A new approach to higher dimensional continued fractions

Jun-ichi TAMURA

3-3-7-307 Azamino Aoba-ku Yokohama 225-0011 Japan

§0. Definition of CFS. Let $s \ge 1$ be an integer, and $\alpha_1 = \theta_1 - \theta_2 - \theta_1 - \theta_2 - \theta_3 - \theta_4 - \theta_4 - \theta_5 - \theta_6 \in \mathbb{R} \setminus \{0\}$

be given s real numbers. Choosing a lattice point

$$a_i = (a_i^{(1)}, a_i^{(2)}, \dots, a_i^{(n)}) \in \mathbb{Z}^n$$

we can define a number \$1 ER by

 $1=a_1^{(1)}\theta_{1-s}+a_1^{(2)}\theta_{1-s}\theta_{2-s}+\cdots+a_1^{(s)}\theta_{1-s}\theta_{2-s}\cdots\theta_0+\theta_{1-s}\theta_{2-s}\cdots\theta_0\theta_1.$

If $\theta_1 \neq 0$, then, choosing $\underline{a}_z = (a_z^{(1)}, a_z^{(2)}, \dots, a_z^{(n)}) \in \mathbb{Z}^n$, we can define θ_z by

$$1=a_{2}^{(1)}\theta_{2-1}+a_{2}^{(2)}\theta_{2-1}\theta_{3-1}+\cdots+a_{2}^{(n)}\theta_{2-1}\theta_{3-1}\cdots\theta_{1}+\theta_{2-1}\theta_{3-1}\cdots\theta_{1}\theta_{2}.$$

Repeating the procedure, we have a system of equalities

$$1 = a_1^{(1)} \theta_{1-s} + a_1^{(2)} \theta_{1-s} \theta_{2-s} + \cdots + a_1^{(s)} \theta_{1-s} \theta_{2-s} \cdots \theta_0 + \theta_{1-s} \theta_{2-s} \cdots \theta_0 \theta_1.$$

$$1=a_{2}^{(1)}\theta_{2-4}+a_{2}^{(2)}\theta_{2-3}\theta_{3-3}+\cdots+a_{2}^{(4)}\theta_{2-4}\theta_{3-3}\cdots\theta_{0}+\theta_{2-3}\theta_{3-3}\cdots\theta_{1}\theta_{2},$$

$$1=a_3^{(1)}\theta_{3-1}+a_3^{(2)}\theta_{3-1}\theta_{4-1}+\cdots+a_3^{(n)}\theta_{3-1}\theta_{4-1}\cdots\theta_0+\theta_{3-1}\theta_{4-1}\cdots\theta_2\theta_3,$$

.....,

which will be referred to as a continued fractional system (abbr. CFS) for

$$\underline{a} := (a_1, a_2, \ldots, a_n) = (\theta_{1-n}, \theta_{1-n}\theta_{2-n}, \ldots, \theta_{1-n}\theta_{2-n} \cdots \theta_0).$$

If (#) given above is one of the CFSs for the a, we write

$$\langle \underline{a}_1, \underline{a}_2, \underline{a}_3, \ldots \rangle \in CFS(\underline{\alpha}).$$

We say that the (#) is <u>non-singular</u> if $\theta_n \neq 0$ for all $n \geq 1$ -s, and <u>converging</u> if it is non-singular and

$$\lim_{n\to\infty}\theta_1\cdots\theta_n=0.$$

We can define a class of deterministic or/and non-deterministic algorithms to get converging (or diverging) CFSs for given \underline{a} .

§1. A formula of CFS and Polybonacci words. If s=1, then (#) can be written as

$$1=a_1\theta_0+\theta_0\theta_1$$
, $1=a_2\theta_1+\theta_1\theta_1$, $1=a_3\theta_2+\theta_2\theta_3$, ...,

which implies $\theta_0=1/(a_1+\theta_1)=1/(a_1+1/(a_2+\theta_2))$, so that we have formal expression $\theta_0=1/(a_1+1/(a_2+1/(a_3+\cdots)))=[0;a_1,a_2,a_3,\ldots]$.

Taking s=2, we can write

 $1=a_1\theta_{-1}+b_1\theta_{-1}\theta_0+\theta_{-1}\theta_0\theta_1, \quad 1=a_2\theta_0+b_2\theta_0\theta_1+\theta_0\theta_1\theta_2, \quad 1=a_3\theta_1+b_3\theta_1\theta_2+\theta_1\theta_2\theta_3, \quad \dots,$ so that

$$\alpha_{1} = \theta_{-1} = \frac{1}{a_{1} + (b_{1} + \theta_{1})\theta_{0}} = \frac{1}{a_{1} + \frac{b_{1} + \theta_{1}}{a_{2} + (b_{2} + \theta_{2})\theta_{1}}} = \frac{1}{a_{1} + \frac{b_{1} + \frac{1}{a_{3} + (b_{3} + \theta_{3})\theta_{2}}}{a_{2} + \frac{b_{2} + \theta_{2}}{a_{3} + (b_{3} + \theta_{3})\theta_{2}}} = \cdots$$

$$a_{1} + \frac{1}{a_{5} + \frac{1}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}$$

$$a_{4} + \frac{b_{4} + \frac{1}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}{a_{5} + \frac{b_{5} + \theta_{5}}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}$$

$$a_{1} + \frac{b_{4} + \frac{1}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}{a_{5} + \frac{b_{5} + \theta_{5}}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}$$

$$a_{2} + \frac{b_{3} + \frac{1}{a_{5} + \frac{b_{5} + \theta_{5}}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}}{a_{3} + \frac{b_{4} + \frac{1}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}$$

$$a_{4} + \frac{b_{4} + \frac{1}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}$$

$$a_{4} + \frac{b_{4} + \frac{1}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}}{a_{6} + (b_{6} + \theta_{6})\theta_{5}}$$

which implies formal expressions

$$a_{1} = \frac{1}{b_{1} + \frac{1}{a_{5} + \frac{b_{5}}{a_{6}}}}$$

$$a_{3} + \frac{b_{3} + \frac{1}{a_{5} + \frac{b_{5}}{a_{6}}}}{a_{4} + \frac{b_{4} + \frac{1}{a_{6}}}{a_{5} + \frac{b_{5}}{a_{6}}}}$$

$$a_{1} + \frac{b_{2} + \frac{1}{a_{4} + \frac{b_{4} + \frac{1}{a_{6}}}{a_{5} + \frac{b_{5}}{a_{6}}}}{a_{5} + \frac{b_{5}}{a_{6}}}$$

$$a_{2} + \frac{b_{3} + \frac{1}{a_{5} + \frac{b_{5}}{a_{6}}}}{a_{4} + \frac{b_{4} + \frac{1}{a_{6}}}{a_{5} + \frac{b_{5}}{a_{6}}}}$$

$$a_{2}=\theta_{-1}\theta_{0}=\frac{1}{b_{1}+\frac{1}{a_{5}}}$$

$$a_{3}+\frac{b_{3}+\frac{1}{a_{5}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{1}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{2}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{2}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{2}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{3}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{3}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{4}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

$$a_{4}+\frac{b_{4}+\frac{1}{a_{6}}}{a_{5}+\frac{b_{5}}{a_{6}}}$$

In the denominator of the expression of a_1 , if we read symbols a_n , b_n ($n \ge 1$) along vertical lines from the upside to the downside of the fraction from the left, we get a word

 $w=a_1|b_1a_2|a_3b_2a_3|b_3a_4a_4b_3a_4|a_5b_4a_5b_4a_5b_4a_5|b_5a_6a_6b_5a_6a_6b_5a_6a_6b_5a_6|....$ We can show that the resulting word

a ba aba baaba ababaaba baabaabaaba

obtained from w by forgetting all the indices, is the Fibonacci word; from this fact, we can consruct the formulae for α_1 , α_2 . Moreover, if we denote by $\alpha_1^{(n)}$, $\alpha_2^{(n)}$ the rational functions of α_n , β_n ($n\geq 1$) obtained by the truncations of the formulae (of depth n), respectively, for α_1 , α_2 , then we can show that ${}^t(\alpha_1^{(n)}, \alpha_2^{(n)})$ coincides with the nth convergent of the continued fraction (abbr. CF) of dimension s=2:

$$[0; \underline{a}_1^*, \underline{a}_2^*, \ldots, \underline{a}_n^*, \ldots],$$

where $\underline{a}_1^*:={}^t(0,a_1)$, $\underline{a}_n^*:={}^t(b_{n-1},a_n)$ ($n\geq 2$). Thus, the formal expressions for a_1 , a_2 converge if and only if the CF converges. In addition, we can show that the convergence of

$$\langle a_1, a_2, a_3, ... \rangle \in CFS(a), a={}^{t}(a_1, a_2), \underline{a}={}^{t}(a_n, b_n) \in \mathbb{Z}^2,$$

implies that the continued fraction $[0; \underline{a}_1^*, \underline{a}_2^*, \ldots, \underline{a}_n^*, \ldots]$ converges to \underline{a} under a geometric condition on the CFS. We can extend such results to any dimension s ≥ 1 : The continued fraction corresponding to

$$\langle \underline{a}_1, \underline{a}_2, \underline{a}_3, \ldots \rangle \in CFS(\underline{\alpha}), \underline{\alpha} \in \mathbb{R}^n, \underline{a}_n^{=t}(a_n^{(1)}, a_n^{(2)}, \ldots, a_n^{(n)}) \in \mathbb{Z}^n$$

is

$$\begin{split} & [\underline{0}; \ \underline{a}_1^*, \ \underline{a}_2^*, \ \dots, \ \underline{a}_n^*, \ \dots] \in \mathbb{R}^*, \\ & \underline{a}_n^* := ^t (0, \dots, 0, a_1^{(n)}, \dots, a_{n-1}^{(2)}, a_n^{(1)}), \ 1 \leq n \leq s, \\ & \underline{a}_n^* := ^t (a_{n-s+1}^{(n)}, \dots, a_{n-1}^{(2)}, a_n^{(1)}), \ n \geq s; \end{split}$$

and the convergents of $[\underline{0}; \underline{a_1}^*, \underline{a_2}^*, \ldots, \underline{a_n}^*, \ldots]$ can be constructed by using

the Polybonacci word of degree s>1; and the CF converges to \underline{a} under a geometric condition on the CFS. The Polyboacci word of degree 1 is a periodic word aaa..., and the usual CF with s=1 can be considered as a degenerated expression; the convergence of a CFS and that of its corresponding CF happen together if s=1.

§2. A formula of CFS and linear independence. Let
$$\langle \underline{a}_1, \underline{a}_2, \underline{a}_3, \ldots \rangle \in CFS(\underline{a}), \underline{a}_n \in \mathbb{Z}^n, \underline{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{R}^n,$$

and let

$$A_{n} := \begin{bmatrix} \frac{1}{2} & 1 \\ E_{n} & -\underline{a}_{n} \end{bmatrix}, U_{n} = (u_{n-n+1}^{(i)})_{0 \le i \le n, 0 \le j \le n} := A_{1}A_{2} \cdots A_{n} \in M_{n+1}(Z) \quad (U_{0} := E)$$

Then

 $u_n^{(0)} + u_n^{(1)} a_1 + u_n^{(2)} a_2 + \cdots + u_n^{(n)} a_n = \theta_{1-n} \theta_{2-n} \cdots \theta_0 \theta_1 \cdots \theta_n$ $(n \ge -s)$, where the right-hand side turns out to be the empty product(=1) for n=-s. Hence, any CFS for $\underline{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$ is non-singular if s+1 numbers 1, $\alpha_1, \dots, \alpha_n$ are linearly independent over Q; the converse does not hold.

§3. The periodicity of CFS. For simplicity, we take s=2, and consider an algebraic number a satisfying $1=a+a^2+a^3$. Then we have a purely periodic CFS for (a,a^2) consisting of the copies of one equality $1=a+a^2+a^3$. If we consider a cubic irational a satisfying $1=aa+ba^2-a^3$ ($a,b\in \mathbb{Z}$). Then we get a purely periodic CFS for (a,a^2) :

*
$$1=a\alpha+b\alpha\alpha+a\alpha(-\alpha)$$
,
 $1=a\alpha+(-b)\alpha(-\alpha)+\alpha(-\alpha)\alpha$,
* $1=(-a)(-\alpha)+(-b)(-\alpha)\alpha+(-\alpha)\alpha\alpha$,

where the asterisques indicate the period. Note that not only $\underline{a}_{\bullet} \in \mathbb{Z}^2$, but also the totality of the equations are periodic.

We remark that, for instance, a CFS for (a,a^2) can be periodic even for a quadratic irrational a; such a degenerated phenomenon can be found even for continued fractions.

(Ex.1)
$$\underline{\alpha}^{=t}(\lceil 2-1, (\lceil 2-1)^2 \rceil)$$
.
CFS($\underline{\alpha}$) $\ni \langle \underline{a}, \underline{a}, \underline{a}, \dots \rangle$, $\underline{a}^{=t}(1, 3)$
 $\underline{\alpha} = [\underline{0}; \underline{a}^*, \underline{b}^*, \underline{b}^*, \underline{b}^*, \dots]$, $\underline{a}^{*=t}(0, 1)$, $\underline{b}^{*=t}(3, 1)$.

Notice that both the CFS $\langle \underline{a}, \underline{a}, \underline{a}, \ldots \rangle$ and the CF $[\underline{0}; \underline{a}^*, \underline{b}^*, \underline{b}^*, \underline{b}^*, \underline{b}^*, \ldots]$ converge; while the covergence of the CF is not exponential.

We can show that the purely periodicity of a CFS (#) for ${}^{t}(\alpha_{1},\alpha_{2},...,\alpha_{n})=$ ${}^{t}(\alpha,\alpha^{2},...,\alpha^{n})$ implies that α is of degree at most s+1. We remark that, for any purely periodic CFF for ${}^{t}(\alpha,\alpha^{2})$, 1=2 never occurs, where 1 is the length of the shortest period.

(Ex. 2). Suppose a CFF for (a, a^2) is purely periodic and 1=6. Then

$$\begin{vmatrix}
-1+a_1^{(1)} a+a_1^{(2)} a^2 & 1 & 0 & 0 & 0 \\
-a+a_2^{(1)} a^2 & a_2^{(2)} & 1 & 0 & 0 & 0 \\
-a^2 & a_3^{(1)} & a_3^{(2)} & 1 & 0 & = 0, \\
0 & -1 & a_4^{(1)} & a_4^{(2)} & 1 & 0 & = 0, \\
0 & 0 & -1 & a_5^{(1)} & a_5^{(2)} + a
\end{vmatrix}$$

which says that a is an algebraic number of degree at most three.

- §4. Approximation of an algebraic number of degree s+1 by those of degree less than s+1. It is clear that any periodic CFS with $|\theta_n| < 1$ ($n \ge n_0$) is converging. Hence, using the formula for CFS (#) in Section 2, we can construct a series of polynomials $f_n \in \mathbb{Z}[x]$ (deg $f_n = s$) such that one of the roots of $f_n = s$ approximates a given algebric unit α of degree s+1 with $|\alpha| < 1$.
- (Ex.3) Let a = 0.5436890128 be the reciprocal of the Pisot number whose characteristic polynomial is $x^3 x^2 x 1$. We put

$$A_{n} := \begin{bmatrix} {}^{t}\underline{0} & 1 \\ E_{n} & -\underline{a} \end{bmatrix}, \ \underline{a}^{=t}(1,1),$$

$$U_{n} = (u_{n+j-2}{}^{(i)})_{0 \le i \le 2, \ 0 \le j \le 2} = A^{n},$$

$$f_{n}(x) := u_{n}{}^{(0)} + u_{n}{}^{(1)}x + u_{n}{}^{(2)}x^{2} \in \mathbb{Z}[x].$$

Then $f_n(a)=a^{n+2}\to 0$ $(n\to\infty)$, so that the cubic irrational a can be approximated by a_n as n tends to infinity, where a_n is a root of the quadratic polynomial f_n .

- §5. Periodic continued fractions related to algebraic numbers of degree $\underline{s+1}$. We can construct a periodic CF for $\underline{a}={}^{t}(a,a^{2},\ldots,a^{n})$ for any algebraic unit a of degree $\underline{s+1}$ having the minimum magnitude among the conjugates, i.e., $|a| < |\beta|$ for all algebraic conjugates β different from a. The method is simple:
- (1) from the minimal polynomial of a, we can find a periodic CFF $\langle \underline{a}_1, \underline{a}_2, \underline{a}_3, \ldots \rangle$ for the \underline{a} (cf. Section 2).
- (2) the CF corresponding to the CFF (cf. Section 1) is what we are looking for. Note that the CF obtined by our method can not be admissible if $N(\alpha) = (-1)^{\alpha+1}$.

In the following examples, a denotes the degree of the exponent of the convergence of the CF given there. In other words, the mesure of simultaneous

approximation is equal to, or bigger than ω . We can show $\omega=1-\log|\beta|/\log|\alpha|$, where β is a conjugate of α such that $|\beta|=\min\{|\gamma|; \gamma\in\{\text{the conjugates of }\alpha\}\setminus\{\alpha\}\}$, which implies

- (1) a>0 for our CF, so that the CF always converge,
- (2) if α is the reciprocal of a Pisot number, then $\omega > 1$, i.e., the convergence of the CF is exponential.

(Ex.4) trivial case:
$$s=2$$
, $1=\alpha+\alpha^2+\alpha^3$ (α as in (Ex.3).), $N(\alpha)=1$.
CFS($\underline{\alpha}$) \exists $\langle \overset{\bullet}{a} \rangle = \langle \underline{a}, \underline{a}, \underline{a}, \ldots \rangle$, $\underline{a}=^{t}(1,1)$.

$$\underline{\alpha} = \begin{bmatrix} 0; 0, 1 \\ 0; 1, 1 \end{bmatrix}$$
: admissible, $\alpha=3/2$ (best possible).

We do not need to apply our CFS for finding a periodic CF in (Ex.4); this CF can be obtained by applying the usual Jacobi-Perron algoritm (abbr. JPA). In the following examples, JPA is not useful, since the CFs are not admissible.

(Ex.5) α^{-1} :a totally real Pisot: s=2, 1=2 α + α^2 - α^3 , N(α)=-1. α +1/2.2469796904+0.4450418679, α^2 +-1/0.8019377356+-1.246979604, α^2 +1/0.554958132+1.801937736.

$$CFS(\underline{a}) \ni \langle \underline{\underline{a}}, \underline{b}, \underline{\underline{c}} \rangle, \underline{\underline{a}} = {}^{t}(2,1), \underline{\underline{b}} = {}^{t}(2,-1), \underline{\underline{c}} = {}^{t}(-2,-1).$$

$$\underline{\alpha} = \begin{bmatrix} 0; & 0, & 1, & -1, & -1 \\ 0; & 2, & 2, & -2, & 2 \end{bmatrix}$$
: non-admissible, $\alpha = 1.272638189$.

(Ex.6) α^{-1} :a totally real non-Pisot: s=2, $1=\alpha+3\alpha^2-\alpha^3$, $N(\alpha)=-1$. $\alpha=1/2.170086487$, $\alpha^{-1}=1/1.481194304$, $\alpha^{-1}=1/0.3111078175$. CFS($\underline{\alpha}$) \exists $\langle \underline{\underline{a}}, \underline{b}, \underline{\underline{c}} \rangle$, $\underline{\underline{a}}={}^{t}(1,3)$, $\underline{\underline{b}}={}^{t}(1,-3)$, $\underline{\underline{c}}={}^{t}(-1,-3)$.

$$\underline{a} = \begin{bmatrix} 0; & 0, & 3, & -3, & -3 \\ 0; & 1, & 1, & -1, & 1 \end{bmatrix}$$
: non-admissible. Since $a = \pm 0.4929459914 < 1$

the convergence of the CF is not exponential.

(Ex.7) α^{-1} :a complex Pisot: s=3, $\alpha=\delta-1$ ($\delta=2^{1/4}$) The minimal polynomial of α^{-1} is $x^4-4x^3-6x^2-4x-1$, $N(\alpha)=-1$.

$$a = 0.189207115$$
, $|a'| = |\delta i - 1|$, $|a''| = |-\delta i - 1|$, $|a''| = |-\delta - 1|$, $i = \sqrt{-1}$. CFS $(\underline{a}) \ni \langle \underline{a} \rangle$, $\underline{a} = {}^{t}(4,6,4)$.

$$\underline{\alpha} = \begin{bmatrix} 0; & 0, & 0, & 4 \\ 0; & 0, & 6, & 6 \\ 0; & 4, & 4, & 4 \end{bmatrix} : \text{non-admissible!} \quad \alpha = 1.264690581.$$

In the last example, $\omega < 1+1/s=1.333...$, such a phenomenon that ω does not attain 1+1/s even for complex Pisot case is common for all $s \ge 3$, which comes from a theorem of Minkowski; in this sense, s=1,2 are exceptional cases.