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A new approach to higher dimensional continued fractions

Jun-ichi TAMURA

3-3-7-307 Azamino Aoba-ku Yokohama 225-0011 Japan

§0. Definition of CFS. Let s21 be an integer, and
al=’l-l, a2=01;|02'|, caayp (!.=ﬂl-.0g—."'on ER\{O,

be given s real numbers. Choosing a lattice point
a;='(a, " ,a,®,...,a,*?)eZ",
we can define a number §,ER by
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If 8,#0, then, choosing a.='(a.‘'’,a,'?’,...,a, "’ )EZ"*, we can define §. by
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Repeating the procedure, we have a system of equalities
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(#)
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which will be referred to as a continued fractional system (abbr. CFS) for

a:= (a1, @2, ..., @2) = (Bios, Bi-2b2-0, ..o, Bicaba-a-Bo).
If (#) given above is one of the CFSs for the a, we write

<{a., a:, as, ...”> € CFS(a).
We say that the (#) is non-singular if 8.#0 for all n2l-s, and converging if
it is non-singular and
lim 6, --6. = 0.

We can define a class of deterministic or/and non-deterministic algorithms to

get converging (or diverging) CFSs for given a.

§1. A formula of CFS and Polybonacci words. If s=1, then (#) can be

written as

1=a,80+008,, 1=820,+6,0,, l=asf.+020s, ...,
which implies 8o=1/(a+8,)=1/(a;+1/(a:+0:)), so that we have formal expression
80=1/(ai+1/(a=*1/(as+ --)))=[0;a,,8z,2s,...].
Taking s=2, we can write
1=a8_,+b 8-, 80+0-,800,, 1=2200+balob +808,82, 1=asf8,+bsl 8240818205, ...,
so that
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which implies formal expressions
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In the denominator of the expression of e, if we read symbols a., b. (n2l)
along vertical lines from the upside to the downside of the fraction from the
left, we get a word ’

w=a,|b,az|asbzas|bsacaibsaslasbiasbeasasbeas |bsasasbsasaebsasbsasasbsasl. ...
We can show that the resulting word

a ba aba baaba ababaaba baabaababaaba ...,
obtained from w by forgetting all the indices, is the Fibonacci word; from this
fact, we can consruct the formulae for a,, a.. Moreover, if we denote by a.‘*’,
a; ‘*’ the rational functions of a., b. (n21) obtained by the truncations of the
formulae (of depth n), respectively, for a., e¢., then we can show that
t(a,*, a,‘"?) coincides with the nth convergent of the continued fraction
(abbr. CF) of dimension s=2:
[0; a:*, a.*, ..., a.* ...],
where a,*:='(0,a1), 2.%:='(ba-1,2.) (n22). Thus, the formal expressions for a.,
a. converge if and only if the CF converges. In addition, we can show that the
convergence of
{ai. 2z, as, ...> ECFS(a), e=*(a1,az), @a='(aa,ba)EZ?,

implies that the continued fraction [0: a.*, 2.*, ..., &%, ...] converges to g
under a geometric condition on the CFS. We can extend such results to any

dimension s21: The continued fraction corresponding to

<a:, 8z, 81, ...2€CFS(a), ¢€R", @.='(a.'",a.*,...,a. " )EZL"
is
[0; a.*, a.*, ..., a.*, ...] €ER*,
a.*:='(0,...,0,2, ", ... ,8.-1 ¥ ,8, '), 1¢n<s,
2.%:1= (8a-as %), ... 8020 B0 1Y), n2s:

and the convergents of [0; a(* a.*. ..., a.*, ...] can be constructed by using
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the Polybonacci word of degree s»>1; and the CF converges to ¢ under a geometric
condition on the CFS. The Polyboacci word of degree | is a periodic word aaa...,
and the usual CF with s=1 can be considered as a degenerated expression; the
convergence of a CFS and that of its corresponding CF happen together if s=1.

§2. A formula of CFS and linear independence. Let
<a:, @i, as, ...>ECFS(a), 28.€Z"*, a=(a:,0s,...,0,)ER",

and let

Ag:=| » Ua=(Uo-2e¢i " )osise. 05550 :7A1A2 - -As €My (Z) (Uo:=E)

Then

s D4y, (Vg tu, Pt P a,=01-a0z-0c 0080 - 8 (n2-8),
where the right-hand side turns out to be the empty product(=1) for n=-s. Hence,
any CFS for e=(a,,@z,...,8,) is non-singular if s+l numbers 1, a,, ..., a, are
linearly independent over Q; the converse does not hold.

§3. The periodicity of CFS. For simplicity, we take s=2, and consider
an algebraic number a satisfying l=a+e®+e®. Then we have a purely periodic CFS
for '(a,a?) consisting of the copies of one equality l=e+e?+a®. If we consider a

cubic irational ¢ satisfying l=aa+ba®-¢® (a,b€Z). Then we get a purely periodic

CFS for '(a,a?):
* l=aat+baataa(-a),

1=aa+(-b)a(-a)+a(-a)a,
* 1=(-a)(-a)+(-b) (-a)a+(-a)aa,
where the asterisques indicate the period. Note that not only a.€Z *, but also
the totality of the equations are periodic.
We remark that, for instance, a CFS for '(e¢,2?) can be periodic even for a
quadratic irrational a; such a degenerated phenomenon can be found even for

continued fractions.

(Ex.1) e=*({2-1, ([2-1)?).
CFS(a)3 <a,a.a,...>, 2='(1,3)
e={0;a*,b*,b* b*,...], a*=*(0,1), b*=*(3,1).
Notice that both the CFS <a,a.a,...> and the CF [0;2*,b*,b*,b*,...] converge;
while the covergence of the CF is not exponential.

We can show that the purely periodicity of a CFS (#) for ‘(a:,ez,...,a.)=
t(e,2%,...,0") implies that e is of degree at most s+l1. We remark that, for any
purely periodic CFF for '(a,e?), 1=2 never occurs, where | is the length of the

shortest period.
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(Ex.2). Suppose a CFF for '(e,a?) is purely periodic and 1=6. Then

~l+a, 'V g+a, (2 g2 1 0 0 0
—q+a, (1) g2 a, 1 0 0
-2 g, (1) gy 1 0 = 0,
0 -1 a, a,(® 1
0 0 -1 as (V as ‘2 +a

which says that ¢ is an algebraic number of degree at most three.

§4. Approximation of an algebraic number of degree s+l by those of
degree less than s+l. It is clear that any periodic CFS with [0.]<1 (n2no) is
converging. Hence, using the formula for CFS (#) in Section 2, we can construct
a series of polynomials f,€Z [x] (deg f.=s) such that one of the roots of f.

approximates a given algebric unit a of degree s+1 with }a]<l1.

(Ex.3) Let a%0.5436890128 be the reciprocal of the Pisot number whose
characteristic polynomial is x*-x?-x-1. We put

An:= . a='(1,1),
E, -a
Us = (Waws-2""")osis2, 05552 = A®,

fa(x)i=ua ‘@ +u, Y%+ u. ‘27x2 €Z [x].
Then f,(e)=0"*2—0 (n—m), so that the cubic irrational e can be approximated by
2. as n tends to infinity, where a., is a root of the quadratic polynomial f..

§5. Periodic continued fractions related to algebraic numbers of degree
s+l. We can construct a periodic CF for a='(e,a?,...,qa*) for any algebraic
unit a of degree s+1 having the minimum magnitude among the conjugates, i.e.,
lal<| 8] for all algebraic conjugates § different from e¢. The method is simple:

(1) from the minimal polynomial of a, we can find a periodic CFF <ai,a:,as,...>
for the a (cf. Section 2).
(2) the CF corresponding to the CFF (cf. Section 1) is what we are looking for.
Note that the CF obtined by our method can not be admissible if N(a)=(-1)**'.
In the following examples, o denotes the degree of the exponent of the
convergence of the CF given there. In other words, the mesure of simultaneous
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approximation is equal to, or bigger than . We can show w=1-log|8|/loglal,
where § is a conjugate of a such that [f|=min{|r|; r€{the conjugates of a}\{a}},
which implies

(1) @>0 for our CF, so that the CF always conversge,

(2) if « is the reciprocal of a Pisot number, then w>1, i.e., the convergence
of the CF is exponential.

(Ex.4) trivial case: s=2, l=a+e?+e® (a as in (Ex.3).), N(a)=l.
CFS(a)3 <@>=<a, a, a, ...>, a='(l,1).

*
¢ = {:0; 0.1 :}: admissible, 4=3/2 (best possible).
0:; 1,1

We do not need to apply our CFS for finding a periodic CF in (Ex.4):; this
CF can be obtained by applying the usual Jacobi-Perron algoritm (abbr. JPA). In
the following examples, JPA is not useful, since the CFs are not admissible.

(Ex.5) a¢~':a totally real Pisot: s=2, 1=2a¢+a?-a®, N(a)=-1. ax1/2.2469798904%
0.4450418679, a " 5-1/0.8019377358%-1.246979604, «¢  "=1/0.554958132=1.801937738.
CFS(a)3 <&, b, &. a='(2,1), b=*(2,-1), c=*(-2,-1).

=
o o
we ws
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| |
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|

0 »*

1 :J: non-admissible, #%l.272633189.

(Ex.6) o ':a totally real non-Pisot: s=2, 1=a+3a%-a®, N{a)=-1.
e51/2.170086487, a %-1/1.481194304, « "51/0.3111078175.
CFS(a)3 <A. b, &, a='(1,3), b=*(1,-3), c=*(-1,-3).

* *
= {:0; 0.3 -3 -3 :}: non-admissible. Since #=%0.4929459914<1
0; 1, 1, -1, 1

the convergence of the CF is not exponential.

(Ex.7) a”':a complex Pisot: s=3, a=§-1 ($=2!7*) The minimal polynomial of a~!
is x*-4x*-6x%-4x-1, N(a)=-1.
050.189207115, |a"|5|8i-1], la™"Is[-8i-1], Je " "|=-8-1, i=[-1.
CFS(a)3 <B>, a='(4.8,4). :

*

0; 0, 0, 4
a=10; 0, 6, 8 |: non-admissible! 451.264690581.

0; 4, 4, 4

In the last example, <1+1/s=1.333..., such a phenomenon that & does not
attain 1+1/s even for complex Pisot case is common for all s23, which comes from
a theorem of Minkowski; in this sense, s=1,2 are exceptional cases.



