
so

Dyadic Subbases and Representations of
Topological Spaces

Hideki Tsuiki
Graduate School of Human and Environmental Studies

Kyoto University

1 Introduction
In order to define computation over a countably-based Hausdorff space $\mathrm{X}$ ,
we need to represent each $x$ $\in X$ as a sequence of characters. The sequence
can be infinite because we can consider a machine which makes stream in-
$\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ access on infinite sequences. In this case, the machine continues
to work infinitely, and produces longer and longer prefix of the output (i.e.
better and better approximation of the output) based on longer and longer
prefix of the input (i.e. better and better approximation of the input). This
kind machine is nothing but a program whidx makes stream input and out-
put, and is widely used in actual ’

$\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{P}$ programming applications. It is also
the foundation of computability analysis, where such a machine is called a
Type-2 machine [13].

For such a computation of $X$ , the choice of a representation is very
important. A representation of $X$ is a surjective partial function ffom $\Sigma^{\omega}$

to $X$ , with $\Sigma^{\omega}$ the set of infinite sequences of a finite alphabet I. For
example, binary expansion $\delta_{bin}$ is a representation of $1=[0,1]$ for I $=$

$\{0,1\}$ . However, it is known that the computational notion on real numbers
induced by $\delta_{bin}$ and Type-2 machines is an odd one in that even the simple
function to multiply by 3 is not computable.

There is a class of representations, called admissible representations [13],
which connect the continuity notion of $X$ to that of $\Sigma^{\omega}$ , and which induce
natural computational notion on the set $X$ with respect to Type-2 machines.
Admissible representations are usually considered as the natural representa-
tions, and is the main research topic in computability analysis. One example
of an admissible representation is an expansion of $[0, \eta]$ with the golden nuni-
ber $\eta=(1+\sqrt{5})/2$ $[4]$ . That is, $\delta_{\eta}(p)=x$ if $\Sigma_{n=0\eta}^{\infty}$i7iT$p[n]=x.$ In this
case, when $p$ is a name for $x$ , every sequence obtained by substituting an
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occurrence of Oil in $p$ with 100 is also a name for $x$ , because $1= \frac{1}{\eta}+\overline{\eta}^{\mathrm{T}}1$ .
Therefore, this representation is very redundant. It is known that every
admissible representation of I are ’very’ redundant. More precisely, when $\rho$

is an admissible representation of $\mathrm{X}$ , { $x\in$ I $|\rho^{-1}(x)$ is an infinite set} is a
fat and dense subset of I[2].

In this article, we consider different kind of representations, which ‘.lue

less redundant and which induce the same computability notion on $X$ with
a machine different from the Type-2 machine. We fix the alphabet to be
{0, 1} and consider a representation $\rho$ such that for each $x$ , $\rho^{-1}(x)$ has the
form $A_{0}A_{1}A_{2}$ . . for $A_{i}$ an one point set (i.e. {0} or {1}), or the whole space
{0, 1}. That is, our representation has the property that the value of each
cell of a name of $x$ is defined independently. For the binary representation,
when $p$ is a name of 1/2, $p[n](n\geq 1)$ has the possibility of both 0 and 1,
but $p[n]$ is 0 or 1 depending on whether $p[0]=1$ or 0, respectively. It. is
also the case for the expansion by the golden number. On the other hand,
with our representation, there are three cases for $p[n]$ : determined as 0,
determined as 1, or has both possibility. These three cases are determined
not depending on other bits of $p$ , but only on $x$ . Therefore, when $A_{n}$ is
{0, 1} and $p\in\rho^{-1}(x)$ has the $n$-th bit 0, then this bit does not contribute
to the fact that $p$ denotes $x$ , because $p[n=1]$ , which is $p$ with the value of
the $n$-th bit substituted to 1, also denotes $x$ . Therefore, only the locations
$n$ with $A_{n}\neq\{0,1\}$ specify that $\mathrm{p}(\mathrm{p})=x$ .

Such a representation can also be expressed as an injective function $\varphi$

from $X$ to $\Sigma_{[perp]}^{\omega}‘\Sigma_{[perp]}^{\omega}$ is the set of infinite sequences of $\Sigma_{[perp]}=\{0,1, [perp]\}$ also
known as Plotkin’s $T^{\omega}[7]$ . The symbol $[perp]$ means undefinedness, and when
$\rho^{-1}(x)$ $=A_{0}A_{1}A_{2}$ . . ., we define $\varphi(x)[n]$ as 0 or 1 when $A_{n}$ is {0} or {1},
respectively, and $[perp]$ when $A_{n}$ is {0, 1}.

Among such representations, we are particularly interested in the case
that the cardinality of{fc $|\varphi(x)[k]=[perp]$ } is less than a finite number $n$ for
every $x$ . We will write $7:?\mathrm{X},n$ (yr $=0,1$ , $\ldots$ ) for the subspace of $\Sigma_{[perp]}^{\omega}$ such
that the nun ber of bottoms which appear in a sequence is not more than $\mathrm{r}\mathrm{t}$ .
Wlien /’ is an injective function from $X$ to $\Sigma_{[perp],n}^{\omega}$ , for the corresponding rep-
resentation function $\rho$ , the cardinality of the fiber $\rho^{-1}(x)$ is upper-bounded
by $2^{n}$ for every $x$ . Since a sequence in $\Sigma_{[perp]}^{\omega}$ may contain some undefined ceils,
we cannot make ordinary stream $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ on such a sequence. How-
ever, we can consider an extended stream access which skips bottom cells
and continue the $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ of the rest of the stream. The author defined
an $\mathrm{I}\mathrm{M}2$-machine (indeterministic multi-head Type-2 machine) which makes
multi-head access to $\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ bottomed streams and which has inde-
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terministic behavior depending on the head used for input. This machine is
defined naturally when the stream is $\Sigma_{[perp],n}^{\omega}$-stream. In this case, a machine
llas $n+1$ heads.

In order that the computational notion induced by ? and IM2-machines
is natural, we require that A is a topological embedding of $X$ in $\Sigma_{[perp]}^{\omega}$ . In the
next section, we show an example of such an embedding for the unit closed
interval $I$ $=[0,1]$ , and in Section 3, we explain in which sense an embed-
ding of $X$ in $\Sigma_{[perp]}^{\omega}$ induces a natural computational notion, and we consider
further conditions on an embedding and define the notion of representing
embedding. In Section 4, we reformulate the notion of representing embed-
ding through a subbase structure, and define the notion of a dyadic subbase.
Then, in Section 5, consider the case that the induced representation is a
total function, and define a full-representing dyadic subbase and overview
some properties of such subbases following [12].

2 Gray-code embedding of I

First, we give an example of an embedding of I in $\Sigma_{[perp],1}^{\omega}$ , which is called
the Gray-code embedding. Gray-code embedding $\varphi c$ is a function from $\mathrm{X}$ to
$\Sigma_{[perp],1}^{\omega}$ defined as $\varphi c(x)[n]=P(t^{n}(x))(n=0,1, ., .)$ for $t$ : I $arrow$ I the tent
function

$t(x)=\{\begin{array}{l}2x(0\leq x\leq \mathrm{l}/2)2(1-x)(\mathrm{l}\oint 2<x\leq \mathrm{l})\end{array}$

and $P:\mathrm{I}arrow\Sigma_{[perp]}$ the function

$P(x)=\{\begin{array}{l}0(x<\mathrm{l}/2)[perp](x=\mathrm{l}\oint 2)\mathrm{l}(x>\mathrm{l}/2)\end{array}$

One can see that, when $[perp]$ appears in a sequence, the remainder always has
the form 1000. $\llcorner$ .. Therefore, $[perp]$ appears at most once in each sequence and
thus $fG$ is a function to $\Sigma_{[perp],1}^{\omega}$ .

Figure 1 shows this embedding. Here, a horizontal line means that the
corresponding bit has value 1, and the edges of each line corresponds to the
value 1. Thus, for example, $\varphi c(3/4)$ $=$ 111000.. .. Therefore, when we
consider the corresponding representation $\rho$ : $\mathrm{f}2\mathrm{t}’arrow$ I, 3/4 has two names
111000. . and 101000. . .. Note that with the usual binary representation,
3/4 has two names 110000. . and 101111..., which are different at all but
one bits.
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Figure 1: Gray code Embedding of real numbers.

Gray-code embedding is equal to the itinerary of the tent function, which
is essential for symbolic dynamical systems [6]. It is also the expansion of
$[0, 1]$ with binary reflected Gray-code, which is a binary coding of natural
numbers other than the ordinary one [5].

3 Embeddings in $\Sigma_{[perp]}^{\omega}$

As I said, $\varphi$ is an embedding of $X$ in $\Sigma_{[perp]}^{\omega}\mathrm{c}$ , not merely an injective function.
We study what does it mean for the induced computation of $X$ , and $\mathrm{c}()\mathrm{n}-$

sider further properties $\varphi$ must have so that it is a ’good’ representation
of $X$ . The function $\varphi$ is determined by the sets $S_{n}^{0}$

. $=\{x|\varphi(x)[n]=0\}$

and $S_{n}^{1}=$ $\{x|\varphi(x)[\mathrm{t}\mathrm{t}] = 1\}$ $(n=0,1, . 1 .)$ . Therefore, we sometimes con-
sider conditions of these families of sets, instead. We also define $B_{n}=$

$\{x|\varphi(x)[\prime n]=[perp]\}$ . We consider the topology of $\Sigma_{[perp]}^{\omega}$ defined by the sub-
have $\{p|p[n]=0\}$ and $\{p|p[n]=1\}$ $(n=0,1, \ldots)$ . It is equal to the
Scott topology on $\Sigma_{[perp]}^{\omega}$ considered as a domain, and also equal to the product
topology of $\Sigma_{[perp]}^{\omega}$ for the topology on $\Sigma_{[perp]}$ generated by $\{\{0\}, \{1\}\}$ . Note that
$S_{n}^{0}=\varphi^{-1}(\{p|p[n]=0\})$ and $S_{n}^{1}=\varphi^{-1}(\{p|p[n]=1\})(n=0,1, \ldots)$ .

Consider the property that $\varphi$ is an embedding of $X$ in $\Sigma_{[perp]}^{\omega}$ . The continuity
of $\varphi$ is equivalent to saying that $S_{n}^{0}$ and $S_{n}^{1}$ $(n=0,1,2, \ldots)$ are open sets.
Therefore, when $\varphi(x)[n]$ is 0 (or 1), for some open neighbourhood $Z$ $\subset X,$

$\varphi(y)[n]=0$ (or 1) for $y$ $\in Z.$ Furthermore, since ? is an embedding, the
family of sets $S_{n}^{0}$ and $S_{n}^{1}$ $(n=0,1, \ldots)$ form a subbase of $X$ . Thus, when
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$x\in Z$ for some open set $l$ $S_{n_{0}^{0}}^{c}\cap$
|. . $S_{n_{k}^{k}}^{\mathrm{c}}’$. $\subset Z$ for some $n_{0)}$ . , $n_{k}$ and

$c_{0}$ , . $\tau$ , $c_{k}$ such that $\varphi(x)[n_{i}]=c_{i}(i=0, . ., , k)$ . Therefore, only finite
number of bits of $\varphi(x)$ determines that $x\in Z.$ Consider that there is a tape
whose cells are filled with $[perp]$ at the beginning, and a machine computing $x$

fills the tape with $\varphi(x)$ . More precisely, when $\varphi(x)[i]=0$ (or 1), the machine
obtains this information in some finite time and fills the $i$-th cell of the tape
with 0 (or 1) at $\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}$ time, and when $\varphi(x)[i]=[perp]$ , it does not fill the i-th
cell eternally, and the value of the cell is lest as $[perp]$ . Then, at some time of
computation, we can observe on the tape enough information to infer that
$x$ is in $R$ for each open set $R$ . For the above example, it is just the time the
machine fills all the cells with the index $n_{0}$ , . . , , 117.

The above fact is sometimes called open sets as finitely observable prop-
erties [8], and it links observability, which is a computational notion, in a
topological term. Note that, though we have explained it with an embed-
ding /’ of $X$ in $\Sigma_{[perp]}^{\omega}$ , it is not properties of embeddings in $\Sigma_{[perp]}^{\omega}$ and the same
properties hold for an embedding $\hat{\varphi}$ of $X$ in $\{1\}_{[perp]}^{\omega}$ , which is defined for each
countable subbase $b_{0}$ , $b_{1}$ , . . $\mathrm{t}$ as $\hat{\varphi}(x)[n]$ $=1$ if $x$ $\in b_{n}$ . Now, we consider
additional conditions of the embedding A which makes use of the fact that
the target space is $\{0, 1\}_{[perp]}^{\omega}$ , not $\{1\}_{[perp]}^{\omega}$ .

The first one is that $B_{n}$ is a nowhere-dense closed subset. Since $B_{n}$ , $S_{n}^{0}$ ,
and $S_{n}^{1}$ are disjoint sets such that $B_{n}\cup S_{n}^{0}\cup S_{n}^{1}=X$ , $B_{n}$ is always a closed
set. If it is not nowhere-dense, it means that there is an open subset $R$ of
Bn. Then, from the above observation, when $x\in R,$ this fact is determined
in a finite time by a machine which computes $x$ and outputs $\varphi(x)$ on a tape.
That is, it can write the character 1. This contradicts our interpretation of
$[perp]$ as a non-terminating computation, which is widely accepted in computer
science.

Secondary, we consider here the condition that $x$ is on the boundary of
both $S_{n}$ and $S_{n}^{1}$ when $\mathrm{p}\{\mathrm{x}$ ) $[\mathrm{n}]=[perp]$ . The fact that $B_{n}$ is nowhere-dense and
closed means that when $\varphi(x)[n]=[perp]$ , $x$ must be on the boundary of $S_{n}^{0}\cup S_{n}^{1}$ .
If $x$ is on the boundary of $S_{n}^{1}$ but not on the boundary of $S_{n}^{0}$ , then there is
an open neighbourhood $R$ of $x$ which is disjoint from $S_{n}^{0}$ . This means that
we can determine, in a finite time, that $\varphi(x)[n]$ is not 0. Therefore, we can
assign 1 to that cell in a finite time, in order to obtain $a$ ?naIlne of $x$ for
$\rho$ the corresponding representation. Thus, it is more natural to erase the
name $p$ of $x$ which satisfies $p[n]=0,$ and define $\varphi(x)[n]=1.$ It means to
define a new representation defined as $\hat{S}_{n}^{a}=int(cl(S:))$ $\supset S_{n}^{a}(a=0,1)$ .
For this representation, $\hat{S}_{n}^{0}$ and $\hat{S}_{n}^{1}$ are disjoint regular open sets, which are
exteriors of each other. In this case, $B_{n}$ comes to be a nowhere-dense closed
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subset and this condition subsumes the first one. Thus, we define as follows.

Definition 3.1 An embedding ? of $X$ in $\Sigma_{[perp]}^{\omega}is$ representing if $S_{n}^{0}$ and $S_{n}^{1}$

are regular open sets such that $S_{n}^{0}$ is the exterior of $S_{n}^{1}$ .

In [9], it is shown that every separable metric space of dimension $n$ can be
embedded in $\mathrm{f}:\mathrm{c}_{[perp],n}\omega$ . With a small modification to this construction, we can
show that every separable metric space of dimension $n$ has a representing
embedding in $\mathrm{C}_{[perp],n}^{\omega}$ ,

4 Dyadic subbase

As we have noted, when ? is an embedding of $X$ in $\mathrm{c}7$ , the family of sets
$S_{n}^{0}$ and $S_{n}^{1}$ $(n=0,1, . .)$ forms a subbase of $X\mathrm{t}$ Thus, we define as follows.

Definition 4.1 Let $X$ be a Hausdorff space. We call a countable subbase
$S=$ $(S_{0}^{0}, S_{0}^{1}, S_{1}^{0}, S_{1}^{1}\tau. .)$ of $X$ With a pairing and an enumeration of the pairs
a dyadic subbase when 57 $(n=0,1,2, . \downarrow’ j=0,1)$ are regular open and $S_{n}^{0}$

and $S_{n}^{1}$ are exteriors of each other.

When a dyadic subbase is given, we can define an embedding $\varphi s$ : $Xarrow$

$\Sigma_{[perp]}^{\omega}$ defined as $\varphi s(x)[n]=0,$ 1 or 1, when $x\in S_{n}^{0}$ , $x\in S_{n}^{1}$ , or $x$ is on the
boundary of $S_{n}^{0}$ (and also of $S_{n}^{1}$ ), respectively. Therefore, there is an one-tO-
one correspondence between a dyadic subbase and a representing embedding.
Since $\varphi s$ is an embedding, we have a corresponding representation $\rho_{S}:\subseteq$

$\Sigma^{\omega}arrow X$ defined as ps(p) $=x$ iff $x\in\overline{S_{n}^{p[n]}}$ for all $n$ such that $p[n]\neq[perp]$ .

Definition 4.2 We defin $e$ $p_{S}$ , $tp_{S}$ : $\Sigma_{[perp]}^{\omega}arrow P$(X) as follows
$\psi_{S}(p)$ $=\cap S\mathrm{n}[n]$ ,
$\overline{\psi}_{S}$ $(p)$ $=\cap\overline{S_{n}^{p[n]}}$.

Here, $S_{n}^{[perp]}is$ defined as $X$ .

These two functions give two interpretations of an infinite sequence $p$ in
$\Sigma_{[perp]}^{\omega}$ as a specification of points in X. $\psi_{S}$ and I $s$ correspond to thinking about
each digit $a$ of the $n$-th cell of $p$ as giving the information that the point is
in $S_{n}^{a}$ and $\overline{S_{n}^{a}}$, respectively. For our study, we place one more condition on
dyadic subbases which connects these two interpretations.

Definition 4.3 A dyadic subbase is proper if $\psi_{S}(d)=\overline{\psi}_{S}(d)$ for $d\in K(\Sigma_{[perp]}^{\omega})$ .
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Here, $K(\Sigma_{[perp]}^{\omega})$ is the set of finite elements of $\Sigma_{[perp]}^{\omega}$ , that is, the set of elements
with finite number of 0 and 1. $\{\psi_{S}(d)|d\in K(\Sigma_{[perp]}^{\omega})\}$ forms a base of $\Sigma_{[perp]}^{\omega}$ ,
corresponding to the subbase.

5 Full-representing dyadic subbases

Suppose that a dyadic subbase $S$ is given. As we have said, we can $\mathrm{c}()\mathrm{n}-$

sider that a program which outputs $\varphi s(x)$ is computing $x$ . However, if
$\overline{\psi}_{S}(q)=\{x\}$ for some string $q<\varphi s(x)$ , then, we can consider that $q$ is also
specifying $x$ . That is, those bits which are 0 or 1 in $\varphi s(x)$ but $[perp]$ in $q$ are
providing redundant information, which can be obtained by the sequence $q$ .
For example, the following dyadic subbase is redundant in this sense, but
the dyadic subbase corresponding to the Gray-code embedding is not.

Example 5.1 (Dedekind subbase) Fix a numbering $q_{i}$ of rational num-
bers in $(0, 1)$ . Define the dyadic subbase $D=(D_{0}^{0}, D_{0}^{1}, D_{1}^{0}, D_{1}^{1}, \ldots)$ as $D_{n}^{0}$. $=$

$[0, q_{n})$ and $D_{n}^{1}=(q_{n}, 1]$ . The induced representation $\mathrm{P}D$ : $[0, 1]arrow$p Cj is
$\varphi_{D}(x)[n]=0,$ $[perp]$ , and 1 $\mathrm{i}77$ $x<q_{nf}x=q_{n}$ , and $x>q_{n}$ , respectively.

Therefore, we define as follows.

Definition 5.2 A proper dyadic subbase $S$ is canonically representing iff
$\overline{\psi}_{S}(q)=\{x\}$ implies $q\geq\varphi s(x)$ .

We define related properties as follows.

Definition 5.3 A dyadic subbase $S$ is full-representing iff the corresponding
representation $\rho_{S}$ is a total function.

Definition 5.4 A dyadic subbase $S$ is independent iff $\psi_{S}(d)$ ’ $\emptyset$ for all
$d\in K(\Sigma_{[perp]}^{\omega})$ .

Definition 5.5 A dyadic subbase is minimal if any proper subset is not $a$

dyadic subbase.

In [12], the author has proved the following two theorems.

Theorem 5.6 (1) When $S$ is a proper dyadic subbase, $S$ is full-representing
$\Rightarrow$ canonically-representing $\Rightarrow$ independent 9 minimal.

(2) When the space $X$ is $co$ mpact, $S$ is full-representing $\Leftrightarrow$ canonically
representing $\Leftrightarrow$ independent.n
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Theorem 5.7 Suppose that $S$ is a full-representing subbase of a space $X$ ,
the following are equivalent.
1) $X$ is compact.
2) $AX$ is regular.
3) $0\sigma|$ is continuous.

Thus, when we only consider regular spaces, the existence of a full-
representing subbase ensures that $X$ is compact, and thus the three prop-
erties of Theorem 5.6(1) become equivalent. The author has not succeeded
in finding a non-compact space with a full-representing subbase. From the
above theorem, such a space should be non-regular and the corresponding
representing function $\rho_{S}$ becomes non-continuous.

The author is interested in characterizing compact spaces with indepen-
dent (i.e. full-representing by Theorem 5.7) subbases. We can easily show
that if $X$ has an independent subbase, then JX has no isolated points (i.e.,
$X$ is perfect). Therefore, every countable compact Hausdorff space does
not have an independent subbase. However, the characterization of perfect
compact Hausdorff spaces with an independent subbase seems rather diffi-
cult. As we have seen, The Cantor space $\Sigma^{\omega}$ and the unit interval I have
such subbases. We can construct such a subbase for $I^{n}$ , the unit circle $S^{1}$ ,
$n$-dimensional surface $S^{n}$ , torus $T^{2}$ , and $\mathrm{n}$ torus $nT^{2}$ (orientable closed sur-
face of genus $n$ ). Since every orientable closed surface is homeomorphic to
one of them, we can conclude that all the orientable closed surfaces have
independent subbases. However, it is still open whether non-Orientable sur-
faces like the Mobius ring, Klein bottle, and the projective plane have such
subbases.
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