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Effective mass and mass renorma,hzatlon of
nonrelativistic QED

Fumio Hiroshima*!

November 29, 2003

Abstract

The effective mass megs of the nonrelativistic QED is considered. meg
is defined as the inverse of curvature of the ground state energy with total
momentum zero. The effective mass meg = meg(€?, A, k,m) is a function of
bear mass m > 0, ultraviolet cutoff A > 0, infrared cutoff k > 0, and the
square of charge e of an electron. Introduce a scaling m — m(A) = (bA)P,
B < 0. Then asymptotics behavior of meg as A — oo is studied.

1 Introduction

1.1 The Pauli-Fierz Hamiltonian

This is a joint work with Herbert Spohn.! We consider a single, spinless free
electron coupled to a quantized radiation field (photons). The Hilbert space
of states of photons is the symmetric Fock space:

o0
F =@ [8rL*(® x {1,2})],
n=0
where ®@PL2(R® x {1,2}) denotes the n-fold symmetric tensor product of
L2(R® x {1,2}) with ®L?*(R® x {1,2}) = C. The inner product in F is
denoted by (-,-) and the Fock vacuum by Q. On F we introduce the Bose
field
a(f)= X [fk ek ik, feP®x 12D, QLD

j=1,2
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where a(f) and a*(f) = a(f)* are densely defined and satisfy the CCR
la(f),a*(9)] = (£, 9) L2 (mex{1,2})

[a’(f)s a(g)] =0,
[a*(£),a™(g)] = 0.

The free Hamiltonian of F is read as

B= Y [w(ka"(s)a(k, i)k, (12)

j=1,2

where the dispersion relation is given by

w(k) = |k|.
The free Hamiltonian H; acts as
HQ =0,
Hea®(f1) -+ a*(f) =D a*(f1) - a*(wfy) - -~ a* (£n) 2.
j=1

The Pauli-Fierz Hamiltonian H is defined as a self-adjoint operator acting
on

©
H=L2(R3)®f'5/3}'dz
R

by
1
H=%(pz®l—eA¢,)2+V®l+1®Hf,

where m and e denote the mass and charge of electron, respectively,

_ (_,-_‘?_ ;92 _z-.i)
Pz = oz’ ’6:1:2’ 013
and V an external potential. The quantized radiation field A, is defined by

1 r® .
4= 2 [ (@) + o (F)ez, (13)
where 1
folksg) = —=p(k)e(k, e, (1.9)

e(k,1),e(k,2),k/|k| form a right-handed dreibain, and ¢ is a form factor. A,
acts for ¥ € H as

(459)(z) = (a(fz) + a*(fz))¥(z), T €R’.

Theorem 1.1 Assume that ¢/w,$//w,Jwp € L*(R) and V is relatively
bounded with respect to —A with a relative bound < 1. Then, for arbitrary
values of e, H is self-adjoint on D(A®1)ND(1® Hy) and bounded from below.

Proof: See Hiroshima [3, 4]. O
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1.2 Effective mass

The momentum of the photon field is given by

=Y f ka*(k, j)a(k, 7)dk (1.5)

j=1,2
and the total moment by
Piotal =pz®1+1Q P;.

Let as assume that
' V=0.

Then we see that
[Ha -Ptotalp] =0, p=123.

Hence H and H can be decomposable with respect to Spec(Piotal) = R?, i.e.,
&
n= [ He,
R3

H= /R T H(p)dp.

Note that

e—iz@P; -Pt 1T®FP; _ Pz,

otal€
) ) 1
e i7®P [ iz®F — 5 (P=®1 - 18 P —e1® Ap(0)) +1® Hy,

where 1
Ay(0) = ﬁ(a(fo) + a(fo))-

From this we obtain that for each p € R3,
H(p) = F,
|
H(p) = (p — P~ edy(0) + H,

Let
Em,a(p) = inf Spec(H (p)). (1.6)
Let us assume sharp ultraviolet cutoff A and infrared cutoff x, which means
0 for |k| < &,
o(k) =4 (2m)732 for k < |k| < A, (.7
0 for |k| > A.

Lemma 1.2 There ezxists constants p,. and e, such that for
(p.e) € O={(p,e) € x Rlp| < ps, Je| <€},

H(p) has a ground state 13z(p) and it is unique. Moreover yg(p) = z(p,€) is
strongly analytic and Epm A(p) = Ema(p, €) analytic with respect to (p,e) € O.



Proof: See Hiroshima and Spohn [6, 7]. O

In what follows we assume that (p,e) € O.
Definition 1.3 The effective mass meg = meg(€?, A, k,m) is defined by

% = 2 8,B(p,)[p=0. (1.8)

1.3 Mass renormalization

Removal of the ultraviolet cutoff A through mass renormalization means to
find sequences
A—>oo, m—0 (1.9)

such that E,; A(p) — Em (0) has a nondegenerate limit. To achive this, as a
first step we want to find constants

B<0, 0<b

such that
lim meg(e?, A, kAP, (bA)P) = mypy, (1.10)
A—o0

where mypy, is a given constant. Actually mp), is a physical mass. Namely in
the mass renormalization the scaled bare mass goes to zero and the effective
mass goes to a physical mass as the ultraviolet cutoff A goes to infinity.

We will see later that meg/m is a function of €2, A/m and x/m. Let

Meff
m
where f(0,A/m,x/m) = 1 holds. An analysis of (1.10) can be reduce to

investigate the asymptotic behavior of f as A — oo. Namely we want to find
constants

= f(e*, A/m, k/m), (1.11)

0<y<1, 0<b
such that

. f(e?,A/m,x/m) _
i, S = 012

If we succeed to find constants + and by such as in (1.12) then by

meﬂ'(ezi A, &, m) = mf(821 A/ma n/m),

we have
e (€, A, kAP, (bA)P) = (bA)? f(€?, A/(bA)P, k/bP) ~ by (bA)P(A/(BA)P)Y.
(1.13)
Taking

B=—L <0, b=1/p",
1_7 /1
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we see that by (1.13)

B
A A U
. 2 B B .
Ahm meg (e, A, kA°, (bA)F) = Ahm bo (bih) (( /(bl)l/"/)ﬂ) = bgby,

where b; is a parameter, which is adjusted such as
boby = Mph.
Hence we will be able to establish (1.10). It is easily seen that

A/m +2

wm i) T o),

f(e3,A/m,k/m) =1 +as—-1 og(

where a = e2/4n, which suggests
F(&,Afm, s [m) = (A /m)*e/,
for sufficiently small @ and large A, and therefore
v = 8a/3m.
One may assume that
(& A/m, v[m) m (A/m)>E/3m+e’s

for sufficiently small o with some constant b. Then by expading meg/m to

order o one may expect that
8 Al 8. A\ A
2 ~ Yk =a? [ —log(—) ) +ba?log(=)+O0(a?
e“,A/m,k/m) = 1+a37r log( )+2a (3" log( )) ba* log(—)+0(c°)

(1.14)
for sufficiently small o and large A. It is, however, that (1.14) is not confirmed.
Instead of (1.14) we prove that there exists a constant C' > 0 such that

A/m+2

F(é, A/mm/m)—1+a—1 (/ 13

) + @2Cy/A/m + O(a®).

The effective mass and its renormalization have been studied from a math-
ematical point of viwe by many authors. Spohn [10] investigates the effective
mass of the Nelson model [9] from a functional integral point of view. Lieb
and Loss [8] studied mass renormalization and binding energies of models of
matter coupled to radiation fields including the Pauli-Fierz model. Hainzl and
Seiringer [2] computed exactly the leading order in o of the effective mass of
the Pauli-Fierz Hamiltonian with spin.
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2 Perturbative expansions
The effective masses for H(p) and
! b 2,
Ben (p — P — eAyp(0))*: +Hs
are identical. Then in what follows we redefine H(p) as
1
H(p) = 5 (p— P — eAz(0))*: +Hs.

Furthermore for notational convenience we write A and E(p) for A3(0) and
E,, A(p), respectively.

2.1 Formulae
Lemma 2.1 We have

mo_1-2 v W0, (Bt ed),(HO) - E(0)"1(F; + eA)u9¢(0))
Meff 3,512 (1¢(0), % (0)) )

Proof: 1t is seen that E(p,e) = E(p,—e) = E(—p,e). Then

2 B, e)[ =0, p=1,23, | (2.1)
(] ppl:o

follows. Moreover it is seen that E(p, e) is a function of €2 and

%E(p, e) Lo =0. (2.2)
In this proof, f'(p), means the strong derivative of f(p) with respect to p,.
e H(p)yg(p) = E(p)¥(p),
we have
H'(p)utbg (p) + H(p)¥g(P)u = E'(0)uts(p) + E()¥(p)  (2.3)
and

H' (p) utpg(p) + 2H' (p)utg (p)s + H (p)¥ (p)s
= E"(p)utbg(p) + 2B’ (p)u¥ (0)u + E(p)¥g (p)u- (2.4)

By (2.1) it follows that E’'(0), = 0, and by (2.3) with p = 0,

(Pr + eA),35(0) € D((H(0) — E(0))™1),
¥5(0)u = (H(0) — E(0)) " (P: + eA) g (0).
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Then we have by (2.3) and (2.4),
mo_ 1y G0, 0u0)
Meff 3 u=1,2,3 ("/)g (0)) "/’g (0))
2 > ((Pr + eA)ut(0), (H(0) — E(0)) (P + eA)ug(0))

-T2, (¥5(0), %0))
Thus the lemma follows. O
Let © oo o o
$g(0) = :‘;‘; m‘Pm E(0) = ,é) WEzn-
Note that

' 00 00
o € @ FO™,  gymyr € @ FO.

m=0 m=0

We want to get the explicit form of ¢,. Let
Fan = {{TM™}2, € F|¥™ = 0 for m > ¢ with some £},
Fo= {4} € Fan| () ¥@ =0,
(i) SUPP(y .. ) er3n®™ (k1 oo Ky 1, s ) B {0, 0)}} -
Lemma 2.2 We see that Fo C D(Hy!).
Proof: Let ¥ = {¥(M}2 € F,. Since
(Ho®)™ (K1, evey Ky 715 1 Jn)

1 i . .
= [E(kl +.--+ k‘n)2 + Zw(kj)] ‘Il(n)(kh '--,kn,le "-1.771)3
j=1

we see that

(HO—I\II)(u)(kh ooy kn’jlv ---’jn)

-1
1 = : .
= [E(h ++ka)? + ZW(kj)] U (ka, oo, by 1 ens G-
j=1

Since supp(kl,_,_,ku)ERsn\Il(")(kl, wes Ky 31y ey Jn)  {(0, ..., 0)}, we obtain that

finite
IH 0% = 3 I(H 1 ®)™)2,,) < oo
n=1 )
Then the lemma follows. o

We split H(0) as
&2
H(O) = Hy+eH; + EHz,



where
H0=%Pf2+ny
Hi=3(P-A+A-R)=F-A=A-B,
Hy =:A%

Lemma 2.3 We have Eg = E| = E3 = E3 =0 and
po=%, ©v1=0, @=-Hg'HoQ, 3= 3Ho_1H1Ho_1H29-
In particular g3 € F? and @3 € FU) 0 FB),

Proof: Let us set H(0), E(0) and v4(0) as H, E and tg, respectively. It
is obvious that Eyp = 0 and ¢y = af2 with arbitrary a € C, and by (2.2),
Ey = E3 = 0. Set a = 1. We denote the strong derivative of f = f(e) with
respect to e by f'. We have

H'tpg + Hpy = E'pg + Ey (2.5)
and

H'"pg + 2H' Yy + Hipy = E"pg + 2E' g + Enfy. (2.6)

From (2.6) it follows that
(g5 H"tpg) + (g, 2H' ) + (g, H) = B (g, g) + (g, 2B L) + (g, E(‘ﬁ,';'))-
2.7

Put e =0in (2.7). Then
(@, H2Q) + (2, 2H192) + (9, Hop2) = E2(, Q). (2.8)

Since the left-hand side of (2.8) vanishes, we have E; = 0. From (2.5) with
e = 0 and the fact Ey = E; = 0, it follows that

H;Q + Hypy =0,

from which it holds that Hgp; = 0. Since Hp has the unique eigenvector 2
(the ground state) with eigenvalue zero, it follows that ¢, = 5Q with some
constant b. ¢; € @p_o F?™+1) which implies b = 0. Hence ¢; = 0 follows.
By (2.6) with e = 0, we have

HyQ + 2Hp1 + Hypa = 0.
Since HzQ € Fo, we see that by Lemma 2.2, H2Q € D(H; ). Thus we have
@2 = —Hg ' HyQ. From the identity
H" g + 3H"), + 3H'Y!! + Hyy = E" ¢ + 3E"Y, + 3E'Y!! + Ey, (2.9)
it follows that at e = 0,
3Hips + Hops = 0.

Since Hips = —H1Hg ' HyQ2 € Fy, Lemma 2.2 ensures that Hypy € D(Hg™!).
Hence @3 = —3Hy 'Hypy = 3Hy 'Hy Hy 1H§). Then the lemma is proven.
]

27
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2.2 Order ¢*

In this subsection we expand m/meg up to order e*. We define A~ and At
by

A= La(f) At = La*(f)
v2 7 V2 '

Then A = At + A~
Lemma 2.4 We havev

En:’é =1- e2§ ,‘Ei:z (2, 4,H574,0)
—e4§ 23:1 {2 (o4, B 0%) + (94, Ho'wh) — 2 (94, Ho ' Hy Ho ' 0%)
e

1 _ _ - _ _
—= (\Il‘l‘,Ho 1H,Hj, 1\1/‘1‘) + (\I:;‘, Hy'HyHg  H, Hy 1\1:‘1‘)}+ O(€®),

2
(2.10)

where
‘Il’l‘ = AR,
1 -
V) =~ P Ho ' (AT-AT)0,

1 1
=3 {—AuHo_l(A+'A+)9 + 5P He (P A+ A-R)HO-I(A+-A+)9} .

Proof: In Lemma 2.1 we have seen that

mo_q_ 2 Z (P + eA),1g(0), (H(0) — E(0))~(P; + eA),(0))
mer 73,25 e(0), %5(0) '
(2.11)

We can strongly expand (H(0) — E(0))™! as

(H(0) - E(0))™' = Hy' — eHg "H\Hy*
+€? (—-;—Ho‘ngHo‘l + HO—IH,HO-IHIH(I) +0(e?). (2.12)
Hére we set .
H; = { Ifﬁj, ;;;’2’
Note that »
| 0o € FO oy € F@ o3 € FO N FD, oy € FO 0 FO),
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In particular

1 —_—
(Yg. %)

Moreover we have

1 1 1 1
1- 54(5902, §<P2) -eX(Q, ﬂ%) +0(®) =1- 842(902, p2) + O(e’).
(2.13)

1
=Prups) + O(e?)

1
R’p%) + es(EAp‘P2 + 8

(P + eA)u"/’g(O) = eApQ + 62(-;-

= eW¥ + 204 + 34 + O(e?). (2.14)
Substitute (2.12), (2.13) and (2.14) into (2.11). Then the lemma follows. O
For each k € R3 let us define the projection Q(k) on R® by

k)= 3" lej(k))e; (k).

Jj=12
We set
AJ' = ‘ﬁ(kj)v wj = w(k]'), Q(k]) = Qj, J=12
Let
1 1 .
B T 2Rrip ITH?
1 1
. = ’ 220, -1<X<1.
Fio (1‘% + 2rira X + 1‘%)/2 +ry+1re 1,72

Lemma 2.5 We have

L aay(A/m,k/m) — a®az(A/m, k/m) + O(c®),
Meft
where g A/ 9
m+
a1(&/m, x/m) = - log (m) (2.15)
and
az(A/m, ﬂ/m)
29 A/m A/
(41r)6 / dry / mdr27rr1r2 X
) 3 K/m x/m

1 $+2rir X +1%
——(1+X2)+(F12) e l(ES ¢

L
- NG

S 5, 111 ,
-7 )—(1 X5) + == —rire X (- 1+X)} (2.16)

F, F, Fp,
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Proof: Note that

I

2 -
a1(A, ) = (VAT)(4£9, B 470)
8 o (A/m +2)
3 8 kfm+2)"
Thus (2.15) follows. To see a2(A, k) we exactly compute the five terms on the
right-hand side of (2.10) separately. Let

SR
B Pzte; T 0%
1 1

En |ki+ k24w +ws
(1) We have
2 (W4, Ho ' 0Y) = (2, —(A™-A7)Hy ' A, H ' 41Q)

+% (Q (A=-A")Hy Y (P-A+ A-Pf)Ho-lpquO-lAjn) .

gl 1 11
= /dkldkz 2601 20.)2 Elz(“E‘ Ez)tr(Q1Q2).
(2.17)
(2) We have
(\I’g,Hu—l\Il’;)
_(1 2 P Hy Y (AT-AM)Q, Hy ' P Hy 1 (AT-AT)Q
_(5)(‘“°( A7), Hi™ Py, He (AT AM)0)
a1 10a )
( ) [[amangin 2 (Ez) k1 + ka|*2tr(@1 Qo).
(2.18)

(3) We have
2 (4, Hy " HyHy ™' 04

= % (pf”H N AT-ANQ, Hg (P A+ A-Pf)Ho"1A+9)
31.3l011° |@2? ( )2 1
= / /dk w2 (o) (& Eg)(k2’Q1Q2k1) (2.19)
(4) We have
1 _ _
—5 (94, Ho™ Ho Hg Tgt)
=1 (Am Hyl((A*- A7) + 2(A+-A") +(A™-A7)H ' 419)

/ FTESTE lg:)ll I;:L 2 E2 (Q102). 220)
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(5) We have
(W4, Hy " HyHy  HyHy ™ )
1 2

= (5) (A+Q, HyY(P-A+ A-P)Hy Y (P-A+ A-Pf)HO—IAm)

= //dk3dk3 |2‘p¢.1;|12 |2‘P“21|22 Ellz {( ! ) (k1, Q2k1) + ( _ ) (kz,Q1k2)}

2122 1 1 1
g3l el 1821 2.
+//d 198 2wy 2wy Eyp By By (k2, Q1 Qzks). (2.21)

Changing variables to the polar coordinate, we obtain (2.16) from Lemma 2.4,
(2.17), (2.18), (2.19), (2-20), (2.21) and the facts

tr[Q1Qa] = 1 + (ky, k2)?,

(k1, Q2Q1k2) = (K1, k2)((k1, k2)? — 1),

(k1, Qak1) = |k12(1 — (ky, k2)?).

Thus the proof is complete. ]

3 Main theorem

The main theorem is as follows.
Theorem 3.1 There exist strictly positive constants Cmin and Cpay such that

. ag(A/m,k/m
Chin < hn;o _2(/T\/—7—'m'/“—)' < Cmax-
Proof: We show an outline of a proof. See Hiroshima and Spohn [7] for details.
By (2.16) we can see that

6
(“”)2 520/ (3.)

as (A, IC

where
1 1 1
= — 2 —_—
bi(A/m) = /(1 +X)(F +F2) 7y
rf+ 2r1ro X + rl

bih/m) = [+ x) () AH2nnX trd

b3(A/m) /X( 1+ X2)riry (;, ;,2) (F’ll_z)z’
bu(hfm) = - [+ X7 22
siim) = [0 (B 22) 1

s 111
be(A/m) = f X(-14+ Xrimy e o,
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where

1 A/m A/m
/ = / dX / dr; / dromrirs.
-1 &/m k/m

Let pa(+,) : [0,00) x [-1,1] —= R be defined by
PA=pA(T, X) =12 +2Ar X + A2+ 2r +2A = (r + AX +1)2 + A,

where
A=A%1-X%)+20(1-X)-1. (3.2)

Then we can show that there exist constants C,, Cz, C3 and Cj such that for
sufficiently large A > 0,

1 1dX Ad ———1 <C 1
( ) [_1 /{; rpA(T,X) = IX’
2 1dX Ad -———1 2<C'———1
@ [ax[lar () < Oxom
1 A 1 1 log A
dxf S S YN .
3) /;1 0 drpA(r,X)r+2 < Cs A2
1

(4) /_lldX/oAdr (pA(:’X))Q (1-X?) < Cigs.

Using (1)-(4) we can prove that there exists a constant C' > 0 such that

|bj(A/m)| < Cllog(A/m)]?, j =1,4,
lb2(A/m)| < C(A/m)'/?,

Hence there exists a constant Cpax Such that

. az(A/m,k/m)
™ Vam = O

Next we can show that there exists a positive constant £ > 0 such that

A—+oo

which implies that there exists a constan ¢’ such that

Thus we have
a2 (A/ m, K'/ m)

‘A-»I%o \/A7m

S Cmax-



Remark 3.2 Theorem 3.1 may suggests v > 1/2 uniformly in e but e # 0.

Remark 3.3 (1) az(A/m,k/m)//A]m converges to a nonnegative constant
as A — co. (2) By (3.1), we can define az(A/m,0) since bj(A/m) with k =0
are finite. Moreover az(A/m,0) also satisfies Theorem 3.1. (8) In the case of
& =0, Chen [1] established that H(0) has a ground state 15(0) but does not

for H(p) with p # 0.

4 Concluding remarks

The Pauli-Fierz Hamitonian with the dipole approximation, Hy;p, is defined
by H with A; replaced by 1 ® A4(0), i.e.,

1
Hdip=gnf(l)®1—61®A¢,(0))2+V®1+1®Hf.

Set V = 0. Note that
[Haip, Piotal] # 0.

It is established in [5] that there exists a unitary operator U : # — # such
that ]

UHg U™t = _WA ®1+1® Hr + €2G,
where
22 - 2
dm=m+e gll‘p/wll )
Y . )y
T J-co m + (2¢2/3)||¢/ V1 + 7|2
Hence

[UHdipU-l, Rota.l] =0.

Then we can define the effective mass meg for U Hgp,U —1 and which is
4
Meg/m =1+ aé—;(A/m — &/m).

Hence 7y = 1, then the mass renormalization for Hygp, is not available.
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