
105

Advanced Teaching of Geometry with Interactive
Tools

DFG Research Center Mathematics for Key Technologies
Technische Universit\"at Berlin, Institut ffir Mathematik

Enno Brehm, Ulrich Kortenkamp

$\mathrm{A}\mathrm{b}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\alpha$

In this article we will give a brief introduction into new ways ofteaching that are possi-
ble with interactive geometry software, in particular with Cinderella, which has just become
available in Japan.

1 Introducing Cinderella to Japan

Before we describe some new teaching scenarios, we will summarize the basic facts about the
geometry software Cinderella.

1.1 Interactive and Dynamic Geometry Software

at is Interactive and Dynamic Geomet ? Wi
. ‘

${ }$..
this te we refer to so $\mathrm{w}\mathrm{e}$ that allows us to inter -

tively do elemen become using elec onic counter-
$.\cdot$:

$...\backslash ..\dot{}_{}$..
p

s of ler d compass in a d $.\mathrm{c}$ fashion. That
is, even a er aconst c an is nished we can still move $\backslash .\cdot.\backslash .\cdot.....\cdot$

. .
$.\cdot\backslash$

.
$=\backslash \cdot$.

\cdot

objects 0
d d the cons c an will a pt itself to

the ch ged positions. So there e not only geomet-
$:.\cdot.\cdot.\cdot.\cdot..\cdot..\cdot’\backslash \cdot..\cdot.$

.

$\cdot..\cdot’.\cdot\wedge\cdot...\cdot..\cdot.\cdot...\cdot’.\cdot.\cdot[searrow]\backslash \backslash -\cdot..’\cdot.\cdot..\backslash$

$\mathrm{r}\mathrm{i}\mathrm{c}$ objects, but also relationships be een them that e

main . ed all the time. e basic become ic objects in-
clude points, lines, c

. cles, conic sections d more. One .. \cdot...:.
c imagine aDGS (sho for $some$ Geome Soft-
ware) as a geome calculator. Cinderella [11] is a DGS

. en completely in Java, and us available wherever ere is a Java al machine. is
makes it ve suited for classroom use. You can nd more into ation aut Cinde lla at
$\mathrm{h}\mathrm{t}\mathrm{p}://\mathrm{w}$ w .cinderella.de.

One of e main fea $\mathrm{r}\mathrm{e}\mathrm{s}$ which sets ap Cinderella om m
y other geome packages

is its mathematical robustness: eve cons ction behaves as “na $\mathrm{a}1$
” as possible, d incon-

sistencies dj p

.
g elemen due to sing es e avoided whe er ssible by asolid

ma ematic fo time. Mo over, it can also se e as authors’ tool to desi web pages
with . teractive cons ctions or even complete geome e ercises.

数理解析研究所講究録 1378巻 2004年 105-120

106

Cinderella is in development for over 10 years by now, and the first commercial version is
available since 1998. We refer to the manual of Cinderella [11] for a detailed overview about
the origins and history of the software.

We also want to remark that we are still working on a next version of Cinderella. You can
find more information about it in [6].

1.2 Cinderella in Japanese
Since autumn ’03 a there is a Japanese version of Cinderella available ffom Springer, Tokyo
[13]. You should also refer to http: $//\mathrm{c}\mathrm{d}\mathrm{y}\mathrm{j}\mathrm{a}\mathrm{p}\mathrm{a}\mathrm{n}.\mathrm{h}\mathrm{p}$.infoseek . co . jp for more information.
Therefor, it is possible to use interactive geometry with Cinderella as described here not only in
academic institutions, but also in Japanese K-12 education. Especially in this context it is import
to have localized versions of educational software since software in a foreign language may
cause problems and impose an additional burden when starting to use computers in education
and it is great for us that the Japanese version of Cinderella may do pioneer work here. We
see this as a form of cultural exchange because a lot of what makes Cinderella what it is now
would not have been possible without technology ffom Japan, for example Cinderella running
on handheld computers (see section 3.3).

The translation was done by Kazushi Ahara, and we are grateffil to all our Japanese beta
testers, in particular Ryosuke Nagaoka and Eckhard Hitzer.

2 Interactive Geometry Software in Teaching

Interactive Geometry Software has been shown to be very suitable for use in classrooms and
teaching for many years now, and it is not possible to list all the relevant publications here.
Geometry demonstrations gain very much ffom dynamics: this is for example easily seen in
a simple construction showing that the bisecting lines in a triangle meet in a single point. If
you are able to move the vertices of the triangle while the whole construction follows every
movement, is is easy to demonstrate and experience that this assertion is always true.

2.1 Experimental Mathematics
Usually, geometric constructions done with pen and paper require a large amount of precision
and can be a lot ofwork, especially for complex constructions. Obviously, a major advantage of
geometry software is that everything is still editable, mistakes can be undone, and the elements
are not fixed to their places. This allows experimenting and even invites to do so, rendering
possible constructions one probably would not even try on paper because they are too much
work or too error-prone due to inaccuracy. So the range of feasible constructions and activities
is greatly expanded.

But this still is a rather static advantage. The real potential lies in the dynamic power that
a DGS provides. For example, if you do a construction and notice that three points lie on a
line, you might ask yourselfwhether this happened accidentally or not. With pen and paper you
would have to construct a different example of the same construction to check solely one more
case. In constrast, using a software you can try to move around ffee elements ofthe construction
to check what happens to the dependent points in different configurations. Of course, this kind

107

2.2 Mathematics on the Web

A good way of teaching can be to make students learn together and ffom each other. Again, the

use of geometry software opens completely new possibilities. One contribution is that students
can easily share their work, for example by sending constructions via e-mail or they can create
images of their constructions and publish them on the web. However, images do not come up
to the dynamic aspect as they are static by nature. Especially this is an inferior way to publish
animations which can also be created with a DGS.

There are multiple ways to overcome this: one is to use animations instead ofpictures which
surely is an improvement over static images, but still this is not quite satisfactory. Fortunately

there are different ways to present dynamic and even interactive content on the web. The most

powerffil of them is the use of Java applets, which actually allows to run programs within a web
browser window.

Here the use of Java for a geometry software really pays off, because this way it is easily

possible to bring interactive, dynamic geometry to the web: Cinderella allows to publish any
construction on the WWW by automatically creating Java applets which can be put on web
pages. Visitors of the page can not only see the construction but they even can interact with it

in the same way as the user of Cinderella does.

$\overline{\mathrm{l}\mathrm{O}\mathrm{n}\mathrm{e}}$can evenshow thatthis kind of checking many examples- contradicting mathematical intuition - can
constitute a proof. See [3].

108

A construction as a Java Applet.

2.3 Interactive Exercises

Interactive illustrations are easy to do with these applets. This alone makes it possible to create,
say, interactive electronic textbooks, which really offer added value over their printed coun-
terparts2. But with Cinderella one can do even more: it is possible to create interactive self-
checking exerc\’ises (which also run as an applet inside a web browser).

In such an exercise the student is presented with a geometric problem and some elements
(points, lines) with which to start, and finally some tools out of the toolbox ofCinderella which
he may use to solve the problem. The system additionally offers feedback and tutoring: when-
ever the student is stuck, he may ask for help and can be given a hint on how to continue. It
is also possible to get instant positive feedback when he is on his way to the solution, and, of
course, when he has completed the exercise successffilly.

$2\mathrm{A}\mathrm{n}\mathrm{d}$ this is what computer use in teaching always has to be measwed against, because it should never be an
end in itself

108

An interactive exercise with a hint.

Naturally, all this has to be prepared carefiilly by a teacher who first has to do the correct
construction herself and then turn it into an interactive exercise: she has to select the elements

the student is supposed to start with and which tools will be allowed. For example: she wants

to create an exercise in which the goal is to create the middle point between two points. In

this case the starting point are simply two points. The conventional tools would be ruler and

compass - so, in Cinderella one would add the tools for creating points and lines, the compass
tool, for moving elements and probably the undo tool.

The tutoring elements have to be prepared by providing feedback text and selecting the

elements after whose construction the respective texts will be shown. Similarly, hints have to

be prepared, and it is possible to set time limits for these hints. This is to avoid that a student
immediately asks for hints without even trying to solve the problem by himself.

110

Exercise authoring component.

Finally the teacher has to specify the goal of the exercise by selecting the element that in
the end has to be constructed by the student. Of course this solution is stored in the exercise so
it seems to be easy to check whether a student solved the problem correctly, but in this context
there a pitfalls to be avoided: on the one hand one.has to make sure that the user did not just
“guess” a solution (e.g., in the example just put a new point somewhere in the middle between
the starting points).

On the other hand there might be multiple correct solutions for an exercise and although it is
possible for the teacher to specify multiple solutions to the exercise, the system should be able
to recognize and accept a correct solution, even if it was not one the teacher had in mind.

Cinderella does this by not comparing concrete positions of objects concrete steps to the
solution, but by comparing the finally constructed elements: it proves internally whether the
solution provided by the teacher and the solution of the student are equivalent even if they were
constructed in a different fashion.

This gives the student the ffeedom to find his own solution. Additionally the fact that the
system is dynamic helps the student in another aspect: after constructing elements he can al-
ways move elements around and convince himself that the constructed objects really have the
properties he expects them to have, which adds to his self-confidence.

111

Non-standard solution to midpoint exercise.

3 Advanced Scenarios

Most ofwhat we described so far is already present for several years now, see [5]. But DGS does
not end at the screen of desktop computers. On the contrary: the real didactic power unfolds
when used on other devices, ranging ffom large ones, like interactive whiteboards to very small
ones like Personal Digital Assistants (PDA). Both of these have surprisingly much in common,

user-interface-wise. We briefly sketch how this technology can be used to open up new ways
of teaching mathematics and geometry, and have alook at how this can change how students or
students and teachers can work and learn together. We refer to [9] and [4] for more information.

3.1 Interactive Whiteboards
The best device to do geometry for a large audience still is the blackboard (or whiteboard). In
classroom or conference presentations nothing beats the direct interaction as shown there.

12

Interactive Whiteboard.

Currently there are different approaches to integrate whiteboards with computers. Among them
is a very appropriate one for our purposes, that uses a specially equipped board as a large
computer display (by using a projector) and a special pen that interacts with the board which
functions as a mouse ore, more generally, as an input device. The whole setup is comparable to
a mixture between a big touchscreen and a giant graphics tablet.

Using DGS on such a device can really be a new teaching experience: while preserving the
advantages of the large presentation and drawing area, it still offers the modern assistance of a
dynamic geometry software.

Since it is actually a computer screen projected on a whiteboard, you can use arbitrary
applications on it. Anyone who can use a standard desktop computer will be able to use software
on the interactive whiteboard. However, this advantage is at the same time a disadvantage since
these standard user interfaces are not intended for such a large area. They are meant for being
used with a mouse, where your hand does not have to move too much to make the mouse pointer
travel across the screen. On the whiteboard, where the pen plays the role ofthe mouse, this kind
of interface can be rather cumbersome, e.g., to access a menubar you have to physically stretch
to the top of the board.

This is a widely known problem and there are different approaches to solving it. One way
is to think of new user interface elements that do not require large movements, e.g., circular
menus that appear right where the pen $\mathrm{i}\mathrm{s}^{3}$, or a system to recognize gestures of the pen, like
a quick drag of the pen ffom right to left to undo an action or a large zigzag move across the
whiteboard to clear the current construction and start a new one4 .

3.2 Sketching

While gestures are a rather generic approach there are also ways of improving the user interface
which are a lot more specific to the problem domain of geometry: the classic way to create

$3\mathrm{W}\mathrm{e}$ have actually implemented such a menu scheme which is usually known as flowmenus[1], see [9]
$4\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ gestures was chosen because it resembles a “cleaning-a-blackboard” move, so it would be very intuitive

113

geometry is to simply draw it. So we tried to recreate the swiftness of hand drawing while
maintaining the advantages a DGS has to offer.

Sketch drawn by hand. Automatic recognition of sketch

Sketch recognition is a useful techniquefor allpen-based devices, like whiteboards, graphics
tablets, tablet PCs and handheld computer with pen

This is done by interpreting a hand drawn sketch and automatically transforming it into a
construction, whereas the hand drawn objects can either be kept or be replaced by their “per-

fect” counterparts. The goal was to create an interface where as much as possible could be done

without the use of special tools or modes, respectively. Consequently we had to develop differ-
ent ways to let the DGS know about what the sketch actually was supposed to mean5 . This was
achieved by letting the user annotate the drawing in a way as natural as possible . For exmple,
to indicate orthogonality of two lines, the user would draw a small orthogonality-mark at their
intersection - exactly the same she would do one a real sketch-pad.

33 A $\mathrm{P}\mathrm{D}\mathrm{A}$ version of Cinderella
Even closer to such a real sketch-pad comes the smallest devices we see DGS currently running

on: personal data assistants (PDA) or handhelds. While being a lot smaller than an interactive
whiteboard, the user interface difficulties are similar, albeit for different reasons: these pen-
based handhelds usually have a $3\mathrm{x}4$ inch touch-sensitive screen (about $240\mathrm{x}320$ pixel), so real

screen estate is very limited.
Therefor using a standard desktop application on such a screen does not really make sense,

since the standard user interface elements are too small, and thus hardly usable with a pen.
Increasing their relative size will leave even less space for the drawing, so this is not an otion.
Fortunately, most techniques to improve usability of the interactive whiteboard can be trans-

ferred to this device, especially gestures work very well here. Usability in general is still an

This infomation is usually provided by the user by selecting the right prior to the construction of elements

114

SHARP(tm) Zaurus SLC700 running Cinderella

issue on these devices and it seems that each application has to find its specific way to opti-
mally use the limited input capabilities. For geometry, sketching looks like a very promising
approach.

3.4 Collaboration
A traditional way of student collaboration is offered by small workgroups: a few students sitting
together, working on a problem. Here again DGS show their strength as they can intensively
work together by sharing a single computer: they can communicate their ideas and try things
out immediately. Pen and paper would take a lot more time, especially if accuracy is required.

However, more innovative ways of using tools can be achieved by combining the technolO-
gies mentioned above: if there is a DGS on a desktop computer, on the whiteboard and on the
handheld, they should be able to work together: they could effortlessly connect to each other
and share one construction, such that every change a user makes on one device could be seen
immediately on all other ones6.

As another example imagine a teacher at an interactive whiteboard, demonstrating and ex-
plaining a problem, that the students automatically have on their own device, be it a PC or a
handheld, and can work on it isolated or in small groups. Later for presentation the solutions
found by the students could immediately be made visible again on the whiteboard for all to
see without the necessity of transferring any files7. This works together nicely with wireless
connection technologies which are getting more and more ubiquitous.

The same technology can allow students to help each other in their homework, even if they
are not at the same location: they could connect their geometry programs on their computers at
home to share a single construction via the internet, and work together and answer each others
questions. Combined with video telephony or similar software this could really give completely
new ways of working and learning together. This idea stretches even further: one can easily
imagine remote teaching scenarios, in which a teacher gives a lecture on an interactive white-
board which in turn is linked to another one somewhere else with people following the lecture

$6\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ is already working and will be available to users in version 2.0 of Cinderella
$7\mathrm{A}\mathrm{g}\mathrm{a}\mathrm{i}\mathrm{n}$, care has to be taken in such scenarios not to overuse technology. We do not want to avoid students

coming to the ffont of the class and explaining things directly at the whiteboard.

f15

and the possibility to “come to the board” and interact with the teacher. (A system supporting
this kind of remote teaching already is, for example, e-Chalk.[14]. Cinderella already has been
shown to integrate well in this system).

At this point we would like to point out that these experimental features still have to be
evaluated in the classroom, and we cannot be sure that they will really have a didactical impact.

4 Outlook and Conclusion

So far we have seen how the teaching ofmathematics may be advanced by the use of a DGS in
general or Cinderella in particular. We now give a perspective of some aspects to come which
might not be immediately available to teaching but still are interesting to keep in mind.

4.1 Visualization of Algorithms with DGS

Discrete mathematics is becoming more and more important in schools. This has a good reason:
it is a mathematical branch, albeit a relatively young one, where problems usually are often
easily formulated and easily grasped (but not necessarily easy to solve). It has many real-
world applications, and last but not least, it motivates students by giving them something to

puzzle with. Nevertheless, it is possible to bring most basic mathematical concepts across using

Discrete Mathematics. Moreover, algorithms play an important role in Discrete Mathematics.
There exist many geometric algorithms and graph algorithms, which often can be understood
geometrically. So there is a strong connection between algorithms and geomeffy.

When learning about algorithms, one crucial point is to understand how it actually works
and what the basic idea of the algorithm is. Unfortunately, algorithms often are presented in

form of pseudocode8. While being precise, this form of notation tends to hide the central idea

ofan algorithm. This is because it is closer to the way a computer would actually execute it then

to the idea the author had when inventing it. But exactly this idea is the most important thing to

last - once it is understood, it may be very easy to recreate the complete algorithm. A simple

example for this is the well-known Quicksort [2] algorithm which is based on an ingenious but

simple idea9, which is much harder to understand when reading its pseudocode.
The best way of course to understand an algorithm is to have its idea explained by a teacher

or someone else who already understood it. But sometimes it is necessary for a student to work

alone and then it can be helpful to be able to “simulate” an algorithm. Or a teacher might want

to explain the algorithm supplemented by a simulation. Again, doing this with pen and paper
is tedious and neglects their dynamic nature, or is simply not practical (e.g., in aclassroom),

so the use of a computer to simulate and visualize the workings of an algorithm and its data

structures is self-evident.
One way to follow an algorithm is to step through its code, seeing it work line by line with

the help of a debugger. You can pause at each step and see which variable holds which value.

$\overline{8\mathrm{p}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}\mathrm{o}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{l}}$not tion, which borrows elements ffom mathematical notation and imperative

programming languages
$9\mathrm{B}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{y}$ the idea is the following: to sort an array of numbers, pick an r

i rary element, move every number

that is larger to the right, and all others to the left. Then apply the same principle recursively to the two subarrays,

that you just obtained.

118

partition (a , left, right, pivot Index)

$\mathrm{p}[perp]$

$|\mathrm{v}\mathrm{o}\mathrm{t}\mathrm{V}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}$ $:=$ apivot Index]

swap (a pivot Index] , a[right]) // Move pivot to end
storelndex $:=$ left
for $1^{1}=$ left to right-l

if a $[\mathrm{i}]$ $<=$ pivotValue
swap (a storelndex , a $[\mathrm{i}]$)

storelndex $:=$ storelndex $+1$

swap(a[right], astorelndex) // Move pivot to its final place
return storelndex

quicksort ta, left, right)
if $\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}-\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}+1$ >1

select a pivot value a[pivotIndex]
$\mathrm{P}^{1^{1}}$votNewIndex $:=$ partition la, left, right, pivot Index)

quicksort (a , left, $\mathrm{P}^{1^{1}}$ votNewIndex-l)

quicksort la, $\mathrm{P}^{1^{1}}$
$\mathrm{v}\mathrm{o}\mathrm{t}\mathrm{N}\mathrm{e}\mathrm{w}\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}+1$, right)

Pseudocode for Quicktime Algorithm (ffom [16])

Unfortunately, this is often too much and too fine information - basically it is the wrong level
of abstraction because it shows more ofwhat the computer sees of the algorithm.

What in fact could be helpffil is customized visualization, where the less important informa-
tion is hidden and a the spectator gets focused on the important parts. Creating such a custom
visualization of an algorithm culminates in even more work than just simulating it by handlO.
So what is needed is a way to visualize an algorithm as reasonable as possible with as little
effort as possible.

Obviously this is a very generic problem, but if one focuses on geometric and graph al-
gorithms a DGS respectively Cinderella with its rich support for drawing and manipulating
geometric objects forms a solid base to create visualizations of such algorithms. One approach
to do that is to augment the algorithms code, like in this incomplete example, which is taken
ffom an algorithm to calculate a minimum spanning tree (MST) in a weighted graphll

private void visitNeighbors (Vertex vertex) $\{$

EdgeVector neighbors $=$ g.outgoing vertex) ;

for (int $\mathrm{i}=0;\mathrm{i}<$ neighbors.number 0; $1++$ }
$|$

$\{$

Edge nextStep $=$ neighbors .get (i) ;
if nextStep . getColor $()$.equals (NOT-VISITED) $)$

visit nextStep j

$\}$

$\}$

$10\mathrm{A}\mathrm{n}\mathrm{d}$ ifyou were actually able to create it, you will not need it anymore
llThe algorithm selects a set of edge that connect all vertices without forming a cycle, such that among all

possible choices the sum of the weights of the selected edges is minimal.

117

private void visit (Edge edge) $\{$

flash (edge, VISITING, 500) ;
if (edge.to ().setColor ().equals (or$-\mathrm{V}\mathrm{I}\mathrm{S}\mathrm{I}\mathrm{T}\mathrm{E}\mathrm{D})$) $\{$

edge. setColor (EDGE-IN) j

edge. to $()$. setColor (VISITED) j

$\}$ else $\{$

edge. setColor (EDGE-OUT) j

$\}$

stepDone $()j$

visitNeighbors (edge. to ()) j

$\}$

In this code snippet the author had to insert code concerned with simulation and visualization
respectively, (e.g., flash (. . .), edge .setColor (. . .)) in between the code representing the
logic of the actual algorithm. This is the crucial point when visualizing an algorithm. What we
think is necessary is a tool which aids in this process, such that in the ideal case, the algorithms
code is analyzed and presented in a way, so that the $\mathrm{u}\mathrm{s}\mathrm{e}\mathrm{r}/\mathrm{t}\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{r}$ can specify in an abstract fash-
ion what and when to visualize, without immediate need to edit the code to obtain a meaningffil
visualization. A prototype for such a system has to be build and evaluated. A similar approach
of semiautomatic animation is shown in [15].

4.2 School-PDA
In section 3.3 we already discussed the advantages of handheld devices equipped with Cin-
derella and mentioned their use in possible collaboration schemes 3.4. But the devices currently

available are rather tailored for business needs. To really exploit their potential in classroom use
and for the student in general, a PDA would be needed that comes with software preinstalled
especially chosen for school use, which could include, besides a $\mathrm{D}\mathrm{G}\mathrm{S}/\mathrm{C}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{a}$, acomputer
algebra package like e.g., MuPAD [10] and packages for other subjects, like vocabulary trainers
etc. The Japanese company SHARP already showed interest in cooperating to design such a
PDA, which could be of great use in teaching if reasonably used. We seriously hope that this
project can be realized.

4.3 Natural language input

Geomeffic constructions (like all mathematics) can be expressed in a purely formal, completely
unambiguous language. Still, this is not how human beings talk about geometric circumstances
nor is it the way that is appropriate for them. Being able to describe something concisely

a d in an unambiguous fashion is a fundamental skill students have to learn. While it cannot
be expected in the near ffiture that computers will be able to analyze (or even come close to

“understand”) natural human language (even if it is input textually), a specific problem domain
with a constrained vocabulary like geometry could be a starting point.

An experimental parser has been implemented [8] that accepts descriptions of geometric
constructions written in natural language and tries to reconstruct the corresponding objects, so
students could control their own descriptions by checking the construction that gets built up.
This project was as ambitious as it sounds, and it became obvious rather quickly that realising

118

it completely was out of the question. Nevertheless the parser worked astonishingly well for
some descriptions - unfortunately it would also accept many sentences that were nonsense, a
problem which made it unsuitable for classroom use where one would rather enforce correct
language. Besides it seemed very hard to transfer concepts to other input languages (the parser
was written for german).

What has been learned ffom this once more, is that a very long way is still to go to make
computers accept the most natural forms of human communicationl2, but ffom the achieved
results, one can get a short impression of what could be, even if it was only for a limited subset
of geometry.

4.4 Scripting & Macros

While graphical user interfaces and the mouse provide a very comfortable way to enter and
manipulate geometric objects, they have their boundaries, too. Especially when it comes to
repetitive tasks or constructions involving a large number of similar objects a user might come
to the point where she doesn’t want to do the same over and over again. Or she might have a
short and concise description of how some large group of objects could be created, like e.g., a
square grid of 20 by 20 points with different colors. The next version of Cinderella will contain
scripting, such that creating the mentioned grid can simply be achieved by a script like the
following:

for i in range (20) :
for $\mathrm{J}|$ in range (20):

$\mathrm{p}=$ createPoint $(\mathrm{i},]|)$

p .color $=\mathrm{C}\mathrm{o}1\mathrm{o}\mathrm{r}$ $(\mathrm{i}\star 0.1, \mathrm{J}^{\iota_{\star 0.1}},0)$

Furthermore one will be able to save parts of a construction in form of such a script so it can be
recalled or bound to a button and reapplied to other elements. This is achieved by embedding a
widely used scripting language called $” \mathrm{J}\mathrm{y}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{n}" 13$. This alone might not seem worth mentioning,
but it is important under an educational aspect, too: this scripting language is easy to learn
and it is very readablel4, so it qualifies for being a first programming language. A start in
programming could then be a “geometric” program like:

R $=\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{t}$ I
$\mathrm{B}=\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}()$

Cl $=$ circle7#ithCenterAndPoint (h, B)

$\mathrm{C}2$ $=$ circlewithCenter\lambda ndPoint (B,R)

(PO, Pl) $=$ intersectCircles (Cl, C2)

1 $=$ Line ($\mathrm{P}0$, Pl)

This would create the perpendicular bisector of the segment between to new points A and B .
This does not really look like a program but more like a readable description ofthe construction,
so “progrmming” in this case is describing - a key skill (see also 4.3)! By going one step
further and introducing ffinctions like

$12\mathrm{E}\mathrm{v}\mathrm{e}\mathrm{n}$ disregarding voice recognition
$13\mathrm{A}$ dialect of the language “Python”
$14\mathrm{I}\mathrm{n}$ fact it is said to be pretty close to the pseudocode mentioned in 4.1

113

defun perpendicularBisector (λ, B) :
Cl $=$ CircleWithCenterAndPoint (λ, B)

C2 $=\mathrm{c}1^{1}\mathrm{r}\mathrm{c}\mathrm{l}\mathrm{e}7\mathrm{J}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{C}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\lambda \mathrm{n}\mathrm{d}\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}(\mathrm{B}, \mathrm{A})$

$(\mathrm{P}\mathrm{O}, \mathrm{P}1)$ $=1$
1 ntersectCircles (Cl, C2)

return Line ($\mathrm{P}\mathrm{O}$, Pl)

students can learn to identify substructures and the principle of abstraction, both of which are
ffindmental concepts in mathematics. Another didactic advantage is that students can quickly
be given programming tasks ffom a real problem domain and can actually use their results im-
mediately to expand the capabilities of their geometry software. This can be a great motivation,

for in many programming courses a student often either has to start by writing practically use-
less toy programs that write “Hello World” on the screen, or he has to fiddle around with GUI
libraries which are too complicated to be understood by a novice programmer.

4.5 Conclusion
We have tried to show how the use of interactive tools or DGS in particular can really enrich
the teaching of mathematics. Some of these uses are close to geometry, while some others
might only be prototypes of general techniques (like interactive whiteboards) that we applied to

mathematics and geometry. On the other hand we have also shown that a DGS is not necessarily

constrained to doing pure geometry: since so many things may be understood oder modeled
geometrically, it can be put to use in different contexts as a workhorse. And we are sure that we
are just scratching at the surface of the potential of interactive tools like DGS for mathematics,

and with the development of technology a lot more may be on its way.
We would like to acknowledge the support of the DFG research center Mathematics for Key

Technologies Berlin, and the RIMS Kyoto, and we would like to thank the organizers of the

conference for making all this possible.

References
[1] Franqois Guimbretiere, Terry Winograd. FlowMenu: Combining command, text entry and

direct manipulation. UIST 2000

[2] Hoare, C. A. R. Partition: Algorithm 63, Quicksort: Algorithm 64, Find: Algorithm 65.
Comm. ACM 4, 321-322, 1961

[3] Ulrich Kortenkamp. Foundations ofDynamic Geometry. Dissertation, ETH Ziirich, 1999.

[4] Ulrich Kortenkamp, Dirk Materlik. Geometry Teaching in Wireless Classroom Environ-
ments using Java and $\mathrm{J}2\mathrm{M}\mathrm{E}$. Accepted for publication in: Science ofComputer Program-

ming Special Issue on Practice and Experience with Java in Education, Elsevier.

[5] Ulrich H. Kortenkamp arid J\"urgen Richter-Gebert. Geometry and education in the internet

age. In Proceedings ofED-MEDL498, Freiburg, Germany. AACE, 1998. http: $//\mathrm{w}\mathrm{w}\mathrm{w}$.
cinderella. $\mathrm{d}\mathrm{e}/\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}$lgeo-lt.pdf. $\mathrm{g}\mathrm{z}$.

120

[6] Ulrich Kortenkamp and Jigen Richter-Gebert. Making the move: The next version of
Cinderella. In Arjeh M. Cohen, XiaO-Shan Gao, and Nobuki Takayama, editors, PrO-
ceedings ofthe First International Congress ofMathematical Software. Singapore, World
Scientific, 208-216 (2002). A slightly modified version appeared in the proceedings of
CCCG 02.

[7] Ulrich Kortenkamp. Experimental Mathematics and Proofs - What is Secure Mathemat-
ical Knowledge? Submitted to :Zentralblattfiir Didaktik der Mathematik, Special Issue
on Discrete Mathematics and the Role ofPrvofin the Classroom.

[8] Dirk Materlik. Erkennung nahirlicher Sprache fiir die interaktive Geometriesoftware Cin-
derella. Studienarbeit, Freie Universit\"at Berlin, 2003.

[9] Dirk Materlik. Using Sketch Recognition to Enhance the Human-Computer Interface of
Geometry Software. Diploma thesis, Freie Universitat Berlin, 2003. http:/ $/\mathrm{p}\mathrm{a}\mathrm{g}\mathrm{e}.\mathrm{m}\mathrm{i}$.
$\mathrm{f}\mathrm{u}$ -berlin . del\sim materlik/DirkMaterlikThesis . pdf.

[10] MuPAD. Amodern, ffill-featured computer algebra system, http: $/\mathit{1}\mathrm{w}\mathrm{w}\mathrm{w}$.mupad. $\mathrm{c}\mathrm{o}\mathrm{m}$.

[11] Jiirgen Richter-Gebert and Ulrich H. Kortenkamp. The Interactive Geometry Software
Cinderella. Springer-Verlag, Heidelberg, 1999. $\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}:$ /1 $\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{c}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{e}11\mathrm{a}$.de.

[12] J. Richter-Gebert. “Mechanical theorem proving in projective geometry,” Annals ofMath-
ematics and Artificial Intelligence, 13, 1995, pp. 139-172.

[13] Jiirgen Richter-Gebert and Ulrich H. Kortenkamp. シンデ $\iota’\overline{7}$ 日本語版. Springer-Verlag,
Tokyo, 2003. Japanische U bersetzungb. ht $\mathrm{t}\mathrm{p}://\mathrm{c}\mathrm{d}\mathrm{y}$ apan. $\mathrm{h}\mathrm{p}$. i nfos $\mathrm{e}\mathrm{e}\mathrm{k}.\mathrm{c}\mathrm{o}$. jp $[$.

[14] Raul Rojas, Lars Knipping; Ulrich Raffel; Gerald Friedland Elektronische Kreide: Eine
Java-Multimedia-Tafel ffir den Prasenz- und Fernunterricht. Inform., Forsch. Entwickl.
16, N0.3, 159-168 (2001). see also http: $/\mathrm{w}\mathrm{w}\mathrm{w}$. e-chalk .de.

[15] Alexander Schliep et. al. Gato .. Graph Animation Toolbox, http: $/\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{z}\mathrm{p}\mathrm{r}$.
$\mathrm{u}\mathrm{n}1^{1}$-koeln. $\mathrm{d}\mathrm{e}/$

“

$\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{o}/\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}$.html

[16] Wikipedia Entry. http: $//\mathrm{e}\mathrm{n}$.wikipedia. $\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{w}\mathrm{i}\mathrm{k}\mathrm{i}/\mathrm{Q}\mathrm{u}\mathrm{i}\mathrm{c}\mathrm{k}\mathrm{s}\mathrm{o}\mathrm{r}\mathrm{t}$.

