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Irrationality of certain Lambert series
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1 Introduction and the results

For any fixed ¢ € C with |g| > 1 and z € C, the g—logarithmic function L,(z) and the
g—exponential E,(z) are defined by

L) =Y = -y 5 (el <),
z ;‘l -1 ;q -z § 1
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respectively. Bézivin [2] showed that the numbers 1, EMay) G = 1,...,m, k =
0,1,...,1) are linearly independent over Q, where ¢ € Z \ {0, 1} and a; € Q* sat-
isfy o; # —¢* and o; # «a;¢” for all p,v € Z with 4 > 1 and ¢ # j. This implies

that
21
> ¢Q,
n=1 qn +a

where ¢ € Z \ {0, +1} and o € QX with @ # —¢*(i > 1). Under the same con-
ditions on ¢ and «, Borwein (3], [4] obtained irrationality measures for the numbers
S, 1/(g" + ) and 322 (—1)"/(¢™ + a). These results include the irrationality of
Ly(1) = Y02, 1/(2" — 1) proved by Erdés [10]. Furthermore, Bundschuh and Vaénainen
[6], and Matala-Aho and Vianéanen [11] obtained quantitative irrationality results for the
values of the g-logarithm both in the Archimedean and p—adic cases. In [7], Duverney
generalized certain results obtained by Borwein [3], [4], and Bundschuh and Vaénénen [6].
Recently, Van Assche [15] gave irrationality measures for the numbers L(1) and L,(—1)
by using little g—Legendre polynomials. In this paper, we prove irrationality results for
certain Lambert series, which in particular implies the linear independence of the numbers
1, Ly(1), Ly(—1) with ¢ € Z\{0, £1} by developing Borwein’s idea in [4].
Let R, be a binary recurrence defined by

R‘n+2=A1Rn+1+A2an (nZO), AI)A2 EQX) R01 RIEQ
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André-Jeannin [1] proved for some R, the irrationality of the value of the function f(z) =
> mey "/ Ry, at a nonzero rational integer z in the disk of convergence of f, which gave the
first proof of the irrationality of the numbers | 1/F, and 3°°°  1/L,,, where F, and L,
are Fibonacci numbers and Lucas numbers, respectively. Prévost [13] extended this result
to any rational r in the domain of meromorphy of f. Recently, Matala-aho and Prévost
[12] obtained for some type of R, irrationality measures for the number Yoo 1Y/ Ran,
where 7y belongs to an imaginary quadratic field, and @ > 0 is an integer. We will prove for
some R, the irrationality of the numbers Yoro 17"/ Ransb and Z°° 1Y /Ran+bRa(n+1)+b,
where a > 0, b > 0 are integers and vy is a certain number in a real quadratic field(see
Corollaries 2 and 3, below).

For an algebraic number o, we denote by |a| the maximum of absolute values of its
conjugates and by dena the least positive integer such that a-denc is an algebraic integer.
We define generalized Pisot number o by algebraic integer o satisfying |a| > 1 and || < 1
for any o € Aut(Q/Q) with o # a. We put N = {0,1,2,...}.

Theorem 1. Let K be either Q or an imaginary quadratic field. Assume that q is an
integer in K with |q| > 1 and {a.} a periodic sequence in K of period two, not identically

2ero. Then -
a
0= o

Corollary 1. Let q € Z with |q] > 2 and {a,}, {b.} be periodic sequences in Q of period
two, not identically zero. Then the numbers

00 (o <]
bn

1, E-q%’ Eqn__l

n=1

are linearly independent over Q if and only if {an} and {b,} are linearly independent over
Q.

Proof. This follows immediately from Theorem 1.
Example 1. Let g € Z with |q| > 2. Then

n

© 1 2. (-1 =~ -1
1, Lq(1)=zqn_~17 LQ(—I)ZZq(n_)1=an+1

n=1 n=1 n=1

are linearly independent over Q.

Theorem 2. Let q be a quadratic generalized Pisot number, v a unit in Q(q) with |y] < 1,
and a € Q(q)* with (den(¢'a))? < |q| for some | € N. Then

EZ aq,,¢Q(q),

provided that ag™ # 1 for alln > 1.
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In the following Corollaries 2 and 3, we consider the binary recurrences { R, }n>o defined
by
Rnia = A1Rpi1 + A3Rn, A, A2 € Z\ {0}, Ry, Ry € Z.

We suppose that R, # 0 for all n > 1, the corresponding polynomial ®(X) = X% -4, X —
A, is irreducible in Q[X], and A = A? + 44, > 0. We can write R, as

Rn=q1p} + 9205 (n>0), g1,92 € Q(p1)", (1)

where p; and p, are the roots of ®(X). We may assume |p;| > |p2| , since A > 0.
For a,b € N with a # 0, we define

Z Ran, |zi < Ip].’a)'

This function can be extended to a meromorphic function on the whole complex plane C
with poles {(p}*'/p2)%|n > 0}, since

-m

d 2" 2 a ™z
= z| < |g
S T o (Fl<laD

m=1

for any complex numbers ¢ and o with |g| > 1 and |e| > 1, and so

1,+1 0 ai+b\n
- Z 7 m+b Z (92/91 p2/p1) ) ’ (2)

antb Gip z — p}(p1/p2)*"

n=0
where i is chosen as |(g2/91)(p2/p1)***| < 1. We denote the function again by R(z).

Corollary 2. Let R, be a binary recurrence given by (1) and a,b € N with a # 0.
Assume that g1 /g, and py/ps are units in Q(p1) and v € Q(p1)* is not a pole of R(z)
with (den(p?/7))* < lp1/p2|*. Then we have R(7) ¢ Q(p1)-

Proof. Apply Theorem 2 to the last sum in (2).

Example 2. Let F, and L, be Fibonacci numbers and Lucas numbers defined by Fy,19 =
Fn+1 +Fn(n Z 0), Fo = 0, F1 =1 and Ln+2 = Ln+1 +Ln(n > 0), Lo = 2, L1 = 1,
respectively. Then for every a,b € N with a # 0,

o0
André-Jeannin[1] proved that each of these numbers is irrational. We remark that the
numbers Y oo 1/Font1 and 3 o 1/ Loy, are transcendental (cf. [8], {9]).

oo

>

n=1

" ¢ Q(VE).

Ms

an+b n=1 a.n+b n=1 La.n+b an+b
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Example 3. Let F,, be Fibonacci numbers. Then for every a,b € N with a # 0,
- (="

¢ Q(V5).
Z F1(2a-—1)n+bF2a 1)(n+1)+b nel F2an+bF2a(n+1)+b

The same holds for Lucas numbers. We put

= E R E l>1
Tl o FnFnH, T; ne1 FnF 1 ( -

Then Brousseau (5] and Rabinowitz [14] proved that

[
1 1
Ty=—3 o\ T
47 Fu ~ Fon1Fpm A= F21+1( FZnF2n+1)
., 1 [1-+5 F,
T‘“'ﬁ( g Y Z_ F)

50 that Ty € Q and T € Q(v5) \ Q for all | > 1. We see that Ty, ¢ Q(v/5) for all
1 > 0, since the first sum in this ezample with a =1, b = 0 implies

T=3 g # V8,

2 Lemmas

For the proof of theorems, we prepare some lemmas. Let {em}m>1 be a periodic sequence
of complex numbers of period two, not identically zero. We put

> a
0= o
m=1 1 9
where g € C with |g| > 1. We start with the integral
. l/t)H(l— ’°/t)
a
Fa(g) = Z - (3)

271'2 tj=1 n 1- m/t
| I (1 - q2kt) m=
k=1

which is a variant of that used by Borwein [4]. We note that the integrand is meromorphic
in ¢ provided |g| > 1. We use the notations

(1-¢")(1=g"1)---(1-9q) o
e o [0y =1,

[n]q! :=
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mq = W%]‘q_lm € Zg).

In what follows, we denote ¢y, ¢y, ... positive constants independent of 7,

Lemma 1.

(1 k+2: .
SURETE T
i=1 H 2k 21. m=1 1- qm

1 n o0 (2n--1)
(2n-—1)l (H (t- )g(l‘qzkt)—lmzz:lt a",;m)

Proof. This can be proved by using the residue theorem similarly as the proof of
Lemma 1 in [4].

(4)

t=0

We put D, (g) := ;2,1 (1 — ¢**). Then we have

|Dn(g)] < calgf™+™. (5)
Lemma 2.
Dn(Q)Fn(Q) = An(‘])a + B,(q), (6)
where An(Q)) B‘n(Q) € Z[al, az, Q}
Proof. Since
1 B P
n -1 n—i
H(l _ q2k—2i) H _ l)n 1 _
k=1 k=1

we have by (4)

N — Z( pigen 171 [7a - (G—Elf'"qm)
H (1 _q i=1 a? k=1 m=1

n ()
(H q2kt)—1)

2n ey
:“Zm ! ur,,v (g )

At ptrv=2n—-1

t=0
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with

2n (A) . -
(H(t - qk)) — /\!(—-1)2"_’\ Z q,\1+2,\2+...+2n,\2u’

Al +- +z\2n~2n-—A
t=0 2;=0,1

n (1)
(H(l - qzkt)ﬂ) = u! Z q2(u1'+2u2+---+nun),

k=1 =0 »1 +;";“)2‘A:)n=l4
@ ® 1
m —_ | 1 v41 -
(Z t— qm) - Z (qu+1 = vi{ag"™ + 0'2)1 — g2v+1)”
m=1 £=0

Hence we get

Fal@ = 4o Z( 1)i-1giti-1) [ ] H(l gF+2) (0__ Z - fn;m)
H (1 2k) i=1 9% k=1 me1 |

k=1

+ Z Q)qu/ (Q) 2(u+1) | | (7)

A+u+u=ln 1
Ay, v 20

with Qxu.(g) a polynomial in Z[a,, a,, g for all )\, u,v > 0. Here we note that

2n
H k+2’)z — € Zlai, a3, q], 1=1,2,...,n,
k=1 m...l

and each of [[}_;(1-¢*) and 1 —¢ 2(1=1,---,2n) divides Dy (g) in Z[g]. Therefore the
lemma follows from (7)

Lemma 3. For large n, we have
-3n2-2n
0 < [Fo(g)] < cs g™ 2. 8

Proof. Similarly to the proof of Lemma 4 in [4], the residue theorem applied exterior
to the circle |t/ = 1 shows that

12;"1(1 - qk_m)
F, q Im: Im = Q. n=
( m—§+1 mHk:l (1 - q2lc+m)

for large n. Since |In| < ep]g|™™ ~™+1) we get the upper bound for | Fy,(g)|. Furthermore,
if a; # 0, it follows that, .

Fu(q) = 1% = ((11:q2k+2:+1)) (1 +'§bm)
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with

n 2k+2n+1 2n k—2n—1-1
Q141 1-g¢ l-gq
b, = —— -4+ 000
" kI:11 (1 _ q2k+2n+l+1) k]=l1 ( 1= gh2n1 ) ’

where [by| < cslg™"['. Hence we have F,(q) # 0, since Y jo, |by| < 1 for large n. The
proof is similar in the case of a; = 0, ay # 0.

3 Proofs of Theorems

Proof of Theorem 1. Let K, ¢, and {a,,} be as in Theorem 1. We may suppose that
a; and a; are integers in K. Assume that § € K and let d = denf. Then by (5),(6), and

(8), we have
0 < d|An(q)8 + Bn(q)| < deslq|™

for large n; which is a contradiction.

Proof of Theorem 2. Let g, a, and <y be as in Theorem 2. Since

= " ™ g
_ _ —_ >
2:‘1————1 adan =7 (Z m:ll—aq"‘) (>0,

we can assume that « is a generalized Pisot number, by replacing a by ¢'a with suitable
[. We modify Borwein’s integral in [4] as follows:

1 T l-adk/t\ -1/t S 4™
G = — dt
n(0:0,7) 271 H( 1— gkt )1—q"th=11—aqm/t

[t=1 gy

Theorem 2 can be proved by replacing F,,(q) by G.(g,,7) in Lemmas.
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