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1 Introduction

In statistical inference it is basic to obtain the sampling distribution of a statistic. However,
we often encounter the situation where the exact distribution cannot be obtained in a closed
form, or even if it is obtained, the exact distribution is of no use because of its complexity.
To overcome this situation, various approximations of the quantiles as well as the distribution
function have been studied. The one to which we restrict attention is that of using asymptotic
approximations, especially asymptotic expansions.

In this paper, we consider a nonnegative statistic § whose limiting distribution is a chi-
squared distribution x? with f degrees of freedom and suppose that a nonnegative statistic S
has an asymptotic expansion

k
F(z) = P(S < 2) = Gy(z) + = 3 a;Gaa;(e) + O(n7?), (1.1)

=0

where n is a positive number, typically a sample size, k is a positive integer, Gsy9;(-) is the

k
3=0

examples of the statistic S are as follows: For k = 1, the likelihood ratio test statistic (see

distribution function of xﬁ +2; and coefficients a;’s satisfy the relation a; = 0. Some
Hayakawa (1977)); for k¥ = 2, Lawley-Hotelling trace criterion and Bartlett-Nanda-Pillai trace
criterion, which are test statistics for multivariate linear hypothesis under normality (see Ander-
son (1984) and Siotani, Hayakawa and Fujikoshi (1985)); for k = 3, the score test statistic (see
Harris (1985)) and Hotelling’s T?-statistic under nonnormality (see Kano (1995) and Fujikoshi
(1997b)).
In order to obtain an approximated quantile of statistic .S, we consider a monotone function
T = T(S) satisfying
P(T < z) = G4(z) + O(n7?). (1.2

For such a monotone function T, it holds that

P(S < b(ta)) = P(T(S) € ua) = 1 - 2+ O(n~?),
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where u, is the upper o point of x?c and b(-) is the inverse function of 7. We shall propose
methods to use b(u,) as an approximated upper o point of S.

The transformation T = T(S) satisfying property (1.2) is called the Bartlett correction
or a Bartlett type correction and have been investigated by many researchers (e.g., Cordeiro
and Ferrari (1991), Kakizawa (1996), Fujikoshi (1997a), Fujisawa (1997), Cordeiro and Ferrari
(1998), Cordeiro, Ferrari and Cysneiros (1998), Fujikoshi (2000), and Aoshima, Enoki and Ito
(2003)). In this paper, we shall consider new transformations given by a different approach from
others. It may be observed that new transformations, proposed in this paper, give a significant
improvement to chi-squared approximations. Further, we shall also consider error bounds for the
remainder term in (1.2) and for approximated quantiles. These would lead a broad application
with a wide class of statistics.

This paper is organized as in the following way. In Section 2, we propose new monotone
transformations which are given by a different approach from others. Numerical examples of
some test statistics are demonstrated to observe an improvement brought by the proposed trans-
formations beyond the competitors. In Section 3, we give a method to obtain an uniform or
non-uniform error bound for an improved x2-approximation. Further, we introduce some appli-

cations.

2 Transformations with improved chi-squared approximations

For a nonnegative statistic S whose asymptotic distribution is x"}, we assume that the distri-
bution function can be expanded as in (1.1). Then, we consider a monotone transformation
T = T(S) based on the Bartlett correction or a Bartlett type correction. That is, we consider
a monotone function T = T'(S) satisfying property (1.2). The following lemma was given by
Cordeiro and Ferrari (1991).

Lemma 2.1 Suppose that a nonnegative statistic S has an asymptotic ezpansion (1.1). If the

transformation T = T(S) can be ezpanded as

k k

2 a; ;
T=5-2= % 5] +0,(n"?), 2.1
n; gﬂi;h(fﬂe) A @1

then property (1.2) is satisfied.

Some monotone transformations that hold (2.1) have been proposed (e.g., Fujikoshi (2000) for
k = 2, Cordeiro, Ferrari and Cysneiros (1998) and Aoshima, Enoki and Ito (2003) for k = 3 and
Kakizawa (1996) for a general k). However, these transformations are not always oriented to a
theoretical background except for having (2.1) and the monotoneity. In this section, we propose
new transformations that have not only (2.1) and the monotoneity but also a certain theoretical

background. Moreover, we introduce some applications with proposed transformations.
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2.1 New transformations
Let z, and u, be the upper « points of F and Gy, respectively. Then, we note that
Zo = F71(Gy(ua)). (2.2)
Now we define that
= G71(F(8)).
From (2.2), since it follows for all @ € (0,1) that

P(T™* < us) =P(§ < F71(G{(ua)))
=P(S < za)

=1-q¢,

we claim that

T ~ X?'-
It is easy to see that T* can be expanded as (2.1). On the other hand, from the property of
the distribution function, T* holds the monotoneity. Further, we note that the upper o point
of S is exactly obtained from T*. Therefore, we can say that T* is an exact transformation to
a chi-squared distribution xfe. If F(z) is completely known, T* is available. As far as F(z) is
available in a form (1.1), we have to replace F(z) with

F(z) = Gy(e) + ~ Z%Gmg( )- (2.3)

7=0
However, F(z) does not hold the monotoneity. Now, we modify F(z) so as to hold the mono-
toneity and construct a transformation with its modified function. Yanagihara and Tonda (2003)

proposed an adjustment to F(z) as follows:

Fyr(z) = d-! {F’(a:) oo /0 ’ G'f(t){a(t)}zdt} , (2.4)
where
d=$1Lng°{F(a:)+ in 2/ G%(t){a(?) }2dt} (2.5)
a(z) = {G}(z)}~ {Z“JGHzJ }

Then, Fyr(z) is monotone and lim;o Fy7(z) = 1. With a monotone function Fyr(z), we

propose a new transformation:
T, = G;I(FYT(S)). 2.7
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Theorem 2.1 Suppose that a nonnegative statistic S can be ezpanded as in (1.1). Then, for a
monotone transformation Ty = T (S) defined by (2.7) with (2.4), it holds that

P(Ty < z) = Gy(z) + O(n~?).

Proof. As for a function F(z) defined by (2.3), note that d =1+ O(n~?) in (2.5). Hence, we
have that Fyr(z) = F(z) + o(n~1). Therefore, since T} can be expanded as in (2.1), we get the

desired result from Lemma 2.1. [ |

Next, we consider another adjustment to F(z):

Fu(z) = /o " (1) exp (—:;a(t) - T—ll-ip(t)) dt, 2.8)

where a(z) is given by (2.6) and p(z) is a polynomial such that k + 1 < deg[p(z)] < o and
p(z) = +00 as & — +oo. Then, F,(z) is monotone and F,(z) = F(z) + o(n~1). With a

monotone function F,(z), we propose another new transformation:
T, = G7H(Fu(S)). (2.9)

Theorem 2.2 Suppose that a nonnegative statistic S can be ezpanded as in (1.1). Then, for a
monotone transformation Ty = Ty(S) defined by (2.9) with (2.8), it holds that

P(T; < z) = G4(z) + O(n™?).
Proof. The claim is proved similarly to Theorem 2.1. ' |

We can see the superiority of T3 in the following case. Suppose that a nonnegative statistic

S can be expanded as
1 1 —r
F(z)=P(S <z)=Gs(z) + ;z-hl(a:) @)+ + ;r_—lhr_l(:v)G'f(a:) +0(n™"), (2.10)

where h;(z) is a polynomial of degree i X k without constant term. The form (1.1) is the case

when r = 2. Then, we consider a monotone transformation T = T'(S) satisfying
P(T < 2) = G4(e) + O(n™"). (2.11)
For such a monotone function T, it holds that
P(S < b(ua)) = P(T(S) < va) = 1 -+ O(n™"),

where u, is the upper « point of x§ and b(-) is the inverse function of T. In this situation,
Kakizawa (1996) proposed a transformation satisfying (2.11). However, his method requires a
quite complex calculation to come to a transformation. Now, let us apply transformation T3 to

this case as follows: Let

) = (Zm(@61®) /611
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Note that a;(z) is a polynomial of degree ¢ x k. We have that
1 1 1
F'(z) = G%() {1 + ~a () +,-7—l-2-a2(w) +--4 'T;;:Tar—l(m) + O(’n_r)} .
Define F.(z) by
1
R = [ ey ee{ o) - gle+-+ Xty - Lot} o

(r=Ln""
(2.12)

where

a(z) = as(z) + —az(z) +ot —garaa(2),

and p(z) is a polynomial such that {(r - 1)k}1+1< deg[p(a:)] < 0o and p(z) = +oc0 as z —
+00. Then, F,(z) is monotone and by using the relation exp(z —z2/2+---+(-1)"2""1/(r—1))
=1+ 2z + O(z2"), we obtain F,(z) = F(z) +O(n™").

Theorem 2.3 Suppose that a nonnegative statistic S can be ezpanded as in (2.10). Then, for
a monotone transformation T; = T5(S) defined by (2.9) with (2.12), it holds that

P(T; < z) =Gy(z)+O(n™").

In order to prove Theorem 2.3, we give the following lemma.

Lemma 2.2 Suppose that a nonnegative statistic S has an asymptotic ezpansion (2.10). Let

~ b(z) be the inverse function of the transformation T = T|(S) such that b(z) = z+0(n"1). If and
only if b(z) is coincident with Cornish-Fisher ezpansion, F~1(G(z)), up to the order O(n~"t1),
then property (2.11) is satisfied.

Proof. Let 5(z) be the one formed by the terms of F~1(G(z)) up to the order O(n=r+1),
Then, '

F(b(z)) =F(F(Gs(e)) ~ (F'(G4(x)) - b(z)))
= F (F(G,()) - F' (F~}(Gy(a))) (F~(G1(2)) - b()) + -~
= Gy(z) + O(n™"). ()

On the other hand,
F(b(z)) = F(b(2)) + F'(b(z)) (b() - b(=)) + %F "(b()) (b(z) - b(2))* +--- . (2.14)

It is easy to see that b(z) = z 4+ O(n~1). Noting tha’c b(z) = z + O(n~1), we get b(z) — b(z) =
O(n~!). From (2.13) and (2.14), we obtain the desired result. .

Proof of Theorem 2.3. Since F,(z) = F(z) + O(n~"), Theorem 2.3 is proved by Lemma 2.2.
]
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2.2 Applications

Here, we shall give the transformations (2.7) and (2.9) for some statistics and examine the
accuracy of the approximations to the true percentage point z, of S. In Example 2.1, we
conducted simulation experiments as follows: For parameters given in advance, the approximate
percentage point was calculated for each monotone transformation. By using these percentage
points, we conducted the Monte Carlo simulation with 100,000 (= R, say) independent trials for
a test statistic. Let s, (r = 1,..., R) be an observed value of S and p, =1 (or 0) if s, is (or is not)
larger than the approximate percentage point. On the other hand, let sy < spg) < -+ < S(R] be
the ordered values of s, and let us define sy, _,)r) as an observed value of z,. We briefly write it
a. Let p= 1002 | p,/R which estimates the test size (100a%) with its estimated standard
error s(p) = 100,/(5/100)(1 — 5/100)/R. Table 2.1 gives values of the approximate percentage
point for each monotone transformation together with the value of z,. As for the actual test

sizes, Table 2.2 gives values of § (s(p)), on the first (second) line in each cell, for each monotone
transformation. In Example 2.2, we have considered a case that the asymptotic expansion of S
is obtained up to the order O(n~2).

Example 2.1 Let § = (n — g)s2/s? be a test statistic for testing the equality of means of
g nonnormal populations IT; (i = 1,..., ) with common variance. Here, s2 and s? are the sums
of squares due to the hypothesis and the error, respectively, based on the sample of the size n;
from II;. Let p; = \/11_,-75, where 7 is the total sample size. Assume that p; = O(1) as n;’s tend
to infinity. Let x3 and k4 be the third and the fourth cumulants of the standardized variate.
Then, under a general condition, an asymptotic expansion for the null distribution of S was
given by Fujikoshi, Ohmae and Yanagihara (1999) in the form (1.1) with k=3 f=qg—-1and

the coefficients given by

1 1
a0 = (g~ 1)(g - 3) — dis§ + dzks, a1 =—5(0- 1)? + 3d1 K3 — 2daka,

1

a; = 4(q2 — 1) — 3d1h'% + dzl‘i4, as = dl""':zh

where

g q
o= OERLS +=a-Da-2), b=j S -~ 1g-1).
We examined performance of our new transfomations under the following two nonnormal
models:
(i) x? distribution with 4 degrees of freedom;
(i) Gamma distribution with shape parameter 3 and scale parameter 1/3.

Table 2.1 gives the true percentage point Zq and the approximate percentage points te(u),
tapr(u), tx(u), t1(u) and ty(u) for the case ¢ = 3. Here, u denotes the upper 5% point of x3,
te(u) is compﬁted on the basis of the Cornish-Fisher expansion up to the order O(n~1), and
tagr(u), tx(u), t1(u) and ta(u) are computed on the basis of Aoshima, Enoki and Ito (2003),
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Kakizawa (1996), (2.7) and (2.9) respectively. Note that the Cornish-Fisher expansion yields

the percentage point z, of S in the same form up to the order O(n™1).

It means that the

transformations T aim to find an improvement of approximations to z, in the terms of O(n~2).

Table 2.2 gives the actual test sizes denoted by

a; =P(T > u),

ay =P(T > tg(u)), as=P(T > tapr(w)),
4 = P(T > tK(u)), a5 = P(T > tl(u)),

Qg = P(T > tz(u))

for the case ¢ = 3. For new transformation (2.9), we consider the following case:

3
a(z) = ap + Zaj

= TR (F+20)]

zd

p(z) = {

2{a(z)}?
ta(z) + &a(z)}? in (i)

Table 2.1 The percentage points when ¢ =3

in (i)

Sample sizes Upper 5% points (x3(0.05) = 5.9915)
ng ng n3 | 2o tp(u) tapr(u) tx(uw) ti(u) ta(u)
5 5 5 | 7455 6.823 7.012 6.986 6.924 7.566
(i) |10 10 10 |6.501 6.407 6.449 6.443 6.433 6.528
3 6 6 | 7.521 6.815 7.116 7.033 7.025 7.411
5 5 1016916 6.609 6.759 6.720 6.723 6.884
5 5 5 | 7.367 6.945 7.177 7.231 7143 7.378
(i) {10 10 10 |6.375 6468 6.519 6.528 6.517 6.545
3 6 6 | 7460 6.939 7.228 7.278 7.226 7.330
5 5 10/(6.918 6.702 6.849 6.870 6.859 6.887

100,000 replications

Table 2.2 The actual test sizes when ¢ = 3

Sample sizes Nominal 5% test
ny N9 N3 (3] s3] Qa3 (27} (875 Qg
5 5 5 {8077 6.084 5736 5.782 5.895 4.798
0.086 0.076 0.074 0.074 0.074 0.068
10 10 10| 6.200 5.191 5.100 5.112 5.131 4.941
(1) 0.076 0.070 0.070 0.070 0.070 0.069
3 6 6 | 8.260 6.260 5.690 5.835 5.849 5.172
0.087 0.077 0.073 0.074 0.074 0.070
5 5 10| 7.151 5.621 5.303 5.3890 5.383 5.061
0.081 0.073 0.071 0.071 0.071 0.069
5 5 5 17958 5.719 5290 5.199 5.370 4.984
0.086 0.073 0.071 0.070 0.071 0.069
10 10 10 | 5.917 4.814 4.696 4.670 4.703 4.640
(i) 0.075 0.068 0.067 0.067 0.067 0.067
3 6 6 |8119 5921 5379 5290 5.381 5.196
0.086 0.075 0.071 0.071 0.071 0.070
5 5 10| 7.067 5.426 5.144 5.100 :5.124 5.067
0.081 0.072 0.070 0.070 0.070 0.069

100,000 replications
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From Tables 2.1-2.2, we can see that transformation (2.9) gives most significant improvement
for the approximate percentage point among the others. Note that transformation (2.9) is
severely affected by the function p(z). As for an optimum choice of p(), it is under investigation.
Note that the value of ;(u) is close to tagr(u) or tx(u). It seems that transformation (2.7)

does not make a significant difference from the predecessors.

Example 2.2 Let X1,...,X, be independently and identically distributed as Ny (s, ).
Let X = 2Y 7, X;and § = IyiX; - X)(X; — X) where v = n—1 > p. Then,
Hotelling’s T?-statistic is defined by

T? = n(X - p)/S~HX - p).

The statistic is used for testing hypotheses about the mean vector p and for obtaining confidence
regions for the unknown p. Let us put § = T2. Then, an asymptotic expansion for the
distribution of S was given by Siotani (1971) as follows:

F(z) =P(S < 7) = Gple) + Zaucp+2,(x)+ Zazjapn,(z)w(v-a)

j=0 =0
where
P 1 7
G0 = =, 011——'2-, 012=ZP(P+2) 020—5'6?(31’ — 8p® + 8), 21 =
1
a22=-1—6p(p+2)(29 "6), a23-——p(p+2)(P+4), 024———p(p+2)(p+4)(p+6)
Let
zJ
a)(z) =ap+ a————-—andax_a+ 9] ————.
1( ) 10 J—Zl 15 J 1( +2e) 2( ) 20 JZI J _7 1( +2£)

Let F(z) be the one formed by the terms of F(z) up to the order O(n~*). We examined
performance of our new transformation (2.9) with the following setup:

1) @) = o), ple) = plal)

@) o@)=a(), pe) = pa@) - 5o (aE@)F + prla@)

®) o) =m(e) + Laa(a), @) = F{a@)

@ o) =)+ 2al), ) = e@) - 5 {E@F + gla@)

Under the setup (1), (2), (3) or (4), we note for Fu(z) defined by (2.8) that F.(z) = Fi(z) +
o(n=?), Fu(z) = Fi(z)+o(n™%), Fu(z) = Fy(z)+0(n~2%) and Fy(z) = Fy(z)+0(n™*), respectively.

Table 2.3 gives the true percentage point z,, the approximate percentage points tg, t1, ta1,
ta2, iE, T21 and 33 in the case a = 0.05, and values of F(z) at each percentage point. Here, tg
(fg) and t; are computed on the basis of the Cornish-Fisher expansion up to the order O(n™!)
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(O(n~?)) and new transformation (2.7) respectively, and to1, ta2, f2; and £23 are computed on
the basis of new transformation (2.9) under the setups (1), (2), (3) and (4), respectively. By
using the fact {(v — p+ 1)/(vp)}T? is distributed as F-ratio distribution with the parameter

(p,v — p+ 1), we obtained the exact value of z, and F(z) at each percentage point.

Table 2.3 The percentage points when a = 0.05

p v Ty tE 31 t21 t22 13 i1 ta2
2 20 7.4145 7.1885 7.5335 7.2151 7.1984 7.3134 7.4477 7.4325
0.95 0.9459 0.9518 0.9464 0.9461 0.9482 0.9506 0.9503
40 | 6.6423 6.5900 6.6743 6.5994 6.5985 ° 6.6212 6.6450 6.6442
0.95 0.9489 ~0.9507 0.9491 0.9491 09496 0.9501 0.9501
60 | 64131 6.3905 6.4278 6.3954 6.3952 6.4044 6.4138 6.4137
0.95 0.9495 0.9503 0.9496 0.9496 0.9498 0.9500 0.9500
80 | 6.3033 6.2907 6.3116 6.2937 6.2937 6.2985 6.3036 6.3035
0.95 0.9497 0.9502 0.9498  0.9498 0.9499 0.9500 0.9500
100 | 6.2389 6.2309 6.2442 6.2329 6.2329 6.2357 6.2390 6.2390
0.95 0.9498 0.9501 0.9499 0.9499 0.9499 0.9500 0.9500
4 20 | 13.9516 12.6869 13.3255 14.2262 13.3120 13.2541 - -
0.95 0.9339 0.9427 0.9529 0.9425 0.9417 - -
40 | 11.3559 11.0873 11.3218 11.0363 10.9901 11.2291 11.4130 11.3553
0.95 0.9457 - 0.9495 0.9449 0.9441 0.9480 0.9509 0.9500
60 | 10.6677 10.5541 10.6674 10.5251 10.5156 10.6171 10.6771 10.6674
0.95 0.9480 0.9500 0.9475 0.9474 0.9491 0.9500 0.9500
80 | 10.3499 10.2875 10.3534 10.2711 10.2680 10.3230 10.3530 10.3500
0.95 0.9489 0.9501 0.9486 0.9485 0.9495 0.9501 0.9500
100 | 10.1669 10.1276 10.1704 10.1173 10.1160 10.1503 10.1683 10.1670
0.95 0.9493 0.9501 . 0.9491 0.9491  0.9497 0.9500 0.9500
6 20 | 22.3237 18.4440 18.6314 - - 19.9083 - -
0.95 0.9112 0.9137 - - 0.9288 - -
40 | 16.2636 15.5178 15.8146 15.6351 15.2400 15.8839 - -
0.95 0.9402 09443 0.9419 0.9361 0.9452 - -
60 | 14.8498 14.5424 14.7200 14.4394 14.3582 14.7051 14.9598 14.8414
0.95 0.9455 0.9482 0.9440 0.9427 0.9480 0.9515 0.9499
80 | 14.2215 14.0547 14.1672 13.9778 13.9507 14.1462 14.2468 14.2139
0.95 0.9475 0.9492 0.9462 0.9458 0.9489 0.9504 0.9499
100 | 13.8666 13.7621 13.8387 13.7087 13.6970 13.8206 13.8758 13.8629
0.95 0.9483 0.9496 0.9475 0.9473 0.9493 0.9501 0.9499

In Table 2.3, there are several cases in which the values of t3;, tog, f1, f22 are not available.
This is due to the fact that limz_yo Fi(z) < 0.95. From Table 2.3, when the term of O(n~?) is
obtained, we can observe that the transformaitons give a significant improvement. Comparing
to; with to, it seems that t9; does not necessarily improve the approximation of t3;. On the
other hand, comparing f3; with 32, we can see an excellent improvement in £2;. In general, the
distance |F,(z) — F'(z)| does not necessarily mean an improvement on the approximation to the
percentage point. However, in the present situation that a theoretical determination of p(z) has
not been developed, it may be a clue to choose a function p(z) such that |F,(z) — F(z)| becomes
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small.

3 Accuracy of improved chi-squared approximations

Suppose that a statistic S has an asymptotic x2-approximation as some parameter n tends to
infinity. In this case, it is of considerable interest to construct improved x%-approximations for
the statistic S. A typical approach is to consider a monotone transformation T = T(S) based
on the Bartlett correction or a Bartlett type correction. For a Bartlett type correction, we
introduced several transformations in the previous section. In this section, our aim is to obtain
an error bound for an improved x?-approximation.

We write (1.1) as

k
1
P(S < o) = Gyla) + = D 0;Gr42i(2) + Ri(®), (3.1)
j=0
where Ry (z) = O(n~2). For (3.1), Ulyanov and Fujikoshi (2001) proposed an error bound for
an improved x2-approximation. We shall improve their result and give an extension to a non-
uniform bound. Numerical examples of some test statistics are demonstrated to observe an

improvement in Theorem 4.1 of Ulyanov and Fujikoshi (2001).

3.1 Uniform error bound

For the remainder term Ri(z) in (3.1), we assume that there exists a positive constant ci
such that
|Ri(2)| < ci/n”. (3.2)

Theorem 3.1 Suppose that there exists a positive, increasing function b(z) defined on [0, +00)
such that, a positive, increasing function p(z) which is bounded above by a polynomial and for
some nonnegative constants B;, i =1,2,3:0< By <1, By < By1/4, the following conditions
are satisfied for allz > 0:

b(z) > Biz, . (3.3)

|b(z) - z| < p(z) exp(B2z)/n, (3.4)
, BELR L P
G@e) -2 - 53 ’,;HT:B‘UH!)‘SBS/ , (5.5

where a;’s are the same as in (3.1). If P(S < z) can be written in the form (8.1) with (3.2),
then '
IP(T(S) < ) - Gy(a)] < &/, (3.6)

where T is the inverse function to b(z) and & is a positive constant depending on f, p(z), Bi,
i=1,2,3 and c in (3.2).
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Proof. Since G¢(z) is smooth for all z > 0, we can write

+ 364 0(z) - 2%, 67)

G (b(z)) = Gy(z) + G (2)(b(2) — 2)
where z’ € (b(z) Az,b(z) V z). It is known for j > 1 that
Gryai(z) = Gy(z) — 2G4 (2) D 0 +20 (3.8)

m=1

Note that in (3.1), it is necessary that Ef:o a; = 0. By using (3.1), (3.7) and (3.8), we obtain

P(T(S) < z) = P(S < b(x))
= Gy(z) + G)(=) {b(m)-—m—-—z — +2£)}

=1 1le=0
@) (b(z) - 2)* + = Zag F42(=") (b(z) — 2) + Re(b(2)), (3.9)
j=0

where z” € (b(z) A z,b(z) V z).
Now we construct a uniform bound for G'(z')(b(z) - z)2. Note that when f # 2

GY(@) = @/(/2)7 (-5 + L _1)atltee, (3.10)

We shall employ below the following inequality: For any positive numbers p and g, we have

|p - ¢| < max{p,q}.

We consider two cases.

Case 1: b(z) < z.
Then 2’ € (b(z),z). When f > 4, we obtain from (3.3), (3.4) and (3.10) that

sup |G(z")](b(z) - 2)°

b(z)<z

____.—_——1 L -{8.2B;)e ,
< ST S | @Y e e 252) max{z/2,f/2—1}]
= cu/n’. (3.11)

When f = 1,3, we obtain similarly to (3.11) that

sup |G'f(z')|(b(z) - 2)*
b(z)<z

Bf/2—2 2 fg - a8,
< WSUP [{p(m)} z3 2% (& 23) “ max{z/2, f/2—1}]
= 012/n .

When f = 2, since .
() = _ ~z/2
Gia) = ~ s g (3.12)
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we obtain from (3.3) and (3.4) that

1 -2B; )z
0 1GHE0) =) < ey 08 [tp@yre (21|

= 613/’n . (3.13)
By the hypotheses of theorem, we have c13, €12, €13 < ©©.

Case 2: b(z) > =
Then z’ € (z,b(z)). When f # 2, we obtain from (3.3), (3.4) and (3.10) that

sup_[G4(2)((e) — 2)* < 7 sup (|67 e

b(z)>x
2, f-2 ~(3-2B2)z|_% f_ ]
= e /n’. (3.14)

When f = 2, we obtain similarly to (3.13) and (3.14) that

"yt 1 2 —(1-2B3)z
5up 1G7(&)I0e) - 9 < o [(ple)yre=(i222)]

= C22/n2.

By the hypotheses of theorem, we have ¢33, ¢22 < 0o. Since ¢z1 < c11,¢12 and ¢z < ci3, by
defining that

en f24
a=<cas f=13,
as f=2
we obtain that
st;pOIG'j'(z’)I(b(z) - z)? < ¢ /n (3.15)
T

By using (3.8), we can obtain similarly to (3.15) that when f > 2,

22“: Z Gf+2m (z")

j=1 m=1

_zl

Z% 1425 (") (b(2) — 2)| =
=0

k J

L_q _.-ﬂ.+;B z '+ f+2m -2 ,pm
p(z)(z")7e” TN ) e (=")
24 2 T+

1
< I ()

_ 1 mi- e_az'.' B, ul (3«‘”)
= —-———————nzﬂzr(f/z)p(z)(x )21 + o-i-]Z1 j ,_0(f+2£)
1 Lo 2 -B;
= W2IPT(1/2) 250 [p @eirte (Bm) {Ia l+§l S+ 20 (f+2£) }}

= c31/m. (3.16)
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When f = 1, we obtain similarly to (3.15) and (3.16) that

f+2] (:L‘) - z)
B.lf/'l—l f1 —(—B,‘,J-—Bz)m
< a7 [p(””“ e i+ Lol
= Csz/n.

By the hypotheses of theorem, we have ¢31, c32 < 00. By defining that

a1 f22
C3 = 3
ez [f=1
we obtain that
sgp ZaJGﬂ_z,( " (b(z) - z)| < e3/n. (3.17)

=0
Combining (3.2), (3.5), (3.15) and (3.17) with (3.9), we obtain (3.6) with

1
5‘=33+§Cl+63+0k~

This brings our proof to the end. [ ]

Remark 3.1 It is clear that a positive function b(z) that satisfies (3.3)-(3.5) may not be in-
- creasing. Therefore, we have to require the existence of an increasing function b(z) in Theorem
3.1. Ulyanov and Fujikoshi (2001) showed the existence of the required function b(z).

Remark 3.2 It should be noted that the error bound given by (3.6) is sharper than Ulyanov
and Fujikoshi (2001).

Remark 3.3 Note that an increasing function b(z) that satisfies (3.3)-(3.5) is coincident with
the Cornish-Fisher expansion for the quantile of S up to the order O(n™?).

3.2 Non-uniform error bound

For the remainder term Ry (z) in (3.1), we assume that there exists a positive function Ci(z)
such that
[Ri(2)| < Ci(z)/n?,  Ck(z) =0 (z — ). (3.18)

Theorem 3.2 Suppose that there erists a positive and unbounded, increasing function b(z) de-
fined on [0,400) such that, for a positive, increasing function p(z) which is bounded above by a
polynomial, for some nonnegative constants B;, i =1,2,3: 0 < B; < 1, max{2, f/2+ k}B; <
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B1/2, and for a positive function B(z) : B(z) - 0 (z — o0), (3.3), (3.4) and the following
condition are satisfied for allz > 0 :

k J

2
b(z) -x-;r 4y = f+%)’ z)/n?, (3.19)

1 m=l1 f“O

G (o)

where a;’s are the same as-in (3.1). If P(S < z) can be written in the form (3.1) with (3.18),
then
|P(T(S) < z) — Gy(2)| < C(z)/n?, C(z) =0 (z— ), (3.20)

where T is the inverse function to b(a:) and C(z) is a positive function depending on f, B(z)
and Ci(z) in (3.18).

Proof. From (3.4), we obtain for all z > 0 that
1
b(z) < 2+ 2p(z) exp(Brz)
< {m + %p(z)} exp(Bsz). (3.21)

First we construct a non-uniform bound for G(z’) in (3.9). Similarly to the proof of Theorem
3.1, we consider two cases.
Case 1: b(z) < z.
Then 2’ € (b(z),z). When f > 4, we obtain from (3.10) that
1
2T (F72)
= Cui(z). (3.22)

G5 (a)] < #-2¢~44) max{c/2, f/2 - 1)
When f = 1, 3, we obtain similarly to (3.22) that
’ 1 -2 _ -0\
IGH&N < iy 0@ em ¥ max{a/2, £/2 - 1)
= Clz(w).
When f = 2, we obtain from (3.12) that
1 1
N < — L -bb@)

= Cia(). (3.23)

By the hypotheses of theorem, we have {Cy; (z) + C2(z) + Ci3(2)}(b(z) — z)? — 0 as z = oco.

Case 2: b(z) > z.
Then z’ € (z,b(z)). When f > 4, we obtain similarly to (3.22) that

61 < g77a7y )" max{ble/2, £/2 - 1)
= Cgl (ZE) (3.24)



174

When f = 1,3, we obtain similarly to (3.24) that
IGH <€ s
OV IP)

= 022 (:L‘)

s5-2e% max{b(z)/2, f/2 - 1}

When f = 2, we obtain similarly to (3.23) that
64 < st
f = 2f/2+1[‘(f/2)
= 023 (a:)

By the hypotheses of theorem and (3.21), we have {C21(z) + Ca2(z) + Cas(z)}(b(z) — 2)2 = 0
as r — 0. Let

Cul(z) >4 Cu(z) f
Ci(z) = { Cr2(z) f=1,3, Ca(z) = { Caa(z) f
Cu(z) f=2 Ca(z) f

v

4
1,3
2

By defining that

we obtain for all z > 0 that
Gi(z)] < Ci(), Ci(z)(b(z) - 2)2 =0 (z = ). (3.25)

Next we construct a non-uniform bound for Zf=o ;G 19;(2") in (3.9). Similarly to (3.25),
we consider two cases.

Case 1: b(z) < z.
When f > 2, by refering to (3.16), we obtain

n 1___ ”L
ZaJ f+21(93 2f/2l‘(f/2)($) 1, {|a0|+2|.7| Léf_*_%)}

1 _1 -
S FPG)” {'“"' oo JlHe-o(f+2£}
= Cy (). (3.26)

When f = 1, we obtain

1 L 1 ..9129. a
TG {' oI+ Z' "nt_o(f+2t) }
= 032(3}). (3.27)

Z a;Gly2;(2")| <

j=0
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Case 2: b(x) > z.
When f > 2, we obtain similarly to (3.26) that

{b(=)}
> 2f/2F(f/2){ (m)} {|a0|+Z| Jl _7_1 f+2£)}
Ec.n(w).

Z aJGf+2J (m”)

7=0

When f = 1, we obtain similarly to (3.27) that

: " 1 pEY
Z% T2i(2")| < m {l 0|+E| Ol == J_1(:;._}_28)

j=0 i=1
=Cy2 (z)

By the hypotheses of theorem and (3.21), we have {C3)(z)+Cs2 (z)+Ca1(z)+Caz}b(z) ~z| = 0
as z — 0o. Let

oy = JCal2) f22 ) = Ca(z) f22
Cs(z) {032(m) Fo1’ Ca( {042(3:) fo1

By defining that

= _JCa(x) b(z)<L=
CQ(w) = {04(37) b(:c) >z 3

we obtain for all z > 0 that

k
Y 0@ < Cala),  Ca(@)bla) —al 20 (¢ ). (3.28)
j=0
We define
C(z) = B(z) + ﬁ;-él (z)(b(z) — 2)? + nCa(z)|b(z) — z| + Ck(b()). (3.29)

Then, by the hypotheses of theorem, (3.25) and (3.28), we have & (z) = 0 (z — 00). Therefore,
by combining (3.18), (3.19), (3.25) and (3.28) with (3.9), we obtain (3.20) with (3.29). [

Remark 8.4 It should be noted that the error bound given by (3.20) is sharper than (3.6).

Remark 3.5 Note that an increasing function b(z) that satisfies (3.3), (3.4) and (3.19) is coin-
cident with the Cornish-Fisher expansion for the quantile of S up to the order O(n™1).

Remark 3.6 For a constant c; and a function Cx(z) defined by (3.2) and (3.18), respectively, if
8UP.50 Ck() < ¢k, then sup,5 Ci(z) < &, where & and Ci(z) are defined by (3.6) and (3.20),
respectively. Therefore, we can obtain a smaller uniform bound.
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3.3 Applications

Here, we examine Theorem 3.1 and Theorem 3.2 numerically. For Theorem 3.1, we compare
with Theorem 4.1 in Ulyanov and Fujikoshi (2001). We conducted simulation experiments as
follows: For parameters given in advance, error bounds for the remainder term of type (3.2) or
(3.18) were calculated. We refered to Fujikohi (1993) for a calculation of (3.2). For a calculation
of (3.18), we refered to Fujikoshi (1988, 1993) and obtained non-uniform bounds of type ;7%
with a constant ¢. Here, we set £ = 1. By using these error bounds and giving some constants
and functions, we calculated error bounds of type (3.6) or (3.20). Tables 3.1 and 3.3 present
values of the uniform bound (3.2) on the first line in each cell and values of the uniform bound
(3.6) given by Theorem 3.1 (Theorem 4.1 in Ulyanov and Fujikoshi (2001)) on the third (second)
line in each cell. As for non-uniform bounds, Tables 3.2 and 3.4 give values of the error bound
(3.20) given by Theorem 3.2 ((3.18)) on the second (first) line in each cell. As for non-uniform

bounds, we consider a case ¢ = u,, the upper & point of x}.

Example 3.1 We consider the case when S = x}”/ Y with Y = x2/n where x} and Y are
independent. An asymptotic expansion for the distribution of S was given by Siotani (1956) in
the form (3.1) with

k=2, a=3/(f-2, m=-3f" a=f(f+2).

Then, a uniform bound for the remainder term, of type (3.2), can be obtained (see, e.g., Fujikoshi

(1993) and Shimizu and Fujikoshi (1997)). Therefore, we can apply Theorem 3.1 to this case.
Let

k

)=ty ZGJZ [Ti=o (f+2£)

m=1

{5 )

Note that for n > (f/2 — 1), b(z) is monotone. We examine Theorem 3.1 and compare with
Theorem 4.1 in Ulyanov and Fujikoshi (2001). On Theorem 4.1 in Ulyanov and Fujikoshi (2001),
we set constants D; as follows:

1/f ) 1 f=2 L f=2 o
Di=1=-~=(=-1), D= Dy={7% Dy=0
1 n(2 2 {-2[—1 f>2’ 3 {a f>2’ 4 '

3!\3

—

3

where a is a constant that satisfies ‘;(fsz‘; - ETfL—if log ;(f—l—_ﬁ +1=0. On the other hand, we set
constants and a function in Theorem 3.1 as follows:

2

1 f z. f.___2
=]=-—{=- B; = B3 = .
Bl 1 n (2 1); 2 3 07 P(it) {ma.x{ é‘l"l’%—l} _f>2
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Table 3.1 Uniform error bounds

f\n 10 20 30 40 50 70 100 150
13645 0.0311 0.0081 0.0036 0.0020 0.0009 0.0004  0.0002
2 1.4928 0.0632 0.0224 0.0116 0.0072 0.0035 0.0017  0.0007
1.4593  0.0548 0.0187 0.0095 0.0058 0.0028 0.0013  0.0006
1.4011 0.0316 0.0082 0.0036 0.0020 0.0009 0.0004  0.0002
4 2.2471  0.1921 0.0737 0.0390 0.0241 0.0119 0.0057  0.0025
2.0690 0.1600 0.0607 0.0319 0.0197 0.0097 0.0046  0.0020
0.3794  0.0084 0.0021 0.0009 0.0005 0.0002 0.0001 0.00004
6 5.3692 0.7058 0.2628 0.1358 0.0827 0.0399 0.0188  0.0081
4.1610 0.4760 0.1693 0.0855 0.0513 0.0244 0.0113  0.0048
1.0496  0.0266 0.0075 0.0035 0.0020 0.0009 0.0004  0.0002
8 |35.6148 2.8350 0.9156 0.4429 0.2596 0.1200 0.0547  0.0230
25.7372 1.5949 0.4718 0.2183 0.1246 0.0559 0.0249  0.0103
0.1141  0.0038 0.0012 0.0006 0.0003 0.0002 0.00008 0.00004
10 | 299.30 10.5607 2.7890 1.2314 0.6851 0.2991 0.1308  0.0533
220.26 5.3625 1.2374 0.5116 0.2835 0.1232 0.0538  0.0220

Table 3.2 Non-uniform error bounds at T = ua

o | f\n]10 20 30 40 50 170 100 150
5 [ - 01244 00212 0.0078 0.0039 0.0015 0.0006 0.0002
- 0.1364 0.0305 0.0133 0.0075 0.0034 0.0015  0.0006
7 - 0.0530 0.0000 0.0033 0.0016 0.0006 0.0003  0.0001
- 0.1757 0.0600 0.0308 0.0188 0.0091 0.0043  0.0019
005 6 - 00079 0.0012 0.0004 0.0002 0.00008 0.00003 0.00001
. 04211 0.1538 0.0787 0.0476 0.0228 0.0107  0.0046
8 - 0.0265 0.0051 0.0021 0.0011 0.0005 0.0002 0.00009
- 1.0922 0.3652 0.1783 0.1049 0.0486  0.0222  0.0093
10 - 00497 0.0083 0.0030 0.0015 0.0006 0.0002 0.00009
. 925054 0.7635 0.3545 0.2021 0.0904 0.0402  0.0165
5 | . 00352 0.0145 0.0053 0.0027 0.0011 0.0004 0.0002
- 0.0992 0.0244 0.0111 0.0064 0.0029 0.0013  0.0006
7 T - 0.0389 0.0066 0.0024 0.0012 0.0005 0.0002 0.00007
. 0.1469 0.0490 0.0246 0,0148 0.0071 0.0033  0.0014
001 76 1 - 00053 0.0009 0.003 0.0002 0.00006 0.00003 0.00001
. 0.3703 0.1230 0.0599 0.0352 0.0164 0.0075  0.0032
8 - 0.0207 0.0040 0.0016 0.0009 0.0004 0.0002 0.00007
- 0.9976 0.2947 0.1344 0.0759 0.0336 0.0149  0.0061
10 = 00307 00066 0.0024 0.0012 0.0005 0.0002 0.00007
. 92.4427 0.6385 0.2719 0.1468 0.0617 0.0262  0.0105

Further we consider non-uniform error bounds at z = %a. An error bound for the remainder
term of type (3.18) can be obtained (see, e.g., Fujikoshi (1988, 1993) and Ulyanov, Fujikoshi
and Shimizu (1999)). Therefore, Theorem 3.2 is also applicable to this case.

From Table 3.1, we can see a significant improvement to Theorem 4.1 in Ulyanov and Fu-
jikoshi (2001). Non-uniform bounds in this example are defined in the case n > 10. Therefore,
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 when n = 10 in Table 3.2, the error bound is not available. We can see that error bounds ¢
and C(z) tend to enlarge as f becomes large. Especially, non-uniform bounds C(z) at = = u,
have a tendency to be small as « is small. That is, Theorem 3.2 improves uniform bounds
more successfully in the tail part of the distribution of S. A non-uniform bound of type (3.18)
proposed by Fujikoshi (1988) does not necessarily improve the uniform bound of type (3.2) (see
Fujikoshi (1988)). In fact, from Table 3.1, we can see the phenomenon. On the other hand, we V

observe in Table 3.2 that Theorem 3.2 improves uniform bounds in most cases.

Example 3.2 Suppose that, for a p-variate normal population N,(u, X), where p and 3 are
unknown, we wish to construct a set of simultaneous confidence intervals on a’p with a given
length 2¢ for all a, a’a = 1. A solution to this problem, given by Hyakutake and Siotani (1987),

is as follows: First, take a pilot sample X1,..., X of a given size m and compute
1 m 1 m
_—— e— . = - ¢ — Y P 54y
Xv‘—m;XJa S V;(XJ X)(XJ X)a

where v = m — 1 > p. Then, define the total sample size as
N = max{m + p%,[c- tr(T'S)] + 1},

where ¢ is a positive constant, [a] stands for the greatest integer less than a real number a, and
T is a given positive difinite matrix which is assumed to be symmetric. Next, take an additional
sample X n41,..., X N of size N —m and construct the basic random variate Z in the following
way:

Choosing p matrices A; :pX N = [agj), .. .;asﬁ),agh_l, ces ,ag)], j=1,...,p, satisfying that

(1) a&j) = ---=a$$;) Eagj) (say) (F=1,...,p);

(2) Aj1y =ej, where 1y : N x 1=(1,1,...,1) and e : pX 1 = (0,...,0,(11),0,...,0)';

(3) AA' = %Tf‘l ® S, where A : p? x N = [A}, Aj,..., A}]' and ® denotes the direct
product.
Define a new random vector Z by

Z :px1=[tr(A; X'),tr(42X"),..., tr(4,X"))
where X p XN=[X1,...,XmyXm+1,..., Xn]. Now, by using the statistic
, . ’ .
= - T -
S 2p(Z n)T(Z - p),
taking T' = I, and choosing ¢ as ¢ = 2pz, /€% with z, the upper a point of S, the solution is

obtained as follows:
a'pela’'Z+1] forall a such that a’'a = 1.

When p = 1,2, we can evaluate the distribution of S exactly. For p > 3, the exact treatment
of the distribution of S becomes complicated. Hyakutake and Siotani (1987) gave an asymptotic
expansion of S in the form (1.1) with k=2, f=p,n=v and the coefficients given by

1 1 1
ao:——(2p2+p—2)’ a,1=—(p2-—2), a = —(p+2)'
4 2 4
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Then, a uniform bound for the remainder term, of type (3.2), can be obtained (see, e.g.,
Fujikoshi (1993), Mukaihata and Fujikoshi (1993) and Shimizu and Fujikoshi (1997)). Therefore,
we can apply Theorem 3.1 to this case. Let

)=ty Z“’ Z T p+21)

i=1 m=1

_ 1 2 _ 2
=z+ 2pu{(210 +p-2)z+2°}

Note that b(z) is monotone. On Theorem 4.1 in Ulyanov and Fujikoshi (2001), we set constants
D; as follows:

20> +p—2 1

Di=1, Dy= -
1 D2 2p ] D3 2p2+p_21

D, =0.

On the other hand, we set constants and a function in Theorem 3.1 as follows:
1

Bi=1, By=B3=0, pz)= 2—p{(2p2+1’-2)$+-’02}-

Similarly to Example 3.1, we also consider non-uniform error bounds at z = .
Let )
o= ~tr(BSH).
p ( )

In order to obtain error bounds for the remainder term, of type (3.2) or (3.18), by using a
method by Fujikoshi (1993), it is necessary to evaluate the exact moments of o*1. It is difficult
to obtain those in general p, however, Mukaihata and Fujikoshi (1993) gave the ones in the case

p = 2. Here, we examine Theorem 3.1 and Theorem 3.2 in the case p = 2.

Table 3.3 Uniform error bounds when p =2

v=10 20 30 40 50 70 100 150

1.5955 0.0132 0.0032 0.0014 0.0008 0.0004 0.0002 0.00007
1.7590 0.0541 0.0214 0.0116 0.0073 0.0037 0.0018 0.0008
1.7015 0.0397 0.0150 0.0080 0.0050 0.0025 0.0012 0.0005

Table 3.4 Non-uniform error bounds at ¢ = u, when p=2

o\v | 10 20 30 40 - 50 70 100 150

0.05| - 0.0410 0.0067 0.0025 0.0013 0.0005 0.0002 0.00009
- 0.0578 0.0154 0.0075 0.0045 0.0021 0.0010 0.0004

0.01 | - 0.0281 0.0046 0.0017 0.0009 0.0004 0.0001 0.00006
- 0.0399 0.0109 0.0053 0.0031 0.0015 0.0007 0.0003

From Table 3.3, we can see a significant improvement to Theorem 4.1 in Ulyanov and Fujikoshi
(2001). Non-uniform bounds in this example are defined in the case n > 11. Therefore, when
n = 10 in Table 3.4, the error bound is not available. From Tables 3.3-3.4, we can see a similar

tendency to Example 3.1 for error bounds ¢ and C(z).
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