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Tetsuro Yamamoto
School of Science and Engineering
Waseda University, Tokyo
(EREEAEE TR (LAEE)

1 Introduction

This is a continuation of previous papers [4], [6] and treats a two-point boundary value
problem for the semilinear ODE

—;; (p(:z:)‘;—z)+f(:v,u)=0, a<z<b (1.1)
subject to separated boundary conditions

B1(u) = alu(a) - azu'(a) =0 s (al, C!z) 75 (0, 0), . (1.2)

By(u) = Bru(b) + B2t (b) =0, (a1, a2) #(0,0). (1.3)

We assume that o; =0, 3 20, i =1,2, p € C'[a,b], p(z) > 0in [a,b], f € C ([a,b] x R), %&
exists, is continuous and nonnegative in [a, b] x R.
In order to discretize (1.1)-(1.3), we put

1
=20 <21 < <Tp<Tpg1=b, xi+%=-2—(xi+x,'+1),

hz' =T; — Tj-1 , h= ma.xhz

K2
Then the Shortley-Weller approximation at inner nodes z; , 1 < i< n, is defined by
Piy 1 Uier — Ui)/hiv1 = p;_y (Ui — Ui-1)/hi '

+ f(=zi,U;) =0,
(hi + hiz1)/2 fei )
or
2 (sw) (sw) | (sw) (sw) _ -
R [—aiw Ui-1 + (aiw +a;7 ) U; — aj31 Ui+1] + f(z,U;) =0, LSisSn,

(1.4)

where a,gsw) =iy /h; and U; denote approximations of exact values u; = u(z;). Furthermore,
the equation (1.1) is discretized at zg by

Uo=0 (if az=0)



or

2 - ~ .
7;_- [(agsw) -+ a(lsw)) Up — a(lsw)U1] + f(z0,Up) =0 (if g # 0), (1.5)

where

(sw) _ o alpo’ d ~(sw) _ & _ (sw) o1
ag o 2a2h1an a; " = h1 =a;  +0(1)

Similarly, at x,41, we have

Unt1=0 (if B2=0)

or
2 ~ ~( 8 .
= [-a0Un + (853 + a512) Unia] + F(@ner, Unia) = 0 (i B2 £ 0), (16)
n+1
where
Al = 1 = alt) + o),

(sw) __ A

B
Opio = B, Pnt+1 + 2%, 7 Ppt1hntt.

The formulas (1.5) and (1.6) are obtained with the use of a ficticious node method.
Observe that if az82 # 0, then the above discretized system can be written in a matrix-vector

form
HA®U + F(U) =0 . (1.7)
where
2 2 2 2
H = di ) )
o8 (hl hi+hg'  hothnn hn+1)
(sw) +~(sw) ~§sw)
(lsw) (aw) + a(sw) agsw)
A(sw) = . T . [}
el o
-a8 e + el

U= (UOa Ula e )Un+1)ta
F(U) = (f(zo, Vo), , f(@n+1, Uns1))t.

For the case asf; = 0, we obtain equations similar to (1.7). For example, if the boundary
conditions are of Dirichlet’s type (a2 = f2 = 0 and a3 = $; = 1), then (1.7) is replaced by

HACIT + F(0) =



with

= . 2 2
H = dieg <h1 Thy ’hn+hn+1) ’
agsw) +aésw) _agsw)
_aésw) aéaw) + agsw) _agsw)
2(3'”-’) - ’ . »
S B RO LS
—a&”"") a$f w) + afffl)

ﬁ = (Ula Tt ,Un)ta
and

ﬁ(ﬁ) = (f(ml, Ul)a e ,f(-’Bn, Un))t

In this case, it is shown (cf. [1], [4]-[6]) that there is a harmonic relation between the Green
function G(z, €) for the operator L : u — — £ (p(z)%) on 9 = {u € C?a,b] | u(a) = u(b) =
0, i=1,2} and the Green matrix [A®)]~! = ('g"f;w)), which is also called the discrete Green
function : That is, if p € C1![a, b], then we have

Claiyz;) - 35 = {O(h3) (J: €D
O(h?) (i ¢7T)
whereI' = {1,2,--- ,ng,n—mp+1,n—np+2,--- ,n} with arbitrarily given positive integers nq
and n, < n which are fixed. It can also be shown that (1.8) holds between the Green function
for the operator L : u — —fi(p(x)%‘) + q(a:)% +r(z)u on 9 and the corresponding Green
matrix, if p € C3a,d] , ¢,7 € CHY[a, b] (cf. [6]).
On the basis of this result, we can prove that

Wy JOY) (e
Y lomr) (gD,

(1.8)

(1.9)

for the problem

d

du du =
% (@) +a@F + ) =0, ue 3,

provided that p,u € C®!, ¢ € CL[a,b]. For the general boundary conditions (1.2) and (1.3),
however, the relations (1.8) and (1.9) do not hold in general.

Then, the following question arises :

Let G(x, &) be the Green function for the operator L on @ = {u € C?[a,b] | B;i(u) = 0,i = 1,2}.
Then, what is a matriz A = (a;;) such that A~ = (G(zi,z;)) ?

The purpose of this paper is to give an answer to this question which leads to a new discretized
system and to estimate the error of the numerical solution for the system. Existence theorems
of solution for the continuous problem (1.1)—(1.3) and the corresponding discrete one are also
given.



2 Green’s function and Green’s matrix

We keep the notation and the assumptions in §1 : p € CYa,b], p > 0, f € C*([a,b] X
R)7 fu.Z_Oa aiZO, ﬁi;oa i=152, 01+O!2>0, a'ndﬁ1+ﬁ2>0
Lemma 2.1 The Green function G(z,€) for (L, 2) exists if and only if oy + 1 > 0.

Proof. Since ¢1(z) = 1 and @z(z) = f are the fundamental solutions of Lu =0, u € 2,

the Green function exists if and only 1f
a2

b“;@—) #0.
B2
ﬂijp@

It is clear that this condition is equivalent to a; + 1 > 0. Q.E.D.

Bi(¢1) Bi(p2) “

Ba(p1) Bi(ye)

Lemma 2.2 If a; + 81 > 0, then the Green function G(z,§) is given by

o [5G ) G /—)
2 (e [e) Gare [ w29
_ % (alp(a o p%:)) (ﬁlp(b) p(s)) (x <€)
t%(mﬂﬂ azéﬂ(mmw zﬁJ (z2¢)
| (if 1 #0),

where

i B2 b ds
A_alp(a) Brp(b) /P(S)‘

Lemma 2.3 If ajasf102 # 0, then put

a .
—lp(a) (i=0)
ds
s ‘/LHM)(~”- )
imm (i=n+2)
\ B2
and
ag + a1 —ai
—ai ai + az -—Q2

—On+1  Gn4l+ Q42
Then A is an M-matriz and A~! = (G(zi, z;)).



Proof. This follows from Theorem 3.2 in (5] and Lemma 2.2. Q.E.D.

Lemma 2.3 leads to a new discretized system

HAU + F(U)=0

(2.1)

for solving (1.1)—(1.3), provided that ajay83,0; # 0. It is interesting to compare A and A~!

with AG%) and [A(®)]-! = (g,-;w)), respectively.
We then have

a(()sw) = qg + O(h1),

&™) =a, +0(1),

G = ansa +0(1),

o8] = tnyz + O(hn + 1)

and

al® =a; +0(h3), 1S i< n+1 (if p € CY[a,b)).

Furthermore, in order to compare A~! with [A(5®)]~1 let

p: y e
do=-2, dnp1=—2,di=1(1Si<n)
Dbo DPn+1
and
D= dia'g(d(), dl, T ,dn’ dn+1)-
Then
a;(sw) + ag”"’) —agsw)
___(sw) (sw) (sw) _ (sw)
DA — a a; " ta, as — A’(s'w) (say),
—any] afh +angy
where
pL ! /!
sow) _ T3 (1, NP, \ _ M, A P, p
o Po (azpo 209 1) '3 " 20y po 3

= p0+O(h) = ao + O(A)

and, similarly,

s(sw) _ Pntj (51
nt2 Pnt1

A ~
Epn+1 + EP;H’MH =0ant+2 + O(hﬁ+1)-



Hence, by Theorem 3.2 in [5], the (n +2) X (n + 2) Green matrix [A(%)]-1 = (55;"))) , 05
i, j<n+1isgiven by

Z;‘(Zn+2 - Zj) (1 s j)

g(sw) ) #n+2
Wi =
1 . .
2j(2n+2 - Zi) (z g ])
2n+2
with
-t 1 2
= a;(sw) - ag + O(hl)’
) 1 N1
FA a(sw) —~ ai‘m)
1 2 : 1
= a—o + O(ht) + ; +0(h1_3
=) I O(h?)
k=0 all“
=~ " s 2 <i<
- aip(a) +/a 2(s) +O0(h*) (1SiSn+1),
a9 ﬁ2 /b ds \
- + + [ == +0
Zn+2 alp(a) ﬁlp(b) A p(s) ( )
=4+ 0(h?).

We thus obtain that if p € C11{a, b], then

g(;w) = G(:L‘i,fb'j) + O(hz) VZ,J

Since
-1 - -1
[A(S'”)] - [A<8w)] D, do=1+O(h) and dny; = O(hns1),
we have the following result.

Theorem 2.1 The Green matriz [A®W)]~ for (1.7) approzimates the Green function G(z,€)
as follows : :

(ow) _ ) Clziz) +O(h?) (G #0, n+1)
Y Glaiz;) +O0Mh) (=0, n+1).

3 Existence of solution

Before estimating errors of (2.1), we state existence theorems of solution for continuous
problem (1.1)~(1.3) and the corresponding discretized system (2.1), since both equations are
nonlinear so that the existence of solution is not trivial.



Theorem 3.1 If a; + 1 > 0, then the boundary value problem (1.1)-(1.8) has a unique
solution in D.

Proof. (i)Uniqueness. Let u and v be two solutions of (1.1)~(1.3) in 2 and put w = u — v.
Then w € 2 and w satisfies

—dim (p(m)%) +(/0-1fu(:c,v+0'w)d9)w=0, a<z<b (3.1)

Multiplying (3.1) by w and integrating it from a to b, we obtain

/ab {p <%)2+ (Alfu(m,wew)do) wz}dx+W=0, , (3.2)

where
(Zp@u(@)? + EpOuf (o #0)
aq 2
b —p(a)w(a) (a2 #0, B2=0)
W = [—pi—:w} ={* (3.3)
a %p(b)w(by (a2 =0, By #0)
L0 (ag = f2 =0)

Hence we have from (3.2) da% =W = 0. It follows from the expression (3.3) that the boundary
conditions Bj(w) =0, i =1,2 witha; +a2>0, f1+62>0, a1+ 61 > 0and W =0 imply
w(a) = 0 or w(b) = 0. This, together with 4 = 0, yields w = 0.

(ii)Existence. Let Cla, b] be a Banach space with the norm ||u|lco = sup |u(z)| and
alz<h

Q={u€Cla,b] | ulloo =v=M(b - a)llfolloo}
where

M= max 160, folz) = £@,0).

Given a function u € €, define a linear operator L : 2 — C [a,b] by

~ d dv !
Bv=-2 (p(m)a) + [ faouion, ve 2.

Then the Green function é(x, §) for (f:, 9) exists and the solution of the equation Lv =
—fo(z) , v € 2 can be written / ’ .

b _ .
v(z) = ~ / Gz, &) folE)de.



Then v € Q, since, as is well known, 0 < G(z,£) < G(z,£) and ||[v]leo < [ G(x, )| folloodé < 7.
Hence we can define an operator 7' : @ — Q by Tu = v. It can then be shown that m is
compact in Cla, b] by Ascoli-Arzela’s theorem. Hence, by the Schauder fixed point theorem, T’
has a fixed point u € 2N 2, which is a solution of (1.1)-(1.3). Q.E.D.

Remark 3.1 Theorem 3.1 is not included in Keller’s result [1:Theorem1.2.2], since his theorem
requires f,, > 0.
Theorem 3.2 The system (2.1) has a unigue solution for any nodes.

Proof. This follows from the following result which may be found in Ortega-Rheinboldt {3} :
If Ais an n x n M-matrix and f(z,u) is monotonically increasing with respect to u, then
the equation

AU + (f(wl) Ul)a t >f<zﬂ7U’n))t =0,
U= (U1>"' 7Un)t

has a unique solution. Q.E.D.

Remark 3.2 This result applies to (1.7), too.

4 Error Estimates

In this section, we shall show that the solution U of (2.1) has the second-order accuracy. By
Lemma 2.3 and (2.1), we have

n+1
Ui+ Y Gl ;) w; f(z5,Uz) = 0 (4.1)
j=0
and
b
wt [ G, Of (€ ue)de =0, (42)
where
{ h1 .
5 (j=0)
’u{,:{@% (j;:]_,z,...’n)
h‘n+1 .
(T2 U=ntD

If p € C'[a, b}, then G(z;, z;) belongs to C? class for each subintervals [zg, Zx+1} , 0 < k S n.
Hence, if & (p%%) € C1(a,b], then f(z,u(z)) € C*![a,b] and

n+1

o
/ Gz, €)f (6 u(€) dE = 3 Gl 5ws ] (z5,u(z;)) + O(h?)

j=0



by the well known fact for the error of trapezoidal rule in numerical integration. It now follows
from (4.1) and (4.2) that

ui — Ui + 1%: G(zi, z)w; (f(z5,u5) — f(25,Uj)) = O(h?)
or J

(HA + D)(u — U) = HAO(h?), = (4.3)
where

D = diag (fu(o,M0)s - » fu(Tn+1, Mn+1))
with

'T];'=Ui+9i(ui—U,'), 0<6;<1,054Sn+1.

Since f, 2 0, the diagonal matrix D is nonnegative and HA + D is an M-matrix. We thus
obtain from (4.3)
u—U = (HA+ D)"'HAO(K?)
= [(HA)™! — (HA+ D)"'D(HA)™'] HAO(K?)
= O(h?) — (HA+ D) *DO(h?). (4.4)

The usual convergence theory for the finite difference method tells us that
u—Ui=0 (max[n]) N V’i,
J

where 7; stands for the local trunction error of (2.1) at z;. Furthermore, as is easily seen, if
p € C*[a,b] and u € C?a,b], then 7; — 0 as h — 0. Therefore, U; — u; as h — 0 so that D is
bounded and it is easy to see that

|(HA + D)"'DO(h?)| < (HA + D)~ |DO(h?))
= (HA+ D)™ |O(h?)|
S (HA) o)
= O(h?)

where we have used the notation |V| = (|Vo|, -+ ,|Vp41|)® for V = (W, , Vas1)t. Conse-
quently we obtain

u; — U; = O(h?) Vi

for any nodes {z;}, under the assumption & (p4¢) € C1![a, b}, which is satisfied if p € C%![a, d]
and u € C3![a,b] . We state this as
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Theorem 4.1 If p € C%a,b] and u € C3l{a,b], then the discretized system (2.1) has the
second order accuracy for any nodes.

Theorem 4.2 Under the same assumptions as in Theorem 4.1, the Shortley- Weller approzi-
mation (1.7) has the second order accuracy for any nodes.

Proof. The same proof as in [6] works by using Theorem 2.1.

Remark 4.1 We can extend the argument developed in this paper to the boundary value
problem

d du du
Tdz (P(@a) +f(93,U,%) =0,a<z<b

B‘L(u) =01 7::172’

where f € C([a,b] x R%) , 35 and % exist in [a,5] x R? , 4 2 0 and g;f; is bounded. This
will be discussed elsewhere. ‘
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