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1 Introduction
In studies of algorithm in analysis, one puts the basis of considerations on the
computability of real numbers and the computability of continuous functions.

The notions of computability respectively of a real number (a sequence of
real numbers) and of a continuous function (a sequence of continuous functions)
are generally agreed to be natural and in a sense the strongest.

For a continuous function, computability means that there is a way to nicely
approximate the values for computable inputs, and this notion depends on the
continui $\mathrm{t}\mathrm{y}$.

Very often, however, we compute values and draw a graph of a discontin-
uous function. We thus hope that some class of discontinuous functions can
be attributed a certain kind of computability. In an attempt of computing a
discontinuous function, a problem arises in the computation of the value at a
jump point (a point of discontinuity). The problem is caused by the fact aht it
is not generally decidable if a real number is a jump point, that is, the question
$” x=a?”$ is not decidable even for computable $x$ and $a$ .

One method of dissolving this problem was proposed in [10] by Pour-El and
Richards. In their theory, a function is regarded as computable as a point in a
function space. This is sufficient in order to draw a rough graph of the function,
but does not supply us with information how to compute individual values.

There are many ways of characterizing computation of a discontinuous func-
tion. Here we will first report two of the approaches to this problem by Brattka,
Mori, Tsujii, Washihara and Yasugi, and then claim that they are equivalent
for piecewise continuous functions which jump at a computable sequence of real
numbers, worked out by Tsujii and Yasugi [18]. One is to express the value
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of a function at a jump point in terms of limiting recursive funcions instead of
recursive functions ([16]). Another is to change the topology of the domain of
a function ([12]).

References of related works and some other approaches are listed in Refer-
ences, details of which will not be mentioned here. Pour-El theory as well $\{\iota \mathrm{s}$

its succeeding works on computability structures for Prechet spaces and metric
spaces are also explained in [21].

2 Preliminaries
We first give some basic definitions. Details are seen in, for example, [10] and
[21].

A sequence of ratinals $\{r_{n}\}$ is recursive if it is represented as

$r_{n}=(-1)^{\beta(n)_{\frac{\gamma(n)}{\delta(n)}}}$

with $\beta$ , $\gamma$ , $\delta$ recursive.

A real number $x$ is computable ($\mathrm{R}$ computable if

$\forall m\geq$ a $(p).|x-r_{m}|< \frac{1}{2^{p}}$

for recursive a and $\{r_{m}\}$ . We will write this relation as

$x\simeq\langle r_{m}, \alpha\rangle$

These definitions can be extended to sequences of rationals and reals.
A real (continuous) function $f$ is computable if (i) and (ii) below hold.
(i) $f$ preserves sequential computability: If $\{x_{n}\}$ is computable, then

$\{f(x_{n})\}$ is computable.
(ii) $f$ is continuous with a recursive modulus of continuity, say $\mathrm{d}$ :

$\forall p\forall n\in \mathrm{N}^{+}\forall k\geq$ $\beta(n,p)\forall x,y\in[n,n+1]$ ,

$|x-y|< \frac{1}{2^{k}}\Rightarrow|$ $7$ $(x)-f(y)|< \frac{1}{2^{p}}$ .
The definition can be extended to a computable sequence of functions.
The notions of computability of real numbers and continuous functions as

above are generally agreed.

3 Poins of discontinuity and various approaches
We would like to give some expression to a notion of computation of some
discontinuous functions.
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The problem that arises when computing the value of a discontinuous func-
tion is identifying a point of discontinuity, that is, $x=a?$ is not decidable even
for computable $x$ and $a$ .

There are various approaches to this problem. Our approach is a mathemat-
ical one, that is, using the mathematical language except for some elementary
properties of recusive functions. Since we do not resort to any particular theory
of computation, our approaches amounts to an axiomatic one.

What attracted us first was the functional approach proposed by Pour-El and
Richards [10]. In their theory, a function is regareded as computable as a point
in a space. Pour-El and Richards considered the computability structure on the
Banach space and the Hilbert space. Succeeding them, Washihara investigated
the computability structure on Rech\’et spaces, such as the spaces of the $\delta-$

function, the function space of bounded variation; Yoshikawa has studied the
interpolation space, the Hilbert space [23] and others; Zhong has worked on the
Solev space, to list a few.

In these theories, pointwise computation is not in sight. However, very often
we need and indeed do pointwise computation of a function which is discontinu-
ous here and there. How can we describe such deeds with mathematical $\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}_{\mathrm{L}}^{7}‘|$,
We have attempted two methods, one by the limiting recursive functions and
one by changing the topology of the domain into a certain uniform topological
space.

Below is a simplified map of the circumstances.

/ $\mathrm{S}$

Logical method Change of topology of domain

$/\mathrm{s}$ 1
LEM limiting recursive uniform space

Logical method

Yasugi, Brattka, Washihara Computation in the limit [16]

Change of topology of domain

Tsujii, Mori, Yasugi Computability on the general metric space $[9][17]$

Tsujii, Mori, Yasugi Computability on the uniform space [12][20]

Mori Fine metric [7]

Equivalence

Yasugi, Tsujii Limiting recursive method and uniform space method [18] [19]
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4 Topological computability
Definition 4.1 (Effective uniformity) Let $X$ be a non-empty set. {Vn} will
denote an effective uniformity on $X$ , that is, it is a map

$V_{n}$ : $Xarrow P(X)$

and satisfies the following five axioms. ( $\mathcal{T}=\langle X$ , {Vn}) is then called an effective
uniform topological space.)

$A_{1}\ A_{2}$ : $\bigcap_{n}V_{n}(x)=\{x\}$ .
There are recursive functions $\mathrm{a}\mathrm{i}$ , $\alpha_{2}$ , $\alpha_{3}$ such that

in, $m\in \mathrm{N}\forall x\in X.V_{\alpha_{1}(n,m)}(x)\subset V_{n}(x)$
’

$V_{m}(x)$ (effective $A_{3}$ ).
$\forall n\in \mathrm{N}\forall x$ , $y\in X.x\in V\mathrm{C}2$ (n) $(y)arrow y\in V_{n}(x)$ (effective $A_{4}$ ).

$in\in \mathrm{N}\forall x$ , $y$ , $z\in X.x\mathrm{E}$ $V_{\alpha_{3}(n)}(y),y\in V_{\alpha_{3}(n)}(z)$ $arrow x\in V_{n}$(z) (effective $A_{r}$ )$*)$ .
Definition 4.2 (Effective convergence) $\{x_{k}\}\subset X$ effectively converges to $x$ in
$X$ if there is a recursive function $\gamma$ satisfying $1x\mathrm{V}_{1}\mathrm{C}$ $\geq$ ) $(rz)(x_{k}\in \mathrm{V}\mathrm{n}$ $(\mathrm{x})$ .

The definition can be extended to effective convergence of a multiple se-
quence.

Definition 4.3 (Computability structure) (1) Let $S$ be a family of sequences
from $X$ (Multiple sequences included).

$\mathrm{S}$ is called a computability structure if:
Cl: (Non-emptiness) $\mathrm{S}$ is nonempty.
C2: ( ${\rm Re}$-enumeration) If $\{x_{k}\}\in$ S and $\alpha$ is a recursive function, then

$\{x_{\alpha(i)}\}_{i}\in S.$

This condition can be extended to multiple sequences.
C3: (Limit) If $\{x_{lk}\}$ belongs to $S$ , $\{x_{l}\}$ is a sequence from $X$ , and $\{x_{lh’}\}$

converges to $\{x_{l}\}$ effectively, then $\{x_{l}\}\in S$ . ( $S$ is closed with respect to effective
convergence.)

This condition can be extended to multiple sequences.
(2) A sequence belonging to $S$ is called computable.
(3) $x$ is computable if $\{\#, x, \cdots\}$ is computable.
(4) We write

$C_{\mathcal{T}}=\langle X, \{V_{n}\},\alpha_{1}, \alpha_{2}, \alpha_{3},S\rangle$

Definition 4.4 (Effective approximation) $\{e_{k}\}\in$ S is an effective approimat-
ing set of $S:\mathrm{V}\{x/\}$ computable, there is a recursive function $\nu$ such that

$\forall n\forall l(e_{\nu(n,l)}\in V_{n}(x_{l}))$ .
Definition 4.5 (Effective separability) $\mathrm{S}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{e}\{e_{k}\}$ is an effective approxi-
mating set and dense in $X$ :

$\forall n\forall x\exists k(e_{k}\in V_{n}(x))$

Then $C\tau$ is effectively separable, and $\{e_{k}\}$ is called an effective separating set
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Definition 4.6 (Relative effective completeness) (1) $\{x_{j}\}\in X$ is effectively
Cauchy if

$lnVj\geq\alpha(n)(x_{J}\in V_{n}(x_{\alpha(n)}))$

for a recursive $\alpha$ .
This can be extended to multiple sequences.
(2) $\mathcal{E}\tau=\langle X, \{V_{n}\}, \alpha_{1}, \alpha_{2}, \alpha \mathrm{s}, S\rangle$ is relatively effectively complete (with re-

spect to S) if every computable and effectively Cauchy multiple sequence $\{x_{mg}\}$

effectively converges to a sequence $\{x_{m}\}\in X\mathrm{l}$

Definition 4.7 (Relative computability) (1) $f$ : $Xarrow \mathrm{R}$ is relatively com-
putable (with respect to S) if:

(i) $f$ preserves sequential computability:
$\{x_{m}\}$ computable $arrow\{f(x_{m})\}$ computable
(ii) For any $\{x_{m}\}\in S$ there exists a recursive function $\gamma(m,p)$ such that

$y$ $\in V_{\gamma(\tau r\iota.p)}(x_{m})$ implies $|f(y)-f(x_{m})|\leq$ 2i.
(2) can be extenede to a sequence of functions.

Fact: $f$ is relatively computable in the sense of (1) if and only if the sequence
$\{f, f, f, \cdot\cdot\}$ is relatively computable in the sense of (2).

Definition 4.8 (Computable function) (1) $f$ : $Xarrow \mathrm{R}$ is computable if:
(i) $f$ preserves sequential computability.
(ii) $f$ is relatively computable, and there exist an effective approximating

set say $\{e_{k}\}\in S,$ and a recursive function $\gamma_{0}(k,p)$ for which
$y\in V_{\gamma \mathrm{o}(k,p)}(e_{k})$ implies $|f(y)-f(e_{k})| \leq\frac{1}{2^{\mathrm{p}}}$

and

$k=1\cup V\infty \mathrm{X}0(k,p)(e_{k})=X$

for $p$ .
(2) Can be extended to a sequence of functions.

Definition 4.9 (Uniform computability) $f$ is unifor$mly$ computable if $f$ pre-
serves sequential computability and there is a recursive modulus of uniform
continuity for $f$ .

5 Computation in the limit
A $1\mathrm{i}_{1}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ recursive funtion was first proposed by Gold [4]. It is defined to be
the limit of a recursive function (if the limit exists).

Definition 5.1 (Limiting recursion: Gold) Let $r$, $s\geq 0$ and $g$ , $\phi_{1}$ , $\cdot$ $\cdot$ .
’

$\phi_{\mathrm{r}}$ be
recursive. Then the partial function $h$ as defined below is called limiting recur-
sive.

$h(p_{1}$ , $\cdot$ .., $p_{s})= \lim_{n}g(\overline{\phi}_{1}(n), \cdot.., f_{r}(n),p_{1}, \cdot. .,p_{s},n)$
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where $6(\mathrm{z}))$ is a code for

$\langle\phi$ (0, $p_{1}$ , $\cdot$ . . , $p_{s}$ ), $\cdot$ . . , $\mathrm{E}(n,p_{1}$ , $\cdot$ . . , $p_{s})\rangle$ ,

Example
$h(p_{1}$ , .. . , $p_{s})= \lim_{n}\phi(n,p_{1}, \cdot..,p_{s})$ .

Definition 5.2 (Computation by limit) A function $f$ : $\mathrm{R}arrow \mathrm{R}$ is said to be
computed by limit if

$x\simeq\langle_{7_{p}}, \alpha\rangle\mapsto f(x)\simeq\langle sp’ \beta\rangle$ ,

where $\{r_{p}\}$ , a $and\{s_{p}\}$ are recursive, while $\beta$ is limiting recursive.

6 Equivalence
We will set the following assumption.

[Assu nption] $\{a_{k}\}_{k\in \mathrm{Z}}$ , an $\mathrm{R}$-computable sequence, is called a basic sequence
if it holds

$a_{k}<a_{k+1}$ , $\bigcup_{k}[a_{k}, a_{k+1}]=$ R.

Assume $a_{k}\simeq\langle v_{kp},\gamma\rangle$ , with $\{v_{kp}\}$ and $\mathrm{y}$ recursive.
We will consider the computation of real functions relative to the basic $\mathrm{s}\triangleright$

quence $\{a_{k}\}$ .

Definition 6.1 ( $A$-space) $A_{k}=\{a_{k}\}$ , $J_{k}=(a_{k}, a_{k+1})$ , $J=$ JkJk,
$A=\{a_{k} : /\mathrm{c}\in \mathrm{Z}\}=\cup kA_{k}$ , $\mathrm{A}_{\mathrm{R}}=A\cup J$

(As a set, $\mathrm{A}_{\mathrm{R}}=$ R)
$n=1,2,3$ , $\cdots$ , $x\in \mathrm{A}_{\mathrm{R}}$

$U_{n}(x):=\{x\}=\{a_{k}\}$ if $x\in A_{k}$ ;
Un (x) $:= \{y : y\in J_{k}, |x-y|<\frac{1}{2},‘\}$ if $x\in J_{k}$

$A$ $=$ $\langle$AR, $\{U_{n}\}\rangle$

Corollary 1 $\{U_{n}\}$ is an effective uniformity on $\mathrm{A}_{\mathrm{R}}$

Definition 6.2 (Acomputability)
$\mathrm{A}_{Q}=J\cap Q$

$k\in \mathrm{Z}\mapsto\iota_{k}$ ( $\iota$-symbol): a “symbolic name” for $a_{k}$

$\mathrm{A}_{Q}^{*}=\mathrm{A}_{Q}\cup\bigcup_{k\in \mathrm{Z}}\{\iota_{k}\}$

$\{q_{\mu n}\}\subset \mathrm{A}_{Q}^{*}$ is an 4-sequence:
for each $\mu$ ,
$\exists k\in \mathrm{Z}$ , $q_{\mu n}=\iota_{k}$ for all $\mu$ or $\{q_{\mu n}\}\subset J_{k}$

An $A$-recursive sequence: a recursive A-sequence
$\{x_{m}\}\subset \mathrm{A}_{\mathrm{R}}$

$\{x_{m}\}\simeq_{A}$ $\langle q_{mn},\alpha_{A}(m,p)\rangle$ $(*)$ :
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$\mathrm{O}$ $\mathrm{O}$ $\mathrm{O}$ $\mathrm{O}$ $(\supset$

$a_{k}$ $x$ $a_{k+1}$ $ii$ $a_{k+2}$

Figure 1: discrete sequence

$\mathrm{O}$ $\ovalbox{\tt\small REJECT}$ $\mathrm{O}$ 0
$\mathrm{O}$

$a_{k}$ $xr_{\alpha(p)}$ $r_{1}$ $a_{k+1}$ $r_{2}$ $a_{k+2}$

Figure 2: approximation

$\{q_{mn}\}\subset J_{k}$ if $x_{m}\in J_{k}$ ,
$\{q_{mn}\}=\{\iota_{k}\}$ if $x_{m}\in A_{k}$

$lpll \geq\alpha_{A}(m,p)(|x_{m}-q_{ml}|_{A}<\frac{1}{2^{\mathrm{p}}})$ $(**)$

if $x_{m}\in \mathit{7}k$ $(|a-b|_{A}=|a-b|, a, b\in \mathit{7}k)$

$\{q_{mn}\}$ effectively $A$-approximates $\{x_{m}\}$ with modulus of convergence $\alpha_{A}$ :
$\{x_{im}\}\subset \mathrm{A}_{\mathrm{R}}$ ,

$\{x_{im}\}\simeq \mathrm{L}\mathrm{M}$ $\langle q_{imn}, \alpha_{A}(i, m,p)\rangle$ $(*)$

$\{x_{m}\}\subset \mathrm{A}_{\mathrm{R}}$ is 4-computable if it is effectively approximated by a recursive
$A$ sequence $\{q_{m\mathrm{n}}\}\subset A_{Q}^{*}$ and a recursive function $\alpha_{A}(m,p)$ .

This can be extended to any multiple sequences.
A double sequence $\{x_{im}\}\subset \mathrm{A}_{\mathrm{R}}$ is called A- computable if $\{q_{imn}\}\subset \mathrm{A}_{Q}^{*}$ ,

$\alpha A(i, m, n)$ are recursive
$x$ is $A$-computable: $\{x,x,x, \cdots\}$ is A-computable.

Proposition 1 (R- and $A$-computability) For a single real number $x$ , $x$ is
$\mathrm{R}$-computable if and only if $x$ is 4-c0mputable.

Definition 6.3 (Limiting recursive sequence)

$A(m,p)$ : $|v_{k}?’$
} $+1$ ) $(k_{m}+1,p)-r_{m\alpha(m,p)}| \leq\frac{4}{2^{p}}$

$B(m,p)$ : $|v_{k,+1\gamma}$
” ( $k_{n},+1$ ,p) $-r_{m\alpha(m,p)}|> \frac{4}{2^{p}}$

$N_{mp}=0$ if $A(m,p)$

$N_{mp}=1$ if $B(m,p)$

$l_{m}:= \lim_{p}\{N_{mp}\}_{p}$ : limiting recursive.

Theorem 1 (Relations between two notions of computability) (1) Suppose
$x_{m}\simeq\langle l mn, \alpha\rangle$ is an $\mathrm{R}$-computable sequence.

Then we can construct an 4-computable double sequence of real $\mathrm{n}\mathrm{u}1\mathrm{n}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{s}_{\mathrm{i}}$

say $\{z_{mp}\}$ , which converges to $\{x_{m}\}$ with a modulus of convergence $\nu$ which is
“recursive in $\{l_{m}\}.$

”

(2) Suppose $\{x_{m}\}$ is an $A$-computable sequence of real numbers with $x_{m}\simeq_{A}$

$\langle q_{mn’ A}\alpha\rangle$ . Then $\{x_{m}\}$ is R-computable.



125

Definition 6.4 (Sequential computability) (1) $f$ is $\mathcal{L}$-sequentially computable.
for any $\mathrm{R}$-computable $\{x_{m}\}$ $(x_{m}\simeq\langle r_{m}n’ \alpha\rangle)$ , can construct a recursive sequence
of rational numbers $\{s_{mp}\}$ and a function 3 which is “recursive in $\{l_{m}\}$

” such
that $f(x_{m})\simeq\langle s_{mp}, \delta\rangle$

(2) $f$ is $A$-sequentially computable. for any $A$-computable sequence of real
numbers $\{x_{m}\}$ , we can construct a recursive sequence of rational numbers $\{s_{mp}\}$

and a recursive function $\beta$ such that $f(x_{m})\simeq\langle smp, \beta\rangle$ .

Theorem 2 (Equivalence of two notions of sequential computability) (1) (Prom
$\mathcal{L}$ to $A$) An $\mathcal{L}$-sequentially computable function $f$ is 4-sequentially computable.

(2) (Prom $A$ to f) An 4-sequentially computable function $f$ is i-sequentially
computable.

Definition 6.5 (Piecewise computable function) $f$ : $\mathrm{R}arrow \mathrm{R}$ is called piecewise
computable if the following hold.

(i) For each (R-)computable real number $x$ , $f(x)$ is R-computable.
(ii) There is a recursive function $\kappa$ with which, for any $x$ , $y$ such that $a_{k}.\backslash$

’

$x$ , $y<a_{k+1}$ and $|x-y|< \frac{1}{2^{\kappa(h\cdot,p)}}$ , $|f(x)-f(y)|\mathrm{S}$ $\frac{1}{2^{p}}$ .

Conclusion A piecewise continuous function whose jump points form a com-
putable sequence of real numbers can be regarded as computable if it is piecewise
computable and is C- (hence A-) sequentially computable.
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