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§ Introduction. The notion of the Clifford algebra is widely known among
mathematicians. But it is hardly known (particularly in Japan) that recently some
people study this algebra with great enthusiasm, and a large number of applications
to physics and engineering have been developed. The members of the research groups
call their own object geometric algebra rather than Clifford algebra because of its
“geometric nature”, returning the original terminology by Clifford himself. One of

their key concepts is to consider the Grassmann algebra inside the Clifford algebra.

In this article, we present briefly what we can do with this idea in elementary linear

algebra. Our main reference is [2, Section 1].

§1. Preliminary. Let V be an n-dimensional Euclidean space, and C(V) the
Clifford algebra of V. Namely, C(V) is the associative algebra generated by V
together with the real number field R with a relation z? = ||z||* (z € V). Then
(zy + yz)/2 equals the scalar product (z|y) for vectors z,y € V. Thus, if z and y
are orthogonal, we have zy = —yz.

For vy, vq,...,v, € V, we define their outer product by

1
(1) viAvg A--- A= ] Z (sgn 0)Ve(1)Vo(2z) * - * Vo(r) € C(V)
€6,

and call such an element of C(V) a simple r-vector or an r-blade. A linear combi-
nation of simple r-vectors is called an r-vector, and the set of r-vectors is denoted
by C"(V). Like the ordinary exterior product of the Grassmann algebra, the outer
product is anti-commutative. If the vectors vy,...,v, are mutually orthogonal, the
outer product equals the Clifford product: vy A vz A -+ A v, = v1v2--- v, because
(SED 0 )Vo(1)Va(2) * * * Vo(r) = V1¥2 -+ - Uy for each 0 € &, in this case.

Let {e1,..., €.} be an orthonormal basis of V. For a set I = {iy,13,... yird (1<

i <1 < -+ < i, < n), we write e; for the product e; €, - -€;, € C(V), and for



I =P weput ey :=1€ C(V). Then {er}ic{s,..} is a basis of C(V') as a linear space.
Since e; is equal to the outer product e;, Ae;, A+ - - A€;,, we have C™(V) = E,ﬁ:r Rey,

so that we get a direct sum decomposition of C(V') as a linear space:
(2) CV)=RoVaCV)e---aC(V).

Let t : C(V) — C(V) be the canonical anti-automorphism (“reverse”), that is,
the linear map on C(V') with the properties

1t=1, vt=v weV), (4B} =BiAt (4,BeC(V)).

For elements A, B of C(V), we denote by (A|B) the scalar part of AB! € C(V)
with respect to the decomposition (2). If A = Y ,arer and B = )_; bes, we have
(A|B) = Y_;arbr, so that (:|-) defines a positive definite scalar product on C(V)
extending the original scalar product on V. For A € C(V), we write ||A|| for the
Euclidean norm (A|A)'/? of A.

§2. Inverse of a simple r vector. In what follows, we assume that vectors

vy, Vg,...,V, € V arelinearly independent, which is equivalent to v; AvpA- - -Av, # 0.

Proposition 1. (i) The norm ||v; AvaA---Av,|| gives the volume of the parallelotope
spanned by vy, vy, ..., Uy,
(ii) The element A := vy Ava A--- A v, is invertible as an element of C(V). Indeed,

one has
1 t 1

Al = — At = v,
R lor Avg A e+ A2

Ao ANvg Ay

For the proof of Proposition 1, we state the following lemma, which is equivalent

to the validity of the Gram-Schmidt orthogonalization (see Proposition 3 (ii)).

Lemma 2. For linearly independent vectors vy, vs,...,v,, we can take a unique
family of coefficients ¢;; € R (i < j) for which the vectors

j—1
(3) U =1, Uj == vj + ZC,‘,"U,‘ (] = 2, .. .,7‘)

=1

are mutually orthogonal.

Now let us prove Proposition 1. From (3) and the orthogonality of uy,...,u,, we
see that ‘

(4) A=v1 A A Aoy =ui Aug A-o- Auyp = uyug - - - Uy,



Then we have
AAY = (ugug - up ) (- - ugug) = JJug [P flug? - - - [l 1.

Since AAT belongs to R, we have AA! = ||A||2. Thus ||A]| = Jludllllu2]l- - Jlurll,

which implies the assertion (i). On the other hand, we observe

ATA = (up - ugua)(wrtig -+~ up) = JJua P flual® -+ Jlur|1* = || A
Therefore A(mAT) = (WAT)A = 1, which means the assertion (ii). a

As we shall see below, it is a great advantage over the ordinary Grassmann algebra
that we can take the inverse of the simple r-vector v; A --- A v, in the Clifford
algebra. The argument in the proof of Proposition 1 tells us that the formula
X~! = X1/||X]|? holds for any Clifford product X = a;a;---a, € C(V) of non-zero
vectors aj,...,a, € V. However this is not true for a general non-zero element of
C(V). For example, since (eje; + e3e4)(e163 — €3e4) = 0, neither eje; + ezeq nor

€16, — ez€4 1s invertible.

§3. Gram-Schmidt orthogonalization.  The vectors uy,...,u, in Lemma 2

are given by a simple formula.

Proposition 3. (i) uy = (Vi A+ Avgy) Hvr A+ Avg) (k=2,...,r).
(11) If one puts & := ug/||uk|| (k=1,...,7), then {& ...,&.} is nothing but the or-
thonormal family obtained by the Gram-Schmidt orthogonalization from {vy, ..., v }.

Proof. Similarly to (4), we have for k =2,...,r,

vl/\---/\vk_l/\vk=u1/\---/\uk_1/\uk=(u1---uk_1)uk

= ('Ul Ao A 'Uk_l)Uk,

whence (i) follows. The assertion (ii) follows from (3). 0O

§4. Reflection and projection. We denote by V(vy,...,v,) the subspace of V
spanned by the vectors vy, ...,v,, and by V(vy,...,v.)" its orthogonal complement
in V. We note that any vector z € V is decomposed uniquely as z = z + z
with z| € V(vy,...,v,) and =, € V(vy,...,v)*. As in Proposition 1, we put
A=v A A Ao,



Proposition 4. One has (—1)"AzA™! = —z| + z,.. In other words, the linear
map Ry : V 3 z— (=1)"AzA™! € V gives the reflection with respect to the space
V('Ul, ceay ’U,-)'L.

For the case r = 1, Proposition 4 means a well-known description of the reflection

with respect to a hyperplane.

Proof. We recall again the vectors uy, ..., u, in Lemma2. fz = z; € V(vy,...,v,)%,

then we have zu; = —uz (k=1,...,r), so that
TA = TUUy Uy = —UTUg -+ Uy = (=1 2ugugzug - u, = ...
=(-1)"wyuy---u.z = (—1)" Az. |

Thus we obtain Ra(z) = (=1)"AzA™! = z in the case z = z,. On the other hand,
ifz =z € V(vy,...,v ) and z # 0, we can take vectors y;,...,y,—1 € V(vy,...,v,)
for which {z, y1, ..., Yr-1} forms an orthogonal basis of V(vy,...,v.). Then we have

NAVA- AV, =cZTAYPA... Y1 =CTY1" " Yr-1
for some scalar ¢o € R. Since zy;, = —yxz (k=1,...,7 — 1), we observe
A =z(CoTyYe * Yr-1) = —CoTYTY2 - Yro1 = (—1) oz Y2ZYs - Yroa = ...
= (=1)"leozy1ys -+ Yraz = (—1)""1Az. ‘

Thus we obtain Rs(z) = (-1)"AzA™! = —z in the case z = z); # 0. But this is
valid also for = 0. Therefore, for general ¢ = z; + 2, € V, we have R4(z) =
Ra(z)) + Ra(zy) = —2 + 21 O

Since the map C(V) > X —» AXA™! € C(V) is an algebra automorphism on
C(V), we have for vectors z;,23,...,z, € V,

Az AV AN A, ATV A ANAZ AT = Ay Azg A - Aa,)ATL
Thus, the reflection of the s-vector z; A --- A z, is given by the following formula:
Lemma 5. RB4(z1) A Ra(z2) A--- A Ra(zs) = (1) A(z1 Aza A+ Az, )AL
From Proposition 4, we obtain the following results. |
Proposition 6. One has 7y = (z—(—1)"AzA™)/2 and z, = (z+(-1)"AzA™!)/2.

Proposition 7. (i) V(vy,...,v,)={z € V;zA=(-1)"1Az}.
(i) V(vry.. . o)t ={z € V;zA=(-1) Az }.



§5. Inner and outer product of a vector with an r-vector. For a vector

z € V and an r-vector B, we define
z|B = (zB — (-1)"Bz)/2, z A B:=(zB + (-1)"Bz)/2.

As in the previous sections, we assume that the vectors v,...,v, are linearly in-
dependent, and that z = x|+ z, (z)) € V(v1,...,vr), L € V(v1,...,v,)%), A=

VA AV = Uy U,

Proposition 8. (i) One has

(5) gl(or AveAv) = 3 (1) o) (v Ac B Aw) € CTTHV),

=1

6) zAMA--Av)=zAviA---Av, € CTH(V),

where ¥; in (5) means that the i-th vector is omitted from the outer product.

(ii) One has o)) = (z]A)A™! and z, = (z A A)A™.

(iii) The subspaces are described as V(vi,...,v,) = {z€V;zAA=0} and
V(vy,...,v)t ={z€V;zJ]A=0}.

Proof. We observe that

zv1vg - v, = (zV; + V12)V2 - - v,
— vi{zvg + vex)U3 - -V, + (—1)2v1'v2(x1)3 + vsz)vg- v+ .
+ (=1 vy vy (2, + 0,.2) + (—1) 010, - - - v,
which is rewritten as
(zvivg v — (=1) V109 -+ v,.2) /2
= (z|v1)ve - - - v, — (2lva)v1vs - - v, + (—1)*(2|vs)V1vovs- - v + ...
+ (=1 el ops,
because (zv; + v;z)/2 = (z|v;) (1 = 1,...,r). Replacing the indices 1,2,...,r by

o(1),0(2),...,0(r) for o € G,, and summing up each term as in (1), we obtain (5).
We have z, A = (zA+(—1)"Az)/2 = = A A by Proposition 6. On the other hand,

TIA=zZ WUz U =TL AU AU A AU =T AV AV2 A Ay,

where the last equality follows from (3) and z|| € V(vy,...,v,). Thus we get (6).
The assertions (ii) and (iii) follow from Propositions 6 and 7 respectively. a



In view of (5) and (6), we call z| B (resp. = A B) the inner (resp. outer) product
of z with B. By definition we have

(7) tB=z|B+zAB.

Note that the Clifford product is invertible if B is a non-zero simple r-vector, while

the inner nor the outer product is not in general.

§6. Dual basis. A basis {w,,...,w,} of the subspace V(vy,...,v,) is said to be
dual to {v1,...,v.} if (v;|lw;) = &; (1 <1,7 <r), where §;; is Kronecker’s delta.

Proposition 9. The dual basis {wy,...,w,} is given by the following formula:

we = (=D vy Ao B Av)(vg A Awp) L

Proof. Since wy € V(vy,...,v,), Proposition 8 (iii) together with (7) tells us that
wiA = wg|A. On the other hand, we have by (5)

wy A = Z(—l)i‘l(wklv;)(vl Averieoe A,)

=(_1)k—1v1/\...{,k.../\vr

because (wg|v;) = ;. Therefore we have wi (v A+ - -Av,) = (=1)¥ 1wy A- -+ Gy - - - Ay,

whence the formula follows. O

§7. Concluding comments. = We have seen that various calculations and for-
mulas are described quite simply by using the Clifford algebra if we just introduce
a few of notions such as the outer product of vectors. But they are merely a small
part of concepts which enrich the Clifford algebra (see [2]). For example, the notion
of Clifford analytic function (or monogenic function) extends naturally the theory
of complex analysis ([1], [2]). On the other hand, if one utilizes the Clifford alge-
bra of signature (3,1) (the spacetime algebra), the formulas in special relativity and

electromagnetism like the Maxwell equation are rewritten impressively ([1], [4]).
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