Blow-up solutions for quasilinear degenerate elliptic equation

Toshio Horiuchi (堀内利郎)

Department of Mathematical Science, Ibaraki University, (茨城大学理学部・数理科学科)

Mito, Ibaraki, Japan.

September 12, 2003

Abstract

We treat the equations with a positive nonlinearity in the right hand side. Namely

$$\begin{cases} L_p(u) = \lambda f(u), & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
 (0.1)

where

$$L_p(u) = -\operatorname{div}(|\nabla u|^{p-2}\nabla u) \tag{0.2}$$

Here $\lambda \geq 0$, and the nonlinearity f is, roughly speaking, positive, increasing and strictly convex on $[0, +\infty)$. In connection with combustion theory and other applications, we are interested in the study of positive minimal solutions. This is a résumé of the preprint [9].

1 Introduction.

In connection with combustion theory and other applications, we are interested in the study of positive solutions of the following:

$$\begin{cases}
L_p(u) = \lambda f(u), & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1.1)

where

$$L_p(u) = -\operatorname{div}(|\nabla u|^{p-2}\nabla u) \tag{1.2}$$

Here $\lambda \geq 0$, and the nonlinearity f is, roughly speaking, positive, increasing and strictly convex on $[0, +\infty)$.

When p=2, it is known that there is a finite number λ^* such that (1.2) has a classical positive solution $u \in C^2(\overline{\Omega})$ if $0 < \lambda < \lambda^*$. On the other hand no solution exists, even in the weak sense, for $\lambda > \lambda^*$. This value λ^* is often called the extremal value and solutions for this extremal value are called extremal solutions. It has been a very interesting problem to study the properties of these extremal solutions.

As for a nonlinearity f(t) we adopt the following.

Definition 1.1 $f(t) \in C^1([0, +\infty))$, increasing, strictly convex and

$$f(0) > 0$$
, $\liminf_{t \to \infty} \frac{f'(t)t}{f(t)} > p - 1$.

Definition 1.2 (Weak solution)

A function $u \in W_0^{1,p}(\Omega)$ is called a weak solution if f(u) satisfy

$$dist(x,\partial\Omega)\cdot f(u)\in L^1(\Omega)$$

and u satisfies

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi - \lambda f(u) \varphi) \, dx = 0$$

for all $\varphi \in C_0^1(\Omega)$.

Lemma 1.1 Let $u \in W_0^{1,p}(\Omega) \cap L^{\infty}$ be a weak solution. Then $\exists C > 0$ and $\exists \sigma \in (0,1)$ such that

$$\begin{cases}
 |\nabla u| \le C, \\
 |\nabla u(x) - \nabla u(y)| \le C|x - y|^{\sigma}.
\end{cases}$$
(1.3)

Then we have

Lemma 1.2

 $\exists u; \ a \ classical \ solution \ for \ a \ sufficiently \ small \ \lambda > 0.$

2 Minimal solution and extremal solution

Definition 2.1 (Minimal solution)

The minimal solution $u_{\lambda} \in C^1(\overline{\Omega})$ is the smallest solution among all possible solutions.

Then we have

Lemma 2.1 $\exists_1 u_{\lambda} \in C^1(\overline{\Omega})$; the minimal solution for a sufficiently small $\lambda \geq 0$.

Lemma 2.2 u_{λ} satisfies:

- 1. $u_{\lambda} \in C^{1,\sigma}(\overline{\Omega})$ for some $\sigma \in (0,1)$,
- 2. For $\lambda > 0$, $u_{\lambda} > 0$ in Ω and $u_{\lambda} = 0$ on $\partial \Omega$.
- 3. monotone increasing and left-continuous on λ .

Definition 2.2 (Extremal value λ^*)

The extremal value λ^* is the supremum of μ such that:

- (a) For $\forall \lambda \in (0, \mu]$, $\exists u_{\lambda} \text{ (minimal solution)}.$
- (b) The following Hardy type inequality is valid:

$$\begin{split} \int_{\Omega} |\nabla u_{\lambda}|^{p-2} \Big(|\nabla \varphi|^2 + (p-2) \frac{(\nabla u_{\lambda}, \nabla \varphi)^2}{|\nabla u_{\lambda}|^2} \Big) \, dx \\ & \geq \lambda \int_{\Omega} f'(u_{\lambda}) \varphi^2 \, dx \end{split}$$

for any $\varphi \in V_{\lambda,p}(\Omega)$.

$$egin{aligned} V_{\lambda,p}(\Omega) &= \{arphi: ||arphi||_{V_{\lambda,p}} < +\infty, arphi = 0 \ on \ \partial\Omega\}, \ ||arphi||_{V_{\lambda,p}} &= \left(\int_{\Omega} |
abla u_{\lambda}(x)|^{p-2} |
abla arphi|^2 dx
ight)^{rac{1}{2}}. \end{aligned}$$

Under these preparations, we see

Proposition 2.1

$$u_{\lambda^*}(x) = \lim_{\lambda \to \lambda^*} u_{\lambda}(x)$$
 a.e..

Moreover $u_{\lambda^*} \in W_0^{1,p}(\Omega)$ is a weak solution.

Proof: From the definition of $V_{\lambda,p}(\Omega)$, we see $u_{\lambda} \in V_{\lambda,p}(\Omega)$. By the assumption we have

$$(p-1)\int_{\Omega} |\nabla u_{\lambda}|^p dx \ge \lambda \int_{\Omega} f'(u_{\lambda}) u_{\lambda}^2 dx$$

Since u_{λ} is a solution of (2.3), we have

$$\int_{\Omega} |
abla u_{\lambda}|^p \, dx = \int_{\Omega} f(u_{\lambda}) u_{\lambda} \, dx$$

Then for any $\varepsilon > 0$ there is a positive number $C_{\varepsilon} > 0$ such that

$$(p-1+\varepsilon)f(t)t \le f'(t)t^2 + C_{\varepsilon}$$

Hence

$$\int_{\Omega} f'(u_{\lambda}) u_{\lambda}^2 \, dx \leq \frac{p-1}{p-1+\varepsilon} \int_{\Omega} f'(u_{\lambda}) u_{\lambda}^2 \, dx + C'_{\varepsilon}.$$

Here C'_{ε} is a positive number independent of each $\lambda < \lambda^*$. Then, for some positive number C

$$\int_{\Omega} |\nabla u_{\lambda}|^{p} dx = \lambda \int_{\Omega} f(u_{\lambda}) u_{\lambda} dx \leq C$$
$$\int_{\Omega} f'(u_{\lambda}) u_{\lambda}^{2} dx \leq C,$$

and so u_{λ} is uniformly bounded in $W_0^{1,p}(\Omega)$ for $\lambda < \lambda^*$. Therefore $\{u_{\lambda}\}$ contains a weakly convergent subsequence in $W_0^{1,p}(\Omega)$. Since u_{λ} is increasing in λ , the limit $u^* = \lim_{\lambda \to \lambda^*} u_{\lambda}$ uniquely exists a.e. and clearly $u^* \in W_0^{1,p}(\Omega)$ becomes a weak solution.

Definition 2.3 (Singular solution)

A unbounded solution is called singular.

3 The linearized operator of $L_p(u)$ at u_{λ}

Recall the linearized operator and $V_{\lambda,p}$:

$$L_p'(u)\varphi = -\operatorname{div}\Big(|\nabla u|^{p-2}\big(\nabla\varphi + (p-2)\frac{(\nabla u,\nabla\varphi)}{|\nabla u|^2}\nabla u\big)\Big).$$

When $p \geq 2$, $L_p(u)$ is Frechet differentiable in $W_0^{1,p}(\Omega)$. But if $1 , it is not differentiable. Therefore we have to prepare proper space for the linearized operator <math>L'_p(u_\lambda)$ with u_λ being the minimal solution.

Definition 3.1 Let us set

$$||arphi||_{V_{\lambda,p}}=igg(\int_{\Omega}|
abla u_{\lambda}(x)|^{p-2}|
abla arphi|^{2}\,dxigg)^{rac{1}{2}},$$

$$V_{\lambda,p}(\Omega) = \{ \varphi : ||\varphi||_{V_{\lambda,p}} < +\infty, \varphi = 0 \text{ on } \partial\Omega \}.$$

Lemma 3.1 (Coercivity) For $\forall \varphi \in V_{\lambda,p}(\Omega)$,

$$\varphi \in V_{\lambda,p}(\Omega) \Longrightarrow L'_p(u_\lambda)\varphi \in [V_{\lambda,p}(\Omega)]'$$

$$|\langle L_p'(u_\lambda)\varphi,\varphi\rangle_{V_{\lambda,p}'\times V_{\lambda,p}}|\geq C||\nabla\varphi||_{V_{\lambda,p}}^2$$

We need more notations.

Definition 3.2

$$F_{\lambda,p} = \{x \in \Omega : |\nabla u_{\lambda}(x)| = 0\}.$$

Definition 3.3

$$ilde{V}_{\lambda,p}(\Omega) = \left\{ egin{array}{ll} \psi \in C_0^\infty(\Omega) \ |
abla \psi| \equiv 0 \ on \ some \ nbd \ of \ F_{\lambda,p} \end{array}
ight.$$

Lemma 3.2 Assume that $0 < \lambda < \lambda^*$.

If $p \geq 2$, then

$$\tilde{V}_{\lambda,p}(\Omega) \subset W_0^{1,p}(\Omega) \subset V_{\lambda,p}(\Omega),$$

If 1 , then

$$\tilde{V}_{\lambda,p}(\Omega) \subset V_{\lambda,p}(\Omega) \subset W_0^{1,p}(\Omega)$$

Definition 3.4 (Differentiability in $V_{\lambda,p}(\Omega)$)

 $L_p(\cdot)$ is said to be differentiable at u_{λ} in the direction to φ in $V_{\lambda,p}(\Omega)$, if

$$\frac{1}{t}\big(L_p(u_{\lambda}+t\varphi)-L_p(u_{\lambda})-L_p'(u_{\lambda})\varphi\big)=o(1), \qquad in \ \big[V_{\lambda,p}(\Omega)\big]'.$$

In addition if S is dense in $V_{\lambda,p}(\Omega)$, then $L_p(\cdot)$ is said to be differentiable at u_{λ} in $V_{\lambda,p}(\Omega)$ a.e. respectively.

Then we see

Proposition 3.1 Let u_{λ} be the minimal solution. Then, $L_p(\cdot)$ is differentiable at u_{λ} in the direction to $\forall \varphi \in \tilde{V}_{\lambda,p}(\Omega)$.

Definition 3.5 Let us set for \forall compact set $F \subset \Omega$

$$Cap(F, |\nabla u_{\lambda}|^{p-2}) = \inf \left[\int_{\Omega} |\nabla u_{\lambda}|^{p-2} |\nabla \varphi|^{2} dx : \varphi \in C_{0}^{\infty}(\Omega), \varphi \geq 1 \text{ on } F \right]$$

Then we see

Proposition 3.2 If $Cap(F_{\lambda,p}, |\nabla u_{\lambda}|^{p-2}) = 0$, then $\overline{\tilde{V}_{\lambda,p}(\Omega)} = V_{\lambda,p}(\Omega)$.

Corollary 3.1 If $Cap(F_{\lambda,p}, |\nabla u_{\lambda}|^{p-2}) = 0$, then $L_p(\cdot)$ is differentiable at u_{λ} in $V_{\lambda,p}(\Omega)$ a.e.

Remark 3.1 The denseness of $\tilde{V}_{\lambda,p}$ in $V_{\lambda,p}$ is not completely essential in this talk. In most cases it is sufficient that a first eigenfunction can be approximated by elements in $\tilde{V}_{\lambda,p}$.

Remark 3.2 In the case that $p \geq 2$, we have $W_0^{1,p}(\Omega) \subset V_{\lambda,p}(\Omega)$. But we can not take $W_0^{1,p}(\Omega)$ as S in the definition. Because $L_p(u_\lambda + t\varphi)$ with $\varphi \in W_0^{1,p}(\Omega)$ does not belong to $[V_{\lambda,p}(\Omega)]'$ but to $[W_0^{1,p}(\Omega)]'$ in general.

 $\varphi \in W_0^{1,p}(\Omega)$ does not belong to $[V_{\lambda,p}(\Omega)]'$ but to $[W_0^{1,p}(\Omega)]'$ in general. But $L_p'(u_\lambda)$ is continuous from $W_0^{1,p}(\Omega)$ to its dual $[W_0^{1,p}(\Omega)]'$, hence we can give an alternative definition of differentiability of $L_p(\cdot)$ in $[W_0^{1,p}(\Omega)]'$.

Definition 3.6 (Differentiability in $W_0^{1,p}(\Omega)$)

Let $p \in [2, +\infty)$ and let u_{λ} be the minimal solution for $\lambda \in (0, \lambda^*)$. $L_p(\cdot)$ is said to be differentiable at u_{λ} in $W_0^{1,p}(\Omega)$, if for any $\varphi \in W_0^{1,p}(\Omega)$ it holds that as $t \to 0$

$$\frac{1}{t}\big(L_p(u_{\lambda}+t\varphi)-L_p(u_{\lambda})-L_p'(u_{\lambda})\varphi\big)=o(1),\quad in\ \big[W_0^{1,p}(\Omega)\big]'.$$

Proposition 3.3 Let u_{λ} be the minimal solution for $\lambda \in (0, \lambda^*)$. If $p \in [2, +\infty)$, then $L_p(\cdot)$ is differentiable at u_{λ} in direction to $W_0^{1,p}(\Omega)$.

4 The linearlized operator $L'_p(u_\lambda)$

Let $u_{\lambda} \in C^{1,\sigma}(\Omega)$ be the minimal solution.

$$\begin{cases} -\operatorname{div}(|\nabla u_{\lambda}|^{p-2}\nabla u_{\lambda}) = \lambda f(u_{\lambda}) & \text{in } \Omega \\ u_{\lambda} = 0 & \text{on } \partial\Omega, \end{cases}$$

Lemma 4.1 For $\forall \lambda \in (0, \lambda^*)$, we have for $\forall \varphi \in C_0^1(\Omega)$:

$$\int_{\Omega} |\nabla u_{\lambda}|^{p-1} |\nabla \varphi| \, dx \ge C \int_{\Omega} |\varphi| \, dx \tag{4.1}$$

$$\int_{\Omega} |\nabla u_{\lambda}|^{2(p-1)} |\nabla \varphi|^2 dx \ge C \int_{\Omega} \varphi^2 dx \tag{4.2}$$

$$\int_{\Omega} |\nabla u_{\lambda}|^{p-2} |\nabla \varphi|^2 \ge C \int_{\Omega} \varphi^2 \, dx \tag{4.3}$$

Here C is a positive number independent of each φ .

Let us recall $F_{\lambda,p} = \{x \in \Omega : |\nabla u_{\lambda}| = 0\}.$

Corollary 4.1

- 1. $F_{\lambda,p}$ is discrete in Ω .
- 2. $L'_p(u_{\lambda}): V_{\lambda,p} \to [V_{\lambda,p}]'$ is invertible.
- 3. $L'_p(u_{\lambda})$ is extended to a self-adjoint operator on $L^2(\Omega)$.

Definition 4.1 By I we denote the imbedding operator from $V_{\lambda,p}(\Omega)$ into $L^2(\Omega)$ defined by

$$I: \varphi \in V_{\lambda,p}(\Omega) \longrightarrow \varphi \in L^2(\Omega)$$

Then we can show

Proposition 4.1 The imbedding operator

$$I: \varphi \in V_{\lambda,p}(\Omega) \longrightarrow \varphi \in L^2(\Omega)$$

is compact.

Corollary 4.2 The operator

$$M_{\lambda,p} \equiv I_{V o L^2} \circ (L_p'(u_\lambda))^{-1} \big|_{L^2}$$

is compact from $L^2(\Omega)$ into $L^2(\Omega)$.

5 Differentiability of u_{λ} w.r.t. λ $(p \geq 2)$

Theorem 5.1 Assume $2 \leq p < \infty$ and the operator $L'_p(u_\lambda) - \lambda f'(u_\lambda)$ on $L^2(\Omega)$ has a positive first eigenvalue for $\forall \lambda \in (0, \lambda^*)$.

Then u_{λ} is left differentiable with respect to $\forall \lambda \in (0, \lambda^*)$, and $v_{\lambda} \equiv \left(\frac{du_{\lambda}}{d\lambda}\right)_{-} \in V_{\lambda,p}(\Omega)$ satisfies

$$\begin{cases} L'_p(u_{\lambda})v_{\lambda} - \lambda f'(u_{\lambda})v_{\lambda} = f(u_{\lambda}), & \text{in } \Omega \\ v_{\lambda} = 0, & \text{on } \partial\Omega. \end{cases}$$

Remark 5.1 1.

$$\frac{1}{p-1}u_{\lambda} \leq \lambda v_{\lambda}, \qquad \text{if } v_{\lambda} \text{ exists.}$$

6 Behaviors of u_{λ} and $\frac{du_{\lambda}}{d\lambda}$ near $\lambda = 0$

Let $\varphi_0 \geq 0$ be the unique solution of

$$L_p(\varphi_0) = 1$$
 in Ω ; $\varphi_0 = 0$ on $\partial\Omega$.

Lemma 6.1 For $\forall \varepsilon_0 \in (0, \lambda^*)$, $\exists C > 0$ such that for $\forall \lambda \in [0, \varepsilon_0]$:

- (1) $\int_{\Omega} |\nabla u_{\lambda}|^q dx \leq C \lambda^{\frac{q}{p-1}} \text{ for } \forall q \geq 0.$
- (2) $|\nabla u_{\lambda}| \leq C \lambda^{\frac{1}{p-1}} a.e.$
- $(3) \lambda^{\frac{1}{p-1}} \varphi_0 \le u_{\lambda} \le C \lambda^{\frac{1}{p-1}}$

Lemma 6.2 For $\forall \varepsilon_0 \in (0, \lambda^*)$, $\exists C > 0$ such that we have : If $p \geq 2$, then for $\forall \lambda \in [0, \varepsilon_0]$

- $(1) \int_{\Omega} v_{\lambda} \, dx \ge C \lambda^{-\frac{p-2}{p-1}}$
- (2) $\int_{\Omega} |\nabla v_{\lambda}| dx \ge C \lambda^{-\frac{p-2}{p-1}}$

If $1 , then for <math>\forall \lambda \in [0, \varepsilon_0]$

- (3) $\int_{\Omega} v_{\lambda} dx \leq C \lambda^{\frac{2-p}{p-1}}.$
- $(4) \int_{\Omega} |\nabla v_{\lambda}|^2 dx \leq C \lambda^{2\frac{2-p}{p-1}}.$

7 Positivity of $L'_p(u_{\lambda}) - \lambda f'(u_{\lambda})$ for a small λ

Theorem 7.1 $L'_p(u_\lambda) - \lambda f'(u_\lambda)$ has a positive first eigenvalue if λ is sufficiently small.

In other words, $\exists \mu > 0$ such that

$$\langle (L'_p(u_\lambda) - \lambda f'(u_\lambda))\varphi, \varphi \rangle_{V'_{\lambda,p} \times V_{\lambda,p}} \ge \mu \int_{\Omega} \varphi^2 dx,$$

for any $\varphi \in V_{\lambda,p}(\Omega)$.

Proof: A scaling arguement;

$$u_{\lambda} = \lambda^{\frac{1}{p-1}} w_{\lambda}$$

Then as $\lambda \to 0$

$$w_{\lambda} \rightarrow w_0$$
:

$$\left\{egin{array}{ll} L_p(w_0)=1 & ext{in }\Omega \ w_0=0 & ext{on }\partial\Omega \end{array}
ight.$$

The linearlized operator at w_0 has a positive first eigen value! From this fact we can show the assertion.

8 Nonnegativity of $L'_{p}(u_{\lambda}) - \lambda f'(u_{\lambda})$

Definition 8.1 Let $\hat{\varphi}_{\lambda} \in V_{\lambda,p}(\Omega)$ be the first eigenfunction of $L'_{p}(u_{\lambda}) - \lambda f'(u_{\lambda})$

Definition 8.2 (Accessibility Condition) The first eigenfunction $\hat{\varphi}^{\lambda}$ is said to satisfy (AC) if for $\forall \varepsilon > 0$ there exists a nonnegative $\varphi \in \tilde{V}_{\lambda,p}(\Omega)$ such that

$$L_p'(u_\lambda)(\varphi - \hat{\varphi}^\lambda) + |\varphi - \hat{\varphi}^\lambda| \le \varepsilon \max(\hat{\varphi}^\lambda, dist(x, \partial \Omega)) \quad \text{in } \Omega.$$

Theorem 8.1 Assume (AC). Then the 1st eigenvalue of $L'_p(u_\lambda) - \lambda f'(u_\lambda)$ is nonnegative.

Remark 8.1 (1) In case that Ω is radially symmetric, the minimal solution is also radial. Hence this condition is easily verified.

(2) Since L_p is not Frechet differentiable in general, we need Lemma which combines L_p with its linearized operator $L'(u_{\lambda})$.

A Sketchof proof of Theorem:

Assume that $L_p'(u_\lambda) - \lambda f'(u_\lambda)$ has a negative first eigenvalue μ

$$L'_{p}(u_{\lambda})\varphi - \lambda f'(u_{\lambda})\varphi = \mu\varphi, \quad (\mu < 0, \varphi \in \tilde{V}_{\lambda,p}(\Omega)).$$

Lemma 8.1 (Key Lemma) Assume $\varphi \in \tilde{V}_{\lambda,p}(\Omega)$. Then $\exists_1 \psi_t \in C^0([0,T], V_{\lambda,p}(\Omega))$ s.t.

$$\left\{egin{array}{ll} L_p(u_\lambda-t\psi_t(x))=L_p(u_\lambda)-tL_p'(u_\lambda)arphi & in\ \Omega,\ \psi_t=0 & on\ \partial\Omega, \end{array}
ight.$$

Moreover for a small $\rho > 0$ and $\Omega_{\rho} = \{a \in \Omega : dist(x\partial\Omega) < \rho\}$

$$\lim_{t\to 0}||\psi_t-\varphi||_{C^1(\overline{\Omega_\rho})=0}.$$

For small $\forall t>0, \exists x_t\in\Omega \text{ and } \exists r_t>0 \text{ s.t.}$

$$L_p(u_{\lambda}) - tL'_p(u_{\lambda})\varphi \le \lambda f(u_{\lambda} - t\psi_t)$$
 in $B_{r_t}(x_t)$.

$$0 \le \lambda f'(u_{\lambda})(\varphi - \psi_t) + \mu \varphi + o(1)|\psi_t| \quad \text{in } B_{r_t}(x_t).$$

Or,
$$0 \le \lambda f'(u_{\lambda}) \left(1 - \frac{\psi_t}{\varphi}\right) + \mu + o(1) \frac{|\psi_t|}{\varphi}$$
 in $B_{r_t}(x_t)$.

Since Ω is bounded, we can assume $\lim_{t\to+0} x_t = \exists x^0 \in \overline{\Omega}$.

$$0 \le \mu$$

Contradiction!!

9 Proof of Key lemma

Lemma 9.1 (Key Lemma) Assume $\varphi \in \tilde{V}_{\lambda,p}(\Omega)$. Then $\exists_1 \psi_t \in C^0([0,T], V_{\lambda,p}(\Omega))$ s.t.

$$\begin{cases} L_p(u_{\lambda} - t\psi_t(x)) = L_p(u_{\lambda}) - tL'_p(u_{\lambda})\varphi & \text{in } \Omega, \\ \eta_t = 0 & \text{on } \partial\Omega. \end{cases}$$

Moreover for a small number $\rho > 0$

$$\lim_{t\to 0}||\psi_t-\varphi||_{C^1(\overline{\Omega_\rho})=0}.$$

Extremely rough sketch of Proof:

The former part follows from the invertibility of $L'(u_{\lambda})$ and monotonicity of L_p .

The latter part follows from the energy inequalities

$$||W_t||_{W^{n,2}(\Omega_{\rho'})} \leq C(n,\rho,\rho')||W_t||_{V_{\lambda,p}(\Omega)} + t] \to 0 \text{ as } t \to +0.$$

involving $W_t = \psi_t - \varphi$ After all, from Sobolev imbedding theorem the assertion follows.

10 The extremal solution

Theorem 10.1 Let u_{λ^*} be the singular extremal solution. Moreover, assume that f(t) satisfies

$$\frac{f'(t)}{f(t)^{\frac{p-2}{p-1}}}$$
 is nondecreasing on $[0,\infty)$.

Then if $\lambda > \lambda^*$, there is no solution even in the weak sense.

Lemma 10.1 Let $u \in W_0^{1,p}(\Omega)$ be a solution. Let $\Psi \in C^2(\mathbb{R})$ be concave, with Ψ' bounded and $\Psi(0) = 0$. Then $v = \Psi(u)$ satisfies

$$L_p(v) \ge \lambda |\Psi'(u)|^{p-2} \Psi'(u) f(u).$$

For a given $\varepsilon \in (0,1)$ we set

$$\tilde{f} = (1 - \varepsilon)f.$$

$$h(u) = \int_0^u \frac{ds}{f(s)^{\frac{1}{p-1}}}$$
 and $\tilde{h}(u) = \int_0^u \frac{ds}{\tilde{f}(s)^{\frac{1}{p-1}}}$.

Lemma 10.2 Assuming (10.1), we set

$$\Psi(u) = \tilde{h}^{-1}(h(u)).$$

then

- (1) $\Psi(0) = 0$ and $0 \le \Psi(u) \le u$ for all $u \ge 0$.
- (2) If $h(+\infty) < +\infty$ and $\tilde{f} \neq f$, then $\Psi(+\infty) < +\infty$.
- (3) Ψ is increasing, concave, and $\Psi' \leq 1$ for all $u \geq 0$.

Proof of Theorem: Assume that $\exists u$; solution for some $\lambda > \lambda^*$. Set $v = \Psi(u) = \tilde{h}^{-1}(h(u))$. Then v satisfies

$$\begin{cases} L_p(v) \ge \lambda(1-\varepsilon)f(v) & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega. \end{cases}$$

Hence v is a supersolution.

Proposition 10.1 Assume that $p \geq 2$. For any $\varphi \in V_{\lambda^*,p}(\Omega)$

$$\langle (L_p'(u_{\lambda^*}) - \lambda^* f'(u_{\lambda}^*)) \varphi, \varphi \rangle_{V_{\lambda^*, p}' \times V_{\lambda^*, p}} \ge 0.$$

A weaker result holds for 1 .

Proposition 10.2 Assume $1 . Let <math>u \in W_0^{1,p}(\Omega)$ be a singular solution such that for any $\varphi \in V_{\lambda,p}(\Omega)$

$$\langle (L'_p(u_{\lambda}) - \lambda f'(u_{\lambda}))\varphi, \varphi \rangle_{V'_{\lambda,p} \times V_{\lambda,p}} \geq 0.$$

Moreover we assume that

$$|\nabla u| \ge |\nabla u_{\lambda}|$$
 in Ω $(p \ne 2)$.

Then we have $\lambda = \lambda^*$ and $u = u_{\lambda^*}$

A weaker result holds for p > 2.

11 Weighted Hardy's inequality in a ball

Theorem 11.1 Suppose that a positive integer N and a real number α satisfy $N + \alpha > 2$. Then it holds that for any $u \in W_0^1(\Omega)$

$$\int_{\Omega} |\nabla u|^2 |x|^{\alpha} \, dx \geq H(N, \nabla, \alpha) \int_{\Omega} |u|^2 |x|^{\alpha - 2} \, dx + \lambda_1 \Big(\frac{\omega_N}{|\Omega|}\Big)^{\frac{2}{N}} \int_{\Omega} |u|^2 |x|^{\alpha} \, dx.$$

Here

$$H(N, \nabla, \alpha) = \left(\frac{n-2+\alpha}{2}\right)^2$$

 ω_N is a volume of N-dimensional unit ball, and λ_1 is the first eigenvalue of of the Dirichlet problem given by:

$$\lambda_1 = \inf \left[\int_{B_1^2} |\nabla_2 v|^2 dx : v \in W_0^{1,2}(B_1^2), \int_{B_1^2} v^2 dx = 1 \right],$$

where by B_1^2 and ∇_2 we denote the two dimensional unit ball and the gradient.

Remark 11.1 When $\alpha = 0$, this result was initially established in [3] by H. Brezis and J.L. Vázquez. They also investigated in [3] fundamental properties of blow-up solutions of some nonlinear elliptic problems.

For the sake of the self-containedness, we give a proof of Theorem in the case $\alpha=0$. By the spherically symmetric decreasing rearragement, it suffices to show the inequality in the case that $\Omega=B$; a unit ball in \mathbb{R}^N and $u\in C^1_0(B)$ is radiall symmetric. Set $u=r^{-\beta}v$ for $u\in C^1_0(B)$ and $\beta=\frac{N-2}{2}$.

$$\int_{B} |\nabla u|^{2} dx - H(N, \nabla, 0) \int_{B} \frac{u^{2}}{|x|^{2}} dx \qquad (11.1)$$

$$= N\omega_{N} \left(\int_{0}^{1} |u'|^{2} r^{N-1} dr - H(N, \nabla, 0) \int_{0}^{1} u^{2} r^{N-3} dr \right)$$

$$= N\omega_{N} \left(\int_{0}^{1} |v'|^{2} r dr \right) \ge \lambda_{1} N\omega_{N} \int_{0}^{1} v^{2} r dr$$

$$= \lambda_{1} \int_{B} u^{2} dx$$

This proves the assertion.

12 Example

$$\begin{cases} f_q(u) = (1+u)^q, & (q > p-1) \\ f_e(u) = e^u. \end{cases}$$

$$\begin{cases} \lambda_N(p,q) = \left(\frac{p}{q-p+1}\right)^{p-1} \left(N - \frac{pq}{q-p+1}\right), \\ \lambda_N(p) = p^{p-1}(N-p). \end{cases}$$

$$\begin{cases} U_{p,q}(r) = r^{-Q} - 1, \quad Q = \frac{p}{q-p+1} \\ U_p(r) = -p \log r. \end{cases}$$

Lemma 12.1 $U_p \in W_0^{1,p}(B)$ if N > p and $U_{p,q} \in W_0^{1,p}(B)$ if N > p + pQ. Moreover:

$$\begin{cases} L_p(U_{p,q}) = \lambda_N(p,q)(U_{p,q}+1)^q & inB \\ U_{p,q} = 0 & on \partial B, \end{cases}$$

$$\begin{cases} L_p(U_p) = \lambda_N(p)e^{U_p} & inB \\ U_p = 0 & on \partial B. \end{cases}$$

As
$$q \to +\infty$$
, for any $r \in (0,1)$

$$\left(f_q\big(U_{p,q}(r)\big), q\lambda_N(p,q), qU_{p,q}(r)\right) \to \left(f_e(U_p(r)), \lambda_N(p), U_p(r)\right)$$

Proposition 12.1 (Exponetial case) Assume that $1 . Then <math>U_p$ is the singular extremal, iff $N \ge p^{p+3}_{p-1}$.

Proposition 12.2 (Exponetial case) Assume p > 2. Then U_p is the singular extremal, if N > 5p.

Proposition 12.3 (Polynomial case) Assume $1 . Then <math>U_{p,q}$ is the singular extremal, iff

$$N \ge \frac{p(1+qQ) + 2\sqrt{pqQ}}{p-1}.$$

Proposition 12.4 (Polynomial case) Assume p > 2. Then $U_{p,q}$ is the singular extremal with $f = f_p$, if

$$N \ge Q(3q - 1 + 2\sqrt{q(q-1)}).$$

Remark 12.1 (1) When p > 2, it is unknown if U_p ; $5p > N \ge p\frac{p+3}{p-1}$ $(U_{p,q}; Q(3q-1+2\sqrt{q(q-1)}) > N \ge \frac{p(1+qQ)+2\sqrt{pqQ}}{p-1})$ becomes the extremal. (2) $1 . If <math>N > p\frac{p+3}{p-1}$, then

$$L_p'(U_p) - \lambda_N(p)e^{U_p}$$

has a positive first eigenvalue $\mu(\lambda_N(p))$.

If $N=p^{p+3}_{p-1}$, then this does not have a 1st eigenfunction in $W_0^{1,p}(B)$. However, the weighted Hardy inequality gives a positive value for $\mu(\lambda_N(p))$ defined as

$$\mu(\lambda_{N(p)}) = \lim_{\lambda \to \lambda_{N(p)}} \mu(\lambda) = \lambda_1 p^{p-2} (p-1).$$

References

- [1] H. Brezis, Th. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for $u_t \Delta u = g(u)$ revisited Advancs in P.D.E., Vol. 1, 1996 pp.73–90.
- [2] H. Brezis and J.L. Vazquez, Blow-up solutins of some nonlinear elliptic problems *Revista Matematica de la Univ. Comp. de Madrid*, **Vol. 10**, No. 2, 1997 pp.443–469.
- [3] L. Damascelli and F. Pacella, Monotonicity and symmetry of solutions of p-Laplace equations, 1 , via the moving plane method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Vol. 26, 1998 pp.689–707.
- [4] L. Damascelli, Comparison theorems for some quasilinear degenarate elliptic operators and applications to symmetry and mmonotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 15, 1998 pp.493–516.
- [5] E. Di Benedetto, $C^{1,\alpha}$ local regularity of weak solutions of degenerate elliptic equations, *Nonlinear Anal.*, **Vol. 7**, 1983 pp.827–850.
- [6] T. Horiuchi, The imbedding theorems for weighted Sobolev spaces, J. of Mathematics of Kyoto University, Vol 29, No. 3, 1989, pp 365–403.

- [7] T. Horiuchi, On the relative *p*-capacity, *J. Math. Soc. Japan*, **Vol 243**, No. 3, 1991, pp 605–617.
- [8] T. Horiuchi, Missing terms in generalized Hardy's inequalities and related topics, *Preprint series of Dept. of Math.*, Chalmers (Göteborg University), 2002.
- [9] T. Horiuchi and P. Kumlin, On the minimal solution for quasilinear degenerate elliptic equation and its blow-up, *Preprint series of Dept. of Math.*, Chalmers (Göteborg University), 2003, No.36.
- [10] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, *Arch.Rat.Mech.Anal.*, **Vol 49**, 1973, pp 241–269.
- [11] G. M. Liebermann, Boundary regularity for solutions of degenerate elliptic equations, *Nonlinear Anal.*, Vol. 12, 1988 pp.1203–1219.
- [12] Y. Martel, Uniqueness of weak extremal solutions for nonlinear elliptic problems, *Houston J. of Math.*, Vol 23, 1997, pp 161–168.
- [13] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations J. Differential Equations, Vol. 51, 1984 pp.126–150.
- [14] J. L. Vasquez, A strong maximum principle for some quasilinear elliptic equations, *Appl. Math. Optim.*, **Vol. 12**, 1984 pp.191–202.
- [15] L. Véron, Singularities of solutions of second order quasilinear equations, *Pitman research Notes in Math. Series*, **Vol. 353**, 1996.