) [ SOMBLE  ord (| Nel AP + B (12))
(449) [SOBT = o) (INifs A + B (52)
with EX(t; z), Ef (t; z) satisfying

(4.50)  Ef(tz) < clexp(—c(&lt|+r5(?), t>1
(4.51)  Eg(t;z) < clexp(—c(bolt| + (1)), t< -1

The estimates (4.51), (4.50), combined with (4.48), (4.49), imply that

. org(t)
2 dm B2 = o
(4.53) im 28 _
t>—oc0 {

Indeed, if, for example, (4.52) is not true, by (4.48) and the estimates
(4.47) we contradict ||e?®4+®Bz||2 = T for all ¢ € R for a sequence

tg = +oo for ¢ — oo, with similar arguments for ¢t - —oo if (4.49)
fails.
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Now, in view of (4.48), (4.50), (4.52) (respectively, (4.49), (4.51),

(4.53)), we obtain that

k . — Lo
(4.54) t_l_:l:loo 7°(L'(0(t),t;2)) = O0for k #Kk;
(respectively,
(4.55) Jim 5 (T(0(t),t;2)) = 0 for k # k).

In particular, if n¥(z) = 1 (respectively, nf(z) = 1), (4.54) (respec-
tively, (4.55)) ylelds (4.35) (respectively, (4.35)).

Consider the case n(z) > 1. Now the nonresonance condition on

the nilpotent parts will play a fundamental role for proving (4.35). We
get, after replacing

0(t) = rg(t) — &gt/ o = rg(t) —

the following estimate

(4.56) V6(®)sE + tug)? + (0(0)A5 + tr)?

t
= —(wg+o(l) t— 4
ay

where

= \/ (—&gix + ogug)? + (—€pAx + apg)®.

By (4.32) we get wy, # 0 provided ny > 1,k =1,... ,m.
The definition of Z*(t), combined with (4.47), (4.56) and the fact
that lim;, ;. ||Zk(t)|| = r, imply that

(4.57) 0 < inf || ZE(t)|| < sup ||ZF(?)|| < +oo
121 £>1
and
(4.58) limt — +oo||Z;,,(t)]| = O, p=1,...,nf =1,

which lead to (4.35). We show in a similar way (4.35).

The Hopf foliation part follows immediately if one observes that un-
der the hypothesis (4.38) 7, = ... = T,, = 7 we get —TyAni + Bra = 0,
which yields

IF(=7,8 2)|| = |||
for every t € R, z € R*™. The periodicity of I'(—t,t; z) follows from
the fact that (4.39) implies that cos((—78k + 7% )t), sin((—708k + 7)t),
k =1,...,m, are 27/pw periodic, where p stands for the minimal
common divisor of py,... ,pm. 0
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Remark 4.9. Let R** = C" via a constant complez structure J, J? =
~Izn, and let F[A, B] coincide with the linear complez foliation defined
by F[C). Then (4.38) and (4.39) are equivalent to the condition: C
is semisimple and all its eigenvalues lie on a half-line containing the
origin. The following example show that the Hopf foliation may be
defined by 2-D linear action with at least one of the matrices A and B
admitting Jordan blocks. Consider the linear R? action in R* defined

by

1060
| 010 ¢
(4.59) A=10010l
0001
£ —m p —o
_ n & o p
(4.60) B = 0 0 ¢ - |’
0 0 nn ¢

where €,€,n,p,0 € R. Then F[A, B](S3(r) defines Hopf bifurcation
if and only if p = —€, 0 = 0. For more detailed analysis cf. [18]
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