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Abstract
We treat the equations with a positive nonlinearity in the right hand side. Namely

Ly(u) = Af(u), in Q,
{ u=20 on 91, (0.1)
where
Lyp(u) = ~ div(|Vu|P~2Vu) (0.2)

Here A > 0, and the nonlinearity f is, roughly speakir')g, positive, increasing and strictly convex on
[0,+00). In connection with combustion theory and other applications, we are interested in the study of
positive minimal solutions. This is a résumé of the preprint [9].

1 Introduction.

In connection with combustion theory and other applications, we are inter-
ested in the study of positive solutions of the following;:

{ Lp(u) = Af(u), inQ, (1.1)
w=0 on 012,
where
Ly() = —div(|Vul2Vu) (1.2)

Here A > 0, and the nonlinearity f is, roughly speaking, positive, increas-
ing and strictly convex on [0, +00).
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When p = 2, it is known that there is a finite number \* such that (1.2)
has a classical positive solution v € C2(Q) if 0 < A < A*. On the other
hand no solution exists, even in the weak sense, for A > A\*. This value \*
is often called the extremal value and solutions for this extremal value are
called extremal solutions. It has been a very interesting problem to study
the properties of these extremal solutions.

As for a nonlinearity f(t) we adopt the following.

Definition 1.1 f(t) € C([0,+00)), increasing, strictly convez and

f(0) >0, li{ﬁglff% >p—1.

Definition 1.2 ( Weak solution )
A function u € Wy(Q) is called a weak solution, if f(u) satisfy

dist(z,09) - f(u) € L}(Q)

and u satisfies
/ (IVufP~2Vu - Vo — Af(u)p)dz = 0
Q

for all p € C}(Q).

Lemma 1.1 Let u € W,P(Q) N L™ be a weak solution. Then 3C > 0 and
do € (0,1) such that

|Vu(z) — Vu(y)| < Clz —y|°.
Then we have
Lemma 1.2
3

u; a classical solution for a sufficiently small X > 0.

2 Minimal solution and extremal solution

Definition 2.1 (Minimal solution) |
The mimimal solution uy € C*(Q) is the smallest solution among all pos-
sible solutions.
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Then we have

Lemma 2.1 3; uy, € CYQ); the minimal solution for a sufficiently small
A>0.

Lemma 2.2 uy satisfies:

1. ux € CY(Q) for some o € (0,1),
2. For A>0, ux >0 in Q and uy = 0 on 9.
8. monotone increasing and left-continuous on \.

Definition 2.2 ( Extremal value )\*)
The extremal value \* is the supremum of W such that:

(a) For VA € (0, ], Fux (minimal solution,).
(b) The following Hardy type inequality is valid:

U 2
J 19219l + (p- 2 TRy g,

> )\/ () p?dz
Q
for any ¢ € V5 ,(Q).
Vap(2) = {¢: llolln, < +00, =0 on 89},

1

2
lelin, = ([ 1Vu@P-2veaz)
Under these preparations, we see
Proposition 2.1
ux(z) = )}Ln;‘l* ur(z) ae.
Moreover uy. € WyP(R) is a weak solution.

Proof: From the definition of Vj,(£2), we see uy € V3,(R). By the assump-
tion we have

(p— 1)/Q |Vus|P dz > A/s;f’(u;\)u?\ dz
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Since ) is a solution of (2.3), we have

/|Vu,\l”dx——/fu)\ uy) dz

Then for any € > 0 there is a positive number C. > 0 such that
(p—1+e)f(t)t < f(t)* + Ce

Hence

/f s dr < f;_}_ /f (up)ul dz + C.

Here C{ is a positive number independent of each A < A\*. Then for some
positive number C

/ |VupP dz = )\/ flun)uprdz < C
Q 0
/ f'lw)uidz < C,

Q

and so uy is uniformly bounded in W;P(Q) for A < A*. Therefore {u,}
contains a weakly convergent subsequence in Wol’p (€2). Since uy is increasing
in A, the limit ¥* = lim_, )+ u) uniquely exists a.e. and clearly u* € WO1 P(Q)
becomes a weak solution. O

Definition 2.3 ( Singular solution)
A unbounded solution is called singular.

3 The linearized operator of L,(u) at uy

Recall the linearized operator and V), :

I = —div ((Vup2(V + o -9 TE TP vu)).

When p > 2, L,(u) is Frechet differentiable in W}?(Q). But if 1 < p < 2,
it is not differentiable. Therefore we have to prepare proper space for the
linearized operator L;(uy) with uy being the minimal solution.
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Definition 3.1 Let us set

[

lellvg, = ( / quA(:v)l”‘ZIVsoizdm)i,

Vap() = {e: [lellv, < +00,90 =0 on 0Q}.
Lemma 3.1 (Coercivity) For Yy € Vap(Q),

P € Vap(Q) = Ly(un)p € [Vap ()]

!(L;(u/\%O) @)V{,vax,p| 2> CHVQDH%/A,,,
We need more notations.
Definition 3.2

Frp={z € Q:|Vuy(z)| = 0}.

Definition 3.3

@) =1 YECQ
p V4| = 0 on some nbd of Fy,

Lemma 3.2 Assume that 0 < \ < \*.
If p> 2, then

() € W3P(Q) C Va,(9),
If1<p<?2, then
Vap(Q) C Vap(Q) € Wo?(9)

Definition 3.4 (Differentiability in V) ,(Q))
Lp(-) is said to be differentiable at uy in the direction to v in Vip(Q), if

%(Lp(u,\ +1p) = Ly(wa) — Ly(ua)p) = o(1), in [Vap(©)]"

In addition if S is dense in V) ,(Q), then L,(-) is said to be differentiable at
ux 1 V) ,(Q)a.e. respectively. |
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Then we see

Proposition 3.1 Let uy be the manimal solution. Then, Ly(-) is differen-
tiable at uy in the direction to Vo € V) ,(9).

Definition 3.5 Let us set for V compact set F C Q
Cap(F, |Vuy|[P~2) = inf l:/ |VupP~2|Vp|?dz :
Q

0eCPQ) 21 onF]

Then we see

—————

Proposition 3.2 If Cap(Fyp, [VuaP~2) = 0, then V3,(Q) = V3,(Q).

Corollary 3.1 If Cap(F\yp,|Vua|P=2) =0, then Ly(-) is differentiable at uy
in Vap(Q) a.e.

Remark 3.1 The denseness of Vs, in Vap 18 not completely essential in this
talk. In most cases it is sufficient that a first eigenfunction can be approzi-
mated by elements in V), ,.

Remark 3.2 In the case that p > 2, we have WyP() C V(). But we
can not take WyP(Q) as S in the definition . Because Ly(uy + tp) with
v € WyP(Q) does not belong to [Vap(Q)) but to [WyP(Q)) in general.

But Ly,(uy) is continuous from W, ?(Q) to its dual [WP(Q)]', hence we can
gwe an alternative definition of differentiability of L,(-) in [Wy ()],

Definition 3.6 (Differentiability in W}*(Q))

Let p € [2,+00) and let ux be the minimal solution for X € (0,A*). L,()
is said to be differentiable at uy in Wy P(Q), if for any ¢ € WP () it holds
that ast — 0

/

%(Lp(u,\ +19) = Lp(wa) — Ly(ua)p) = o(1), in [Wy™(Q)]"

Proposition 3.3 Let ux be the minimal solution for A € (0,A*). Ifp €
2, +00), then Ly(-) is differentiable at uy in direction to WOIV’P (Q).
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4 The linearlized operator Ly (uy)

Let uy € C() be the minimal solution.

{ —div(|VurP2Vuy) = Af(uy)  in Q

uy=0 on 99,

Lemma 4.1 For YA € (0, X*), we have for Yy € CHQ)
[ verivelds > 0 [ jolds (4.1)
/9 |Vua 2P~V | V2 dz > C’/ng2 dx (4.2)
/Q VP2 Vgl? > C /Q P da (4.3)

Here C is a positive number independent of each ©.
Let us recall F), = {z € Q: |Vuy| = 0}.

Corollary 4.1
1. Fy, is discrete in Q.
2. Ly(ur): Vap — [Va,) is invertible.
8. L, (uy) is extended to a self-adjoint operator on L3(Q).

Definition 4.1 By I we denote the imbedding operator from Vj ,(Q)into L*(Q)
defined by

I € V() — p e LX(Q)
Then we can show
Proposition 4.1 The imbedding operator
I:peV\,(2) — p € L3Q)

18 compact.

Corollary 4.2 The operator

M,\,p = IV—>L2 o (L;,(’U,A))—IILg

is compact from L%(2) into L*(Q).
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5 Differentiability of u) w.r.t. A (p > 2)

Theorem 5.1 Assume 2 < p < oo and the operator L. (u)) — Af'(uy) on
L?(Q) has a positive first eigenvalue for YA € (0, \*).

Then uy 1s left differentiable with respect to V) € (0,X*), and vy = (%\A) €
Vap(Q) satisfies

Ly(ua)or = Af'(w)va = f(uy), inQ
vy =0, on 0.
Remark 5.1 1.

p lu,\ < vy, if vyexists.

6 Behaviors of u, and %‘f\l near A\ =0

Let o > 0 be the unique solution of
Ly(wo)=1 in€; ¢g=0 onoQ.

Lemma 6.1 For Ve € (0,A*), 3C > 0 such that for Y\ € [0,¢q):

(1) [ |Vu|?dz < CA#1 for Vg > 0.

(2) |Vus| < CAFT ace.

(3) ARTp < up < CAFT

Lemma 6.2 For Ve, € (0,A*), 3C > 0 such that we have :
If p > 2, then for VA € [0, &)

(1) fyvrdz > CA~ 52
(2) [, |Vuvx| dz > CA~5=

If1<p<2, then for V) € [0, ]

(3) Jovrds < CARE.
(4) [, |Vus2dz < CX%3.
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7 Positivity of L/ (uy) — A\f'(uy) for a small )\

Theorem 7.1 Ly(ua) — Af'(un) has a positive first eigenvalue if \ is suffi-
ciently small.

In other words, 3 > 0 such that

(L) = M (), @y v, > / o d,
QO
for any ¢ € Vi ().

Proof: A scaling arguement;

Then as A — 0
w) — Wo .

Lp(’IUo) =1 in Q
Wy = 0 on onN

The linearlized operator at wp has a positive first eigen value! From this
fact we can show the assertion.

8  Nonnegativity of L (us) — Af'(u,)

Definition 8.1 Let p) € V) ,() be the first eigenfunction of L, (u,\)—)\f’(u,\)

Definition 8.2 (Accessibility Condition) The first eigenfunction PN

said to satisfy (AC) if for Ve > 0 there ezists a nonnegative o € V,\p(ﬂ) such
that

L(ua)(p — @) + | — ¢ < e max(*, dist(z,00)) in Q.

Theorem 8.1 Assume (AC). Then the 1st eigenvalue of L' p(Ur) — Af'(uy) is
nonnegative.
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Remark 8.1 (1) In case that Q is radially symmetric, the minimal solution
is also radial. Hence this condition is easily verified.

(2) Since L, is not Frechet differentiable in general, we need Lemma which
combines Ly, with its linearized operator L' (u,).

A Sketchof proof of Theorem :

Assume that L (u)) — Af'(u))has a negative first eigenvalue u

Ly(w)e = Af'(w)p = wo, (4 <0,p € V().
|
Lemma 8.1 (Key Lemma ) Assume p € V;,(R). Then 3¢, € C°([0, T, Vap())
s.t.

Lp(ux — t1(2)) = Lp(un) — tLi(ua)p in 9,
’(/)t =0 on 8Q,
Moreover for a small p > 0 and Q, = {a € Q : dist(z6Q) < p}
P_I}g |9 — WHCl(ﬁj)zo'

!
For small "¢ > 0,7z, € Q and r; > 0 s.t.

Lp(ux) — tLy(ua)p < Af(ua—tyh)  in By, (z).
l
0 S Af'(ua)(p —%t) + pp +o(1)lfs|  in By,(xy).

Or, 0<\f'(uy) (1 - %) +u+ 0(1)|—%-I— in By, (z:).

Since Q is bounded, we can assume lim;_, oz = 32 € Q.

0<up
Contradiction!!
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9 Proof of Key lemma

Lemma 9.1 (Key Lemma ) Assume ¢ € V3 ,(Q). Then 319, € CO([0,T], V2,(2))
s.t.

Lp(ux — tiy(z)) = Ly(ua) — tLy(ux)p in Q,
=0 on Of).

Moreover for a small number p > 0
lim |9 — o] 1) =o-
Extremely rough sketch of Proof:

The former part follows from the invertibility of L’ (u) and monotonicity
of Ly.

The latter part follows from the energy inequalities
“WtHW"ﬂ(Qpl) < C(n,p, P’)”I’VtHVM(g) +t] - 0ast— +0.

involving W; = 94 — ¢ After all, from Sobolev imbedding theorem the asser-
tion follows.

10 The extremal solution

Theorem 10.1 Let uy be the singular extremal solution.
Moreover, assume that f(t) satisfies

f'(¢)
fe)s=
Then if A > X*, there is no solution even in the weak sense.

Lemma 10.1 Let u € W;P(Q) be a solution. Let ¥ ¢ C%(R) be concave,
with ' bounded and ¥(0) = 0. Then v = ¥(u) satisfies

Ly(v) 2 AW (u) P~ (u) £ (u).

is nondecreasing on [0, 00).

For a given € € (0,1) we set

-~

f=Q0-¢)f
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h(u) = /Ou f(j)i%l and h(u) = /Ou f(j)i—if

Lemma 10.2 Assuming (10.1), we set
(u) = b~ (h(u)).

then
(1) ¥(0) =0 and 0 < ¥(u) < u for all u > 0.
(2) If h(+00) < +00 and f # f, then ¥(+00) < +o0.
(8) U is increasing, concave, and V' < 1 for all u > 0.

Proof of Theorem: Assume that Ju;solution for some A > \*. Set v =
W (u) = h~!(h(u)). Then v satisfies

Ly(v) 2 X1 -¢)f(v) in
v=0 on o).

Hence v is a supersolution.

Proposition 10.1 Assume that p > 2. For any ¢ € Vi ,(Q)

((LZ(U/\*) — A f(4}))e, SD)VA',,’prA*,p > 0.
A weaker result holds for 1 < p < 2.

Proposition 10.2 Assume 1 < p < 2. Letu € Wol’p () be a singular solu-
tion such that for any ¢ € V5 ,(Q)

((Lyp(ur) = Af (), @)vy xvi, = 0.

Moreover we assume that

|Vu| > |Vu,| inQ (p#2).

Then we have A = X* and u = uy

A weaker result holds for p > 2.
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11  Weighted Hardy’s inequality in a ball

Theorem 11.1 Suppose that a positive integer N and a real number o satisfy
N + o > 2.Then it holds that for any u € W2(Q)

/ﬂ Vul?z|* dz > H(N,V,a) /Q lu|2]m|a-2dx+A1(‘|‘—’Qﬁl)% /ﬂ lul2z]* da.

Here
n—2 +a)2
2 ]

wn 18 a volume of N-dimensional unit ball, and )\, is the first eigenvalue of
of the Dirichlet problem given by:

A1 = inf [/ VoulPdz :v € Wol’z(Bf),/ vdr = 1],
B} Bf

H(N,V,a) = (

where by B} and V, we denote the two dimensional unit ball and the gradient.

Remark 11.1 When a = 0, this result was initially established in /3] by H.
Brezis and J.L. Vdzquez. They also investigated in [3] fundamental properties
of blow-up solutions of some nonlinear elliptic problems.

For the sake of the self-containedness, we give a proof of Theorem in the
case a = 0. By the spherically symmetric decreasing rearragement, it suffices
to show the inequality in the case that @ = B; a unit ball in RY and u €
Cy(B) is radiall symmetric. Set u = =Py for u € Co(B) and g = X2,

2
/ |Vul?dz — H(N, V,0) u—2dx (11.1)
B B |Z|

1 1
= NwN(/ W/ [>rN"1dr — H(N, V,O)/ u?rN-3 dr)
0 | 0

1 1
=NwN(/ |’U’|2rdr) > AleN/ v dr
0 0

=/\1/ u?dzx
B

This proves the assertion.
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12 Example

{ flu)=(1+uv)?  (g>p-1)
fe(u) = €.
{ A, q) = (727)" 7 (N — 245),
An(p) = p~1(N —p).
{ Upglr) =179 —1, Q=27
Up(r) = —plogr.

Lemma 12.1 U, € Wy*(B) if N > p and U,, € WP(B) if N > p + pQ.
Moreover :

{ Ly(Upg) = An(p,q)(Upg + 1) inB

Upq =0 on 0B,
Ly(U;) = An(p)e%  inB
Up=0 on 0B.

As ¢ — +o0, for any r € (0,1)
(fq(Up,q(r))7q)‘N(pa q),qU, ,q(r)) - (fe(Up("')):)‘N(p)vUp("'))

Proposition 12.1 (Ezponetial case) Assume that 1 < p < 2. Then U, is the
singular extremal, iff N > pgj_'—:l”.

Proposition 12.2 (Ezponetial case) Assume p >-2. Then U, is the singular
extremal, if N > 5p.

Proposition 12.3 (Polynomial case) Assume 1 < p < 2. Then U, is the
singular extremal, iff

N> P +49Q) +2vpgQ
> P :
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Proposition 12.4 (Polynomial case) Assume p > 2. Then Upq s the sin-
gular extremal with f = f,, if

N 2 Q3¢ —1+2+/q(g-1)).
Remark 12.1 (1) When p > 2, it is unknown if U,;5p > N > pgf—i’ (Up,g;
Q(Bg—1+2/9(g—1)) > N > &l +qf,)f12‘/m) becomes the extremal.
(2)1<p<2. IfN>ptt then
Ly(Up) — An(p)e’

has a positive first eigenvalue pu(An(p)).
If N = pﬁ—f, then this does not have a 1st eigenfunction in W(,l’p (B).

However, the weighted Hardy ineguality gives a positive value for w(An(p))
defined as

#Ane) = | lim () = pP~H(p - 1).
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