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Algebraic independence of certain power series
associated with d-adic expansion of real numbers

BREEBREETSE HYP 28 (Taka-aki Tanaka)
Faculty of Science and Technology, Keio Univ.

1 Introduction.

Let w > 0 and let d be an integer greater than 1. The number w is expressed as a d-adic
expansion '

w= Z gd™, = max{[log;w],0}, & €{0,1,...,d—1},

=

where [z] denotes the largest integer not exceeding the real number z. For those w having
two ways of expression such as 2 = 1.9999 . . . (10-adic), we adopt only the left-hand side
expression. Then this expansion is uniquely determined. Let

ar = [wd*] (k=0,1,2,...).

It is clear that

k
Qi = E Eidk_z,

i=-—1
namely the integer a; is expressed as the d-adic number E—1E_I41...€k_1€k. Hence we see
that the sequence {ak}kzo satisfies the recurrence formula

ag = [w], ar =day_, + &g (k =1,2,3,.. )

The author [3] proved that the number D reo 0% is transcendental for any algebraic
number o with 0 < |a| < 1. In this paper we prove the following algebraic independence

result. Let wy,...,w,y, > 0. Define
b k
fua(z) =D 4T (i=1,... . m d=2,3,4,...). (1)
k=0

In what follows, Q and R denote the sets of rational and real numbers, respectively.
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Theorem 1. If the numbers w,, . .. ,w,, are linearly independent over Q, then the num-
bers fia(e) (i=1,...,m; d=2,3,4,.. .) are algebraically independent for any algebraic
number a with 0 < |a| < 1.

Corollary 1. If the numbers wy,...,w,, are linearly independent over Q, then the
functions fig(z) (i=1,...,m; d=2,3,4,...) are algebraically independent over the field
C(z) of rational functions.

EXAMPLE. Let

o o0
hua(z) =3 2%, fralz) = ) V4,
k=0 k=0
x© 00
k k
fra(z) =) 2V, fy(z) =Y (d=2,3,4,...).
k=0 k=0
For example we have
faan(2) = z+2M 4 M4 4 R4 a2 e
f10(2) = 24217 + 217 4 Z17T32 4 R17820 4 178205 |
and
fi10(2) = 254280 4 314 4 3141 4 L3115 ) 314189 |

Then by Theorem 1 the numbers f;4(a) (i = 1,...,4; d = 2,3,4,.. .) are algebraically
independent for any algebraic number o with 0 < |a| < 1 since the numbers 1, /2, V3,
and 7 are linearly independent over Q.

Theorem 1 is proved by using the method developed from that of Nishioka used for
proving the following:

Theorem 2 (Nishioka [2, Theorem 1)). Let
fd(Z) = z:a:iltzd’c (d: 2a 3,4a-- -)1
k=0

where the og (k=0,1,2,...) are in a finite set of nonzero algebraic numbers for every d.
Then the numbers fy(a) (d = 2,3,4,...) are algebraically independent for any algebraic
number o with 0 < |a| < 1.

We further obtain the following, which includes both Theorems 1 and 2.

Theorem 3. Let w,...,wy, > 0. Define

o0
fia(2) =) o2 (i=1,...,m; d=2,3,4,..)),
k=0
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where the o, (k = 0,1,2, .. .) are in a finite set of nonzero algebraic numbers for ev-
ery ¢ and for every d. If the numbers Wi, ..., wm are linearly independent over Q, then
the numbers fiy(e) G =1,...,m; d = 2,3,4,...) are algebraically independent for any
algebraic number o with 0 < |of < 1.

| Theorem 3 implies the following result, which also includes Theorem 1.

Theorem 4. Let wi,...,w, >0 andm,...,nm € R. Define

[o o]
fa(z) = =1, m; d=2,3,4,..). -
k=0

If the numbers wy,...,wy are linearly independent over Q, then the numbers fi () (=
L,...,m; d =2,34,...) are algebraically independent for any algebraic number o with
0< o <1.

2 Lemmas.

We prepare the notation for stating the lemmas. For any algebraic number o, we denote
by [—a—] the maximum of the absolute values of the conjugates of & and by den(a) the
smallest positive integer such that den(a) - o is an algebraic integer and define

llotf = max{[ & |, den(a)}.

If @ = (wy;) is an n X n matrix with nonnegative integer entries and if z = (2,...,2,) isa
point of C" with C the set of complex numbers, we define the transformation Q : C* — C"

by
n n n
Qz = H ijlj , HijZj, caey H ij"j .
J=1 j=1

j=1

Let {Q(k)}kzo be a sequence of n X n matrices with nonnegative integer entries. We put
k) = (wz(]k)) and Q®z = B 2.

In what follows, N and N, denote the sets of positive and nonnegative integers, respec-
tively. For A = (Ay,..., A,) € (No)®, we define 2* = 2oz and A = A 4 -0+ A,
Let K be an algebraic number field. Let {f® (2)}k0, - s {FD (2)}k>0 be sequences of
power series in K{[zy,...,2,]]. Let x = (z,... »Zn) be the maximal ideal generated by
215- .., 2n in the ring K[[z), ..., z,]]. In what follows, ¢;,cy, . .. denote positive constants
independent of %.

Lemma 1 (cf. Nishioka [2, Theorem 2]). Assume that

fi(k)(z) = fi(z) as k-
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with respect to the topology defined by x for any i (1 < i < m). Suppose that all the
fi(k)(z) (k > 0), fi(z) (1 <1 < m) converge in the n-polydisc {z = (z1,...,2,) €
C g5l <r(1<j<n)} Ifoa=(u,...,a0) is a point of K™ with 0 < |oy] <
min{1,7} (1 < j < n) and if the following three properties are satisfied, then the values
fl(o)(a), A5 (a) are algebraically independent.

(I) There emists a sequence {px}r>o of positive numbers such that

W < cipr, log Iaﬁ-’”’l < —Capk.

lim p; = oo, Wy

k—o0

(I1) If we put
fP@) = P@Wa) +57 (1<i<m),

then b,(k) € K and :
log [|6{")]| < cspx (1 < i <m).

(IIT) For any power series F(z) represented.as a polynomial in zy, . .., 2, f1(2), ..., fm(2)
with complex coefficients of the form

Fz)y= Y a2 fi(2)" - fm(2)*,
’\’"'—'(“ly-mﬂm)
where ay,, are not all zero, there exists a Ag € (Ng)™ such that if k is sufficiently
large, then
IF(Q¥a)| > cs|(@Fa)|.

Although Theorem 2 of Nishioka [2] requires the assumption that the coefficients of
f,-(k)(z) are in a finite set S C K for all 7 and k, it can be weakened as in Lemma 1, which
is proved by the almost same way as in the proof of Theorem 2 of Nishioka [2].

Lemma 2 (Nishioka [2]). Let f(z) =3, ;. Crpyp 22+ 2pm € C[[21, - - -, 24]] con-
verge around the origin. If z is sufficiently close to the origin, then

2 [onmwnl il el <9 el

where v is a positive constant depending on f(z).
The following lemma is originally due to Masser [1] and improved by Nishioka [2].

Lemma 3 (Masser [1], Nishioka [2]). Let by > - -- > b, > 2 be pairwise multiplicatively
independent integers. Let 0 =logh, and 0; = 0/logb; (1 < j < n). Suppose that for each
a in a finite set A we are given real numbers Aig, ..., Ana, not all zero, and define the
sequence

n
Sa(k) =" Nab?¥ (k=0,1,2,..).

i=1
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If {ki}i>1 is an increasing sequence of positive integers with {k;11 — ki}i>1 bounded, then
there ezists a positive number & such that

R(6) = {k: | glelil |Sa(ks)| > 6651} = {m}is1, my < My,

is an infinite set and {m;,, — My }i>1 is bounded.
Using Lemma 3, we have the following:

Lemma 4. Let by,...,b, be integers as in Lemma 3 and let 01,...,0, be defined in
Lemma 3. Let wy,...,wy, > 0 be linearly independent over Q. Then there ezist an infinite
set A of positive integers, a sequence {6(D}i>1 of positive numbers, and a total order = in
(No)™ such that if A = (Ayj) > i = (155) with [A| = Aiy++ -+ dmm, 2] = prr1++ - -+ i <
l, then

m n m

Z Z /\ij{wibg-a"’]] - Z Zn: u;j[wibﬁ-g"q]] > (1)

i=1 j=1 i=1 j=1
for all sufficiently large ¢ € A. Moreover, any subset S of (No)™ has the minimal element
with respect to the total order >.

Lemma 5 (Nishioka [2]). Let d be an integer greater than 1 and let
> h
fiz) = ng)zdl (1=1,2,..),
h=0 '

where the coefficients sff) are nonzero complez numbers. Then fi(z) (I = 1,2,...) are
algebraically independent over C(z).

3 Proof of Theorems 1 and 4.
Proof of Theorem 1. Let
D={deN|d#a" (a,neN, n>2)}.

Then :
N\ {1} = J{a. &% .. .},
deD

which is a disjoint union since any two distinct elements of D are multiplicatively in-
dependent by the definition of D. Let dy > --- > d, be elements of D and let
Z= (211, ,Zm1y- -y Z1ny - - - » Zmn), Where 213, ..., Zm1, . - yZ1ny- - -5 Zmn are distinct vari-
ables. For any ¢ (1 <4 < m) and for any d; € D (1 < j < n), we define the sequence
{ri s by

i =1, 18 =(ud] (k>1) (2)
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and define
) d”‘ ] .
fijio(z Zam] -dt, (I1<i<m,1<j<n, 1<I<).
Lettinga=(a,...,a,...,a,...,a), we have

o0
,,.("J) gl )
fijno(ex E oW = a+ hz % = fra(0) — o + o,
=1

where f;; is defined by (1) Hence it suffices to prove the algebraic independency of the
values fipo(a) (1<i<m, 1<j<mn, 1<1<t). For the purpose we apply Lemma 1.
Put b; = d¥, § = log b, and §; = 6/logh; (1 < j < n). Noting that

0 < g — T dt <d® -1 (1<i<m),

we put

(39 (l J)

th
Eq = (a th+4118;0) T 1[0, 1% )
1<i<m, 1<j5<n, 1<I<t, h>0

o0 n i

e [[III[{La ... 0% 13

h=0j=1 l=1

for any ¢ € A with the A defined in Lemma 4. Since the right-hand side is a compact
set, there exists a converging subsequence {£4, }x>1 of {£,}4ea, where g; will be chosen

sufficiently large. Let

(i,3.0)
lim Xg = (a )
k—o0 1<i<m, 1<j<n, 1<I<t, h>0
and define
(4,9) ih
fz]lk Z o ”"“"[9 ax] ~Tugo; 79k d;hzj;
(ISZSm, ISJSn, 1<I<t k>1)
and

© i1, Lh
fiz) =3 a2 (1<i<m, 1<j<n, 1<)
h=0

Then
lim fisi(z) = fij(z).
k—o00 .
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Define the mn x mn matrix
O® = diag ([wlbgalq"]], ceoh [wmb[lalq"]], ooy [wyblBmeel] [wmb,[f"q"]]) .

We assert first that {Q(k)}kzl, a=(a,...,q,...,0,...,a), and p; = b* (k > 1) satisfy
the assumptions (I) and (II) of Lemma 1. Since by > --- > b,,, we have

b1 < b bg < B < e

and so

1
qr—1 gr—1 [6; k] Tk
5 (lxgm w,) ¥t < (lrgln w,) b — 1 < [wib; ™ < b 112%(,;%

forany i (1<i<m), (1<j<n),andforallk>1,ifgq is sufficiently large. Hence
the assumption (I) is satisfied.
Let K = Q(c). Then fin(z) e K[[z]] 1 <i<m, 1<j<n, 1<I<t k>0)and

(#/D)[6;qx]-1

, )
Fiite( Q( )a Za :h+t[e,qk1 = f]lo( ) — Z o’k

h=0
(1<i<m, 1§]§n,1§l_<_t,k21).

Since rl((’,:’ll) > r,'”) (1<i<m,1<j<n 1<I< t) for all sufficiently large k by the

definition, there is a positive constant C such that MaXo<h<k-1 r,(,’;’j) < C’r,(,i’j) (1<i<
m, 1<j<n, 1<I<t)forall k> 1. Hence

(/165 a] -1

>, ol < log(t!/l)[é’jq'c]+(

h=0

log || - )lognan

max
0<hZ(8!/1)[0;9k]-1

< (1+Clmag g lol) o

and the assumption (II) is satisfied.

Therefore, if the assumption (III) is also satisfied, the proof is completed. Noting
that z11,...,2m1,...,21n, ..., zmn are distinct variables, we see by Lemma 5 that the
functions fi(2) (1<i<m,1<j<n, 1<1 < t) are algebraically independent over
C(211, - s Zm1, + - - 5 Z1n,y - - -y Zmn). Let

— e Vmnt __ A
F(z) = Z QupZ* f{1 - frmrt = Z ez’

p=(ni;),v=(vij1) A=(Xi;)€(Ng)™n

where the coefficients a,, are not all zero, and let )\ = ()\(0)) be the minimal element in
(Ng)™™ with respect to the total order = defined in Lemma 4 among A with ¢y # 0. Let
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maxi <i<m Wi

L=2(]x| +1) ([ J + 1) bi. If k is sufficiently large, then by Lemma 2

Z Ic/\' . lai/\n{mbgﬂmk]] e la,Aml[wmbgelqk]) o lall\ln[wlbg?nqk)] N la,Am'n[wmbsfnqk]]

[Al2

. S
< 7l+1 (,alé(mxmggmwi)bzk 1)

mlnlsz‘sm Wy

< A g maxigicm wibit (Aol +1)

Since

Agg)[wlb[lalqk]] e /\(0) [wmbgﬂqu]] e f /\ggl)[wlb,[f"%]] 4ot /\,(_gzl[wmbgonqk]]

ml

< Phol(max wi)bf,

we have (B
'ZWZl C’\(Q a) I < ,Yl+llal(max15igmwi)bgk
(@Fe] =
if k£ is sufficiently large. If [A| < [ and A # Ag, then by Lemma 4
lea (%) )| 5(1)b%
W < leal - ™™

for all sufficiently large k. Therefore
| PP a)/(Q®a)* — cy] » 0 (k — o),
which implies (III), and the proof of the theorem is completed.

Proof of Theorem 4. Define

[o.9]
d® a1l gk .d* .
gia(z) = Y olsdtnl-bdl o] (o1 o g=234 ).

k=0

Then
a[wl'dk-{-"i]_[widk] E {a['r)t]’ a[n1]+l},

since 0 < [w;d* + 73] — [wid*] — [n;] < 1 for any %, d, and for all k. By Theorem 3 the
numbers g;4(e) (i =1,...,m; d=2,3,4, .. .) are algebraically independent, which implies
the theorem.
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