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1 Introduction

One of the key difficulties in the study of non-relativistic QED is the appearance of infrared
singularities in the computation of many fundamentally important quantities, such as scat-
tering amplitudes (if computed naively), which originate from the fact that the photon has
no mass. The link between zero photon mass, and the infrared pathologies can be explained
as follows. By Planck’s law, the energy of the photon is proportional to its frequency, and
can be arbitrarily small (the lower bound on the kinetic energy for any relativistic particle is
given by its rest mass, which is zerc in the case of the photon). As a consequence, electrons
always form an energetically favorable bound state with an infinite number of low frequency
(soft, infrared) photons of small total energy (of order O(g?), where g is the electron charge,
considered as a small parameter), thus establishing a so-called infraparticle state. However,
the canonical quantization of classical non-relativistic electrodynamics yields a quantum field
theory in which the electrons are stricly distinguished from the photons.

The infraparticle state is in most cases not a vector in the usual product Hilbert space of
the electron L?-space with the photon Fock space obtained from the canonical quantization
procedure, but an element of a so-called infrared representation Hilbert space that is unitarily
inequivalent to it. In the case of confined particles, the infrared problem is reduced, due
to the localization of the eilectron wave function, whereas in the case of free electrons, the
infrared problems are worst. Although many non-measurable quantities are infrared divergent,
it is important to note that measurable quantities, such as scattering cross sections or the
infraparticle mass, are infrared finite, and can be computed by a limiting process, in which an
artificial infrared regularization in the theory is removed.

For the historical development of the study of infrared problems in QED, we refer to
[11, 44, 18, 33, 19, 42, 21, 22, 23]. Among a great number of the recent works in this direction,




we in particular mention the works by V. Bach, J. Frohlich, I. M. Sigal, [3, 4], M. Griesemer,
E. H. Lieb, M. Loss, [25], A. Pizzo [39], E. H. Lieb and M. Loss, [35], and H. Spohn et al
[36, 37, 41, 32], and furthermore, [24, 30, 1].

* Here, we report on [15, 16], which focus on the translation invariant system consisting of a
freely propagating electron in R3 that interacts with the quantized electromagnetic field, and
the associated problems of infrared renormalization. We aim at analyzing properties of the
infraparticle states, and of the corresponding eigenenergies.

Our method uses the operator-theoretic renormalization group introduced by V. Bach, J.
Frohlich, and I. M. Sigal, [3, 4]. To the same degree as we are interested in furthering our
understanding of non-relativistic QED, we are focused on further developing the operator-
theoretic renormalization group as a method in functional analysis, [7]. The mathematically
rigorous theory of renormalization in quantum field theory, (12, 29], and renormalization
group, [10, 13, 20, 40], has a long and successful history, originating in the groundbreaking
work of K. Wilson, [43]. Most known methods are tailored for the renormalization of the n-
point functions in a quantum field theory, from which the scale dependence of the important
physical parameters can be extracted. This is physically satisfying, but one may wish for
additional mathematical, structural insight. One would for instance desire a more direct link
between the study of a quantum field theory to the traditional theory of Schrodinger operators
as a branch of functional analysis.

This is precisely the motivation and impact of the new renormahzatlon group method of
Bach, Frohlich and Sigal, [3, 4, 7). It is designed for the spectral analysis of quantum field
theoretic Hamiltonians, to study questions about the location of spectrum and resonances,
about the spectral type in a given spectral interval, about the constructive determination of
eigenvalues and the corresponding eigenvectors, etc.. Furthermore, it requires only a very
mild combinatorial effort, since the key task is to control relative operator bounds, rather
than explicitly evaluating Feynman amplitudes.

2 Definition of the model and statement of main results

We shall here introduce the Pauli-Fierz model for a free electron that interacts with a quantized
electromagnetic radiation field, described in the Coulomb gauge The Hilbert space of states

is given by
H=Ha® F )



where H,; = L?(R®) is the Hilbert space accounting for a scalar electron. The Hilbert space
of states accounting for the quantized electromagnetic field is given by the Fock space

F = 69"’tZO}-'n ’
Fn = Sym[(Lz(R3) ®C2)®n] ,

where F, is the totally symmetrized n-photon Hilbert space, with C? accounting for the two
possible polarizations of the photon. We choose a basis of polarization vectors, with indices
+ or —. For A € {+,~} and f € L?(R?), we introduce creation operators a}(f) : F, = Frni1
and annihilation operators a)(f) : 7, — F,-; on F, which satisfy the canonical commutation
relations

[ax(£), a3(f)] = £, 2, [k ak(F)] =0,

for all f, f’ € L>(R3). Furthermore, there exists a unique unit ray 2y € F, the Fock vac-
uum, with ax(f)2y = 0 for all f € L?(R3), and A = +. This defines the operator-valued
distributions af(k), with ¥ € R3, such that a(f) = J d®kf(k)ak (k). In second quantized
representation,

H=3 [ avlklas®ar) , Py = > [ dkka koo

are the Hamilton and the momentum operator of the free photon field

To use the translation invariance of the model, we decompose H into a direct integral
H= f;; dpH,, where H,, is the fibre Hilbert space corresponding to conserved total momentum
p € R®. Every H,, is isomorphic to C2 ® F, and invariant under time and space translations.
The Hamiltonian of the system can likewise be decomposed into H(k) = [ ® dpH (p, k) on H,
where the fibre Hamiltonian on H,, is given by

H(p,k) = —;—(p—Pf—gA,c)z—{-Hf.

Here, g is the electron charge, o is the vector of Pauli matrices, and

4 = 3 / Vj%x(n<|kl<1){e;(k)a,\(k)+h.c.}.

Ay denotes infrared and ultraviolet regularized quantized electromagnetic vector. The value of
0 < £ <1 can be chosen arbitrarily small, and the polarization vectors e, (k), e_(k) together
with k € R? form an orthogonal basis, for all k # 0, since we are using the Coulomb gauge.
We note that therefore, P;A, = A, P;.



2.1 The main theorem

The main results of [15] characterize the infimum of the spectrum of the fibre Hamiltonian
H(p, k). We prove that it consists of a non-degenerate eigenvalue for all x > 0. The associated
ground state eigenvector 9(p, k) € H,, is a so-called infraparticle state, which is a bound state
composed from the electron and an infinite number of very low frequency (soft) photons of
small total energy. In particular, we prove bounds on the renormalized infraparticle mass
at fixed conserved momentum p, which are uniform in the infrared cutoff k, as kK — 0. We
note that due to the absence of positron production in non-relativistic QED, there is no
renormalization of g.

Theorem 2.1 Assume that g > 0 is sufficiently small, and that |p| < 516' Then, for any
k>0,

E(p, k) := inf specr (H(p, n))

is a non-degenerate eigenvalue. Let Q(p,k) € F denote its corresponding eigenvector, with
normalization condition (Q(p, k), 2 ® Q;) = 1. Then,

190, )l ~ eFw, (1)
%:(BeR - 5)] < e
6;|E(p,n) < 1 (2)

for0<a<2 andallc >0, where all constants c; are independent of g, lp|, and in particular
K.

The upper bounds on |p| can be improved, but not beyond a critical value below 1. This is
connected to the fact that if |p| approaches the rest energy of the infraparticle, the infraparticle
tends to reduce its kinetic energy by the emission of Cherenkov radiation. It is thus expected
that the eigenvalue E(p, k) disappears in this limit, and that instead, a resonance emerges.

The second derivative of E(p, k) with respect to |p| determines the renormalized infraparti-

cle mass )
m(p, k) = (85, E(p, K))™ ..

The key novelty in theorem 2.1 is the uniformity of the bounds on m(p, k) with respect to
k, even in the case p # 0. The cloud of soft photons increases the mass, in comparison to the
naked mass of the electron.

The vector (p, k) on H, = F represents an infraparticle state, consisting of the electron
in a bound state with an infinite number of soft photons with a small total energy. The



divergent bounds in ( 1) as x — 0 hint to the inexistence of a ground state for all p # 0. Only
in the case |p| = 0, ¥(0, k) converges to an element of C? ® F in the limit x — O. :

This is an instance of the infamous infrared in QED. The deeper structure of this problem
has been clarified in the work of J. Frohlich, [21, 22]. Let 2 denote the *-algebra generated
by {1,a*(f,A),a(g, A)} for f,g € L*(R%) and X € {+,—}. A state on 2 is a linear functional
w : A — C that is positive, w(A4*A) > 0 for all A € 2, and normalized, w(1) = 1. For fixed &
and p, let wy . denote the vector state defined by

wpr : A= C , A (U(p; ), AU(p; K)) .

For the related case of the massless Nelson model, it was proved in [21] that w,(A4) =
lim,_owp«(A) is well-defined for all A € 2, and all |p| sufficiently small. The GNS con-
struction, [21], corresponding to w, yields an infrared representation Hilbert space 'H,S,IR). If
|p| > 0, the latter carries a representation of the CCR algebra that is unitarily inequivalent
to the Fock representation. The same fact is expected to hold for the present system.

2.2 Structure of the proof

The proof uses an extension of the operator-theoretic renormalization group based on the
smooth Feshbach map of V. Bach, J. Frohlich and I. M. Sigal, (7, 8, 15]. One considers a
certain Banach space W of generalized Wick kernels, and an embedding H of W into the
bounded operators acting on the Hilbert space H,es := Ran(x(H; < 1)) C F. Furthermore,
one makes a careful choice of a polydisc P C W, introduces a renormalization map R : P — P,
and studies the dynamical system (P, R). A key property of R is that it is contractive on a
subspace of P of codimension two. Using the smooth Feshbach map, one associates H(p, K)
to an element w® € P, and considers the orbit {w™},en, under R that emanates from
this initial condition. In particular, all H[w(™)] are mutually isospectral in the sense of the
Feshbach theorem, [7]. The intersection of the critical set of R with this orbit corresponds to
the effective Hamiltonian in the scaling limit, H[w(*)], for which it is trivial to determine the
ground state eigenvalue and eigenvector. This is because of the infrared regularization at ,
the scaling limit determines a non-interacting theory. Thus, by isospectrality of the smooth
Feshbach map, one reconstructs the corresponding ground state data of H (p, k).

For every x > 0, one can then in principle estimate the renormalized infraparticle mass and
other quantities of interest, using the recursive bounds generated in the renormalization group
iteration. However, the proof of uniform bounds as x — 0 is extremely difficult. In contrast
to the models studied in [3, 4], which treated confined electrons in atoms and molecules,
the interaction in the translation invariant model is, in the renormalization group context,
purely marginal. The key result in [15] is a method to control the renormalization group



flow of purely marginal operators. To describe the difficulty, let By := Zf:;o 60, denote the
coefficient of a strictly marginal operator, where 603, is its correction under the renormalization
map passing from scale n — 1 to n. Then, despite 0 < |66,] = O(€) with respect to some
small parameter €, and all n, |Gy| < Ce, with C uniformly bounded in N. The key idea in
[15] is a renormalization group subiteration that controls the almost complete cancellations
in the oscillatory sum that defines Oy, based on a strong induction principle that exploits
the algebraic concatenation identities satisfied by the smooth Feshbach map. Furthermore,
U(1) gauge invariance is used to fundamentally reduce the complexity of the problem, by
identifying several a priori independent strictly marginal operators, and is implemented in
the form of generalized Ward-Takahashi identities. In the context of the operator-theoretic
renormalization group, they are given by an infinite hierarchy of non-perturbative first order
differential identities which are preserved by the renormalization map.

2.3 Further results

A subsequent work, [16], investigates the interconnection between spatial and gauge sym-
metries in the physical system, and the algebraic structure of the Feshbach renormalization
group. This allows for the extension of [15] to the case including electron spin. Furthermore,
the analysis in [15] is simplified, and rigorously reorganized, in order to render the method
more transparent, and more generally applicable.

A non-confining potential in a Schrodinger operator can become confining if the electron
is coupled to the quantized electromagnetic field. In a recent collaboration with V. Vougalter
and S. A. Vugalter, [17], results about enhanced binding in non-relativistic quantum electro-
dynamics were established for small g, and spin %, and the increase of binding energies due
to the coupling to the photon field was proved. The first work on enhanced binding was [31],
and further works are [17, 14, 28, 2]. Furthermore, in a present joint work of the PI with S.
A. Vugalter and J.-M. Barbaroux, [9], binding conditions for N-electron systems were estab-
lished, for clusters of N — 1 and one electron, using results of [15] and [25]. In a beautiful
work of E. H. Lieb and M. Loss, the general case was recently solved, [35].

3 Elements of the operator-theoretic RG

In this section, we introduce the smooth Feshbach map, 7], which generalizes the standard
Feshbach map in (3, 4], by replacing projectors with smooth partitions of unity.



3.1 Feshbach Pairs and Smooth Feshbach Map

Let ‘H denote a separable Hilbert space, and let 0 < x < 1 be a selfadjoint operator which,
together with x := /1 — x2, constitutes a partition of unity, x2+x = 1. It is very important
to note that Ran(x) and Ran(j) are in general not disjoint.

Definition 3.1 A pair of closed operators (H,T) acting on H is called a Feshbach pair
corresponding to x if it satisfies (FP1) ~ (FPy), [7].

(FP3) Dom(H) = Dom(t) C H, and [x,7] =0 = [, 7].

(FP2) x and X map Dom(H) to itself.

(FP3) Letw := H — 7. The operators T and Hy = T + xwX are bounded invertible on Ran(x).

(FP,) Let R := H! ; and let Hy = U|Hy| denote the polar decomposition of Hy on Ran(x).
Then, R, |R|2U ~txwx, and xw lel2 extend to bounded operators on H.

The set of Feshbach pairs acting on H corresponding to x is denoted by FP(H, x)
The smooth Feshbach map is defined by

FX : 3‘1’("100 - E(H) ?
(H,1) = T+xwx—xwxRxwx, | 3)
where Fy(H, )| Ran(y) € B(Ran(x)). Furthermore,
Qx 1 3B(H,x) — B(Ren(x),H),
(H,7) » x - XRxwx,
Qk:¥P(H,x) — B(H,Ran(x)),
(H,7) = x - xwxRX. (4)
are referred to as intertwining maps.

The smooth Feshbach map establishes a non-linear, isospectral map between operators on
H and Ran(x) in the sense of the following key theorem.

Theorem 3.1 (Feshbach isospectrality) Assume that (H,T) € FP(H, X).
1. H is bounded invertible on H <=> F,(H,T) is bounded invertible on Ran(x).

2. Lettp € H. Then, HY =0 < F,(H,7)x¢ = 0.
3. Let ( € Ran(x). Then, Fy(H,7)¢{ =0 <= HQ,(H,7)( =0.



3.2 A Banach Space of effective Hamiltonians

We choose a smooth partition of unity x? + ¥? = 1 on Ry, where x;1(z) = 1 for z € [0, 1],
supp{x1} = [0,1], and where x; shall be monotonic. Then, we denote the cutoff operator
x1[H;] acting on F by xi, for brevity. We then consider the fixed Hilbert subspace

" Hyea := Ran(x1) = 1(Hy < 1)F C QF . ' (5)

We focus on a particular class of operators, referred to as effective Hamz'ltonians, characterized
by

H =T[Hy, Pl + xaWx1 — Exi (6)

acting on H,eq.
The scalar E € C is a spectral parameter.
The operator T[Hy, P;] is the non-interacting term in the effective Hamiltonian, defined

via spectral calculus by a function T' € C?(I x B;), where I = [0,1], and B; is the unit ball
in R3. It is required to satisfy T'[0,0] = 0, and clearly, T[Hy, Pf| commutes with Hy, Py.
We introduce the notation
Ki = (ki,A,‘) , Ri = (’Ej,ij) € R3 X {+, —} , (7)
withi=1,...,M,j=1,...,N,and M + N >0, and |
KM .= (Ky,...,Ky)
E™ = (Ry...RKy)
KM = (KO0 )

M
d(KM) = T]e*(K:) |
i=1

M N ~ =
dK; he([ki]) dK; hi(|K;])
(M,N) e i o\ |V VLAY
dpe(K ) - 111:[ PARE “}_’1/2 ) (8)
i=1 j=1 ¢
Here, [dK = Y, [dk, and a}(K) = ol (k). Then, the interaction term in the effective
Hamiltonian is given by W = 3,/ v~ War,v- The operator
Wun[H;, Py = /B e dps(KMN)) o* (KM wpg y [Hy, Pp; KMN)] o (KN
1

acts on H,q, and is called a generalized Wick monomial of degree (M, N).



The integral kernels wys y are referred to as generalized Wick kernels, and commute with
Hy, Ps. wp N is fully symmetric with respect to Ki,..., Ky and K, ..., Kx.
Let

X = (X0, X) €Ix By, X =(X;,X3X3) 9

denote the spectral variables corresponding to (Hy, Pf). Using the multiindex a := (ay, - . ., a3)
with a; € Ng and |a| := Z;Lo a;, we shall write

6& = (axo,Vx) N VX = (axl,axz,axa) , Bi = (33'8),. . ,63’{33) . (10)

We introduce the norms

— . fe (M)
sl = sup  sup fuwanlX; KM,
]
HwM,N“M,N 05%252 ” _Jg'wM,N”M,N (k,’\)Z‘;{I(’M’N) ” Ikl'wM,NllM,N ) (11)
and define
QD"M’N = {wM’N'“wM’N”gM,N < 00} s (12)

which is the Banach space of generalized Wick kernels of degree (M, N).
Our next task is to accommodate sums of Wick monomials wa ny with M + N > 1. To
this end, we choose £ € (0, 1), and introduce the Banach space

wh = @ Wy,
M+N>1
consisting of all sequences w = (wum,n)m+n>1 With
P
lwlf sy =D (@r2€)~ MMy wlfh, y < 00
M+N>1

In the special case M + N = 0, we have

QI}”O’O = {’on,o c C2(I X Bl)llle,OIIg’o = Z sup IB_QX_WO’QI < OO} .

0<la|<2 XX B1

We note that in contrast to M + N > 1, wpo only possesses a scalar, but no spinor part. For
the system in discussion, this suffices, due to spatial rotation and reflection invariance. The
decomposition
woolX] = woo[0lxi[Xo] + TX]
TX] = woo[X] — wool0]x}[Xo]
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induces a natural bijection
mg,o =Co%

with
g .= {T € C¥(I x By)|T(0,00=0,|Tlls:= ¥ sup |83T|< oo} .
1<lg<z X€T¥BL
In our discussion, Q}Jﬁ,o and C & ¥ will not be distinguished. In accordance to our notational
conventions, we have Wp o[wo,0] := woo[Hy, Ps] € B(Hred)-
Assembling all of the above, we obtain the Banach space

W= P wWyy=CoTow, (13)
M+N>0
endowed with the norm
llwllt = lwoolQ]] + IITlls + llawllf 5, - : (14)

Every sequence
w = (B, T, {wnmn}umin21) € Wiy

defines an operator

Hw] = Y, Wunlu] (15)

M+N20

= Exi+TX]+ Z xaWu,n[wm,n]xi -
M+N2>1

of the form ( 6).

Theorem 3.2 For any 0 < £ < 1, the map H : QU”ZO — B(Hyeq) is an injective embedding,
the subspace H (Qﬂuzo) C B(Hyeq) is closed, and |H[w]||op < ”2“2

For the proof, we refer to [7].

3.3 A Polydisc of effective Hamiltonians |

The effective Hamiltonians in our applications depend holomorphically on a spectral param-
eter. Let 20> denote the Banach space of analytic functions on |

D:= {zEC’IZ—ll—O 3116} (16)
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with values in Qﬁﬁzo, endowed with the norm

llw]-]llg := sup llwlz]|It . (17)

The Banach space of analytic families D — H(20%,), z — H(w[2]) is denoted by W>g.
Whenever the dependence on the conserved momentum p is emphasized, we shall write w(z; p]
for wlz]. 3

Fore,d €1, A< },p< &%, and z € D, we define the polydisc

Polype(e, 6, A) = {w[-] = (E[-], T[], (wa,n[- Dasavs1)
satisfying (P;) ~ (P4)} C Wsp
(P1) The quantity E[z;p] = —woo[2;p; X = 0] € C is a holomorphic function of z € D, and
satisfies |E[z;p] — 2| < e.
(P2) T € ¥ has the following structure. For X = (Xo, X) € I x By,

T[Z;p§ }_{.] = Xo + XI[XO]( p[z]X” + '7p[z]X2 + Cp[z,if_]) XI[XO] ) (18)

where X!l := X . .

The complex coefficients 3,[2], v,[2] € C are holomorphic functions of » € D. Further-
more, they transform like scalars under spatial rotations, and thus depend only on the
radial part |p| of p. The estimates

6ol + 1pl|, | (@)1 +1] < & (19)
hold, and
| Tol2] € [—€, A] + i[—¢, €] . (20)
Furthermore,
8,[5’,,[2]’ , Bz'yp[z]l <el. (21)

The function (,[z; X] is real analytic in X € B;, holomorphic in 2. It is a higher order
term, which is e-small on I; := suppyx1X1, and which satisfies some less good estimates
on the spectral overlap region Iy := [0,1] \ I; (for reasons we shall not elaborate upon
here, this is not problematic).
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(P3) The generalized Wick kernels wy, n[X; z;p; K (MN)] M + N > 1, are real analytlc func-
tions of X € Bi, holomorphic in z € D. Let Y stand for |k, |k;, for i = 1,..., M,
j=1,...,N, or z. Then, the following bounds are satisfied.

1. The case M + N = 1. These will be referred to as marginal kernels

“ Ipl~X wMN”MN, || ,awaN”MN < fo l-beM+N
"1|X|SXoEIo—|k]ab|ay'wMN”MN < eg b€M+N (22)

for0<|a| <2,and0<H<L 1.

2. The case M + N > 2. These will be referred to as irrelevant kernels.

H 1ol X wMN"MN < ee4 —b§M+N

|8t v wmnlny < eei MV (23)
for0<|a|<2,and0<b<L 1.

(P4) The elements of w are interrelated by an infinite hierarchy of non-perturbative identities,
the generalized Ward-Takahashi identities. For all M+ N > 0, they link was,n to wp, N/
with |M — M'| +|N — N'| = 1.

3.4 The Renormalization Transformation

In this section, we define the renormalization map, [7]. It depends explicitly on a parameter
0 < p < 1, which we fix to be p = % (but for notational transparence, we will continue writing

p)- i
Given w[z] € W, for z € D, we consider the composition of the following three opera-

tions.

(F) A decimation of degrees of freedom associated to states in C? @ F with photon energies
between p and 1, implemented by the Feshbach pair

(Hwlell, alwl]1Hy) € 5B (Hrea Xo) » (24)

and the smooth Feshbach map Fy,in,)(Hw(z]], afw[z]]) on Ran(x,(H;]). The complex
function afw(-]] is determined by the implicit equation

alwlz]] = <3H, Fy, (Hwl2]], o[w[z]]H; )>n,
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It is analytic on D, and
{a[w[z]}'z € D} c D.(1).

(S) A unitary scaling tra.nsformatibn, whereby
Ran(x,[Hy]) = Mrea and x,[Hf] = x1[Hy],
followed by multiplication with E@Pﬂ

(E) An analytic transformation E,, of the spectral parameter z € Din wlz].

Using the composition (E) o (S) o (F), H[w[z2]] is mapped to a renormalized effective Hamil-
tonian H[®[2]] acting on Hyeq. Our specific choice of afw[z]], and of the rescaling map, have
been made such that the leading marginal operator in H[@[2]] is again Hj, as required by the
definition of the polydisc. The correspondence

Ry : wlz] — B[Z]

defines the renormalization map.

4 The renormalization group flow
The operator-theoretic RG corresponds to the discrete dynamical system
(Polg,5.¢ (€0, do, )‘0) J Rp) J

for a suitable choice of parameters ¢g, dg, Ao.

4.1 Main theorems of the operator-theoretic RG

The first step in the construction is provided by Theorem 4.1, which establishes an isospectral
correspondence between the fiber Hamiltonian H(p, k) and an effective Hamiltonian.

Theorem 4.1 Let z € D, choose some small § € 1, and assume that % < 1 is suffiently
small. Then, for & := & + g%(Qy, A2Q;),

(H(p,x) —€— z,@[2]Hy) € FP(C* @ F, x1[Hy]) -
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In particular, there exist parameters

200
Eo———g<<1 b<g, )\o<§,
13 8
and
M(O) [Z] € P019,p,€ (607 501 A‘3) ’
such that '

The function &[-] is analytic on D, and defined by the implicit relation

&lz] = <BH,FXP (H(p, K) - z, &[Z]Hf» .

H{wOl]) = =~ Fem) (H(p,K) = & - 2, Glz1Hy ) on Hyes
al7]

(25)

Next, Theorem 4.2 provides control over a single application of R, on a polydisc Poly ; ¢ (€, 4, A),

and establishes that .
RP[P0191va(€’ 6’ A)] g POlgaPaE(é’ 67 A)

for (,4, A) satisfying the bounds ( 27).
Theorem 4.2 Let £ < 1 be as in Theorem 4.1, and assume

1 1 200g

Pl < 55 8

Then, for €y sufficiently small,
R, : Polgp¢(€,8,)) —> Pol,, ¢(¢,8, X)

with

>
Il

17 32
max{-l—s—e, 3g|p| + 509\ + € §}

d+¢

<
< pA+e.

> O

)
’ p=§1 60:=_E_y 6569, A<z,

(26)

(27)

The approach to the proof is very close to [3, 4, 7], but it is now necessary to give a
much more careful account on terms originating from the non-vanishing overlaps xx. The
Ward-Takahashi identities are used to reduce the number of mdependent purely marginal
operators, by showing that the coefficient G,[z] of the operator Pf in T(z; Hy, Pyf] (cf. (P1))
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in the definition of Polg (€, 6, X)) completely determines wg; and w, g, which are the only
purely marginal interaction kernels of the theory.

However, the estimates in Theorem 4.2 nevertheless only control a single application of
R,, and are not strong enough to prove uniform boundedness of § under repeated applications
of R,.

The latter is, however, provided by Theorem 4.3, which yields the desired uniform bounds
by invoking a strong induction argument that involves a recursive application of Theorem 4.2.

Theorem 4.3 Let w® € Poly , ¢(€0, 90, Ao), as in Theorem 4.1. Assume that for 0 < k < mn,
w® =REVo...0 RO[wO®] € Poly e (ex, , Ar)
where (ex, Ok, Ax) and (€xy1, Ok+1, Akt1) patrwise satisfy ( 27), and in particular, that
6 < 20,
for all0 < k < n. Then, it follows that
w™ € Poly , ¢(€n, 260, An) -

The key to proving Theorem 4.3 is to bound an oscillatory sum that determines the
purely marginal operators of the theory, by the algebraic composition identities satisfied by
the smooth Feshbach map.

Our key result is Theorem 4.4, which states that the renormalization map R, is contractive
on a subset of Poly¢(€o, 8, Ao) of codimension 2. This result is established by combining
Theorems 4.2 and 4.3.

Theorem 4.4 Let N, := I-i%g-l . Assume that {w@, w®, ... w™} is the orbit of length n+1
generated by R, with initial condition provided by Theorem 4.1. Then,
‘u-)'(n) € POlg’P:E (En’ 67” An)

with

>
3
A

(2 - EQ) _nAo

17\"
max{ (E) €0, 2|pleo(1 + 250)1nan}
on 255 - (28)

ey
IA

IA

Hence, in particular,

lim A\, = lim e, =0,
n~-+C0 N=+00

and
EnSQEO y 5ﬂ.$2507

uniformly in n, as n — oo.
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4.2 Proof of Theorem 2.1
The bounds asserted in Theorem 2.1 are immediately obtained from the renormalization
group flow by the identities

B = Jm A0 0=01

12, 0IF = lim GE@, &)] ] ] elw™[eal] (29)

k=0

where e,, is the image of E(p, k) under n-fold renormalization of the spectral parameter.
E(p, k) is determined by the renormalization group flow in the same manner as in [7).
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