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ABSTRACT. Let F be a compact, orientable surface with negative Euler characteristic, and let z1,-:+ ,zn
be n fixed but arbitrarily chosen points on intF; each z; has a (small) diskal neighborhood D; C F.
Denote by Sn(F) a subgroup of Diff(F) consisting of “sliding” maps f each of which satisfies (1)
F{z1,...,20}) = {z1,..., 20}, f(D1U---UDy,) = D1U..-UD,, and (2) f is isotopic to the identity map
on F. Then by restricting such automorphisms to F' = F — int(Dy U- - -U Dy,), we have automorphisms
f: F = F, which form a subgroup 8, (F) of Diff (17’) We give a Nielsen-Thurston classification of

elements of S, (F) using braids in F' x I which characterize the elements of Sn(F).

1. INTRODUCTION

L1 RELRE. AR T ASAFATRHTROME 2F> 8 Mo REESR % AR E & (automorphism)
cnHzeel, FTHDAA S —BHER>a NI b MEMITRMELZET. FORBIC o@D
Ry, o BERICRY, &, 0 (TH/NER)EED, CF22>THL., F—int(DyU---UD,) %
FTRL, BBESK f 0 F ~OHR%E f TR,

F
<> _— Ve R
PR OO0 ... O
O f of

FORBIEM fICHL, ko&khrEZS:
Q) f{z1,- - zn}) = {z1,-+ , 20} 222 f(D1U---UDp) = D1 U+ U Dp.
(2) fIMESBHRE FLETAV MY D,
Zho O 2l TRUSHEEN 525, F OS> RAMEREE (DIfi(F) TRT) OBOEE S.(F) T
RTZLITB., &6I0, S.(F) % {f| feS.(F)} TE2 Difi(F) DEHBEL T 5.
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1.2. R ZTRWERZFE 2 UAY b AEHNIARBEOREEHRICONT, ZOMENDEREA
ELEMHRIC—HT 5L &, BN (periodic) TH B L\, FThNKEN L RTBIEREEFEICT D L
&, B[¥(reducible) THDH L), I I T, AHEA 1 IRTTEFH ZHARIK (essential 1-submanifold) & X, Hv> -
WKRH SR OCEMBAMMOKET, EAVERHTTH 1 AISREREy 7 TH L, EO2RVENVIRE
Ay I TRWHDDI & THA,

ZXTVWEHEOA A I —BENAD L & FREGVWEHHZRLDICLAMNRbDICbL Y My
TROABDLEFTHEMIL. THhHET /Y 7 (pseudo-Anosov) Zb DICA YV hEy 7 THEZ EB¥HLH
T3 (7Y 7AREKROERRESRZ Y. #L I [11). [6, Exposé 11, see also p.286]. [2] &%
B). -7, FROFAEGRIILTOIBROLODENNICA Y Ny Z Db, ZhbDRE, ——
ey Y= UBRIEREZ 2T 5,

LKrald, ¥4 Ia—5—FEHLAVT Si(F) omopFEEEA (10, FROFIET, 58—
FEEE— LKL, 0D; (i=1,...,n) 2B IRVE D% S, (F) oRoNEE 5L 8] (n=2 DHA). [9]
(n > 2 DHBA).

13. #R ZBEOEHNIZ. S.(F) 02ToTO=— )ty $—R s BOSEE. MERENRFERT
BEX35Z2eThsd, FHEREZDBNDLRIC, WOV HEL®RT S,

Definition 1 (f ICfi T 22M8). f % S, (F) oe L, & % f o BRERKETOAY RPE—LT
5: DFY, 0% FxI— FxIORABEERT. &,0) = (f(z),0) »2 d(z,1) = (z,1) LT
DeTH, Zoex th I FxIZtl(t)=®;,t) TEHTS (LEL. zi = f(z;)). TDEE,
th, . tfick D, FxI Lofame’ = @f(),..  tfU); FxD23EEs. 2hk fICHET 8%
#f(braid associated to f) £\ 5 Z 21T 5. BSN (f(z;),0) = (z:,0) & (z;,1) BESEARILE,
FEB O (i-th string) LD 2 2T 5, &% tH1aid, t1(0) = (2:,0) 25 (1) = (z;, ) KW TAE R
20 TEL !

FxIDMEBRT, &iFHOHA (2;,0) & (z;,1) L2 HIERLRMTHILOOEEE Br,(F) & &R
T LT B, Brp(F) 2> 0A4b. ¥ ICHL, FxIOEEELRL., BEEERIIA VY PV I T,
Fx {0,1} iCHIRT % L EEEHLMOPRAMRESR G MEEL T, GO) =V &R->Tnd e E b2 VIIE
{H(equivalent) T B &\ 9,

Sn(F) DR FERIEM fICR LT ST 5 f € 8,(F) 1d. Definition 1 @ & 2 IC4HHE bf € Bra(F) %
EDD, B, ZHEBMb € Bro(F)ICHt L, bf =b i3 feS,(F) BWEELT. YR ZoffR f ik
S (FyDtesd, EB ROLS%2 1% 1HEIMSENTNDS,

Proposition 1.1. f 2 bf 2SR BLVIBHR Y : S,(F) — Bro(F) 3. BRZEEEH T .
Sn(F)/isotopy — Br,(F)/equivalence 5% 5. Fc, Mkt bf ORESIL. F h SESEHADA
Y hE— & OmY FIKS TRESND,

S5, MAMICBL TUATORE2®HET 5.
Definition 2. b= (t;,...,t,; FxI) % Br,(F) oA 35, £/ b D& L I Fx{0}nt; 5
Fx{1}nt; iIcAIT. MESITEATNELT S,

(1) #2E ({21} x I,... . {za} x I; FxI) LEfETH S & &, BBR(trivial) THD L),

(2) FxINSF DR LEZp: FxI - FTHEDLTILICT D, bOBHE {tiy, ..., i, } A5
G p((bi, U-- Uty YN (F x {0})) = p((t;, U+ Uty )N (F x {1})) 2= L. ZO X DERHED

IYFeR. B52BALT. BhezofELIELIALESTRT. AAd. ¢ ot ot () vETZ 22T 5,
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ZOFM R Snv e & KA (cyclic family) THB LW I LT B, BKEK {ti,, ... b}
WXL p(ty)y -y p(tiy) & ti,y ooy by, QRSN OFRINMEFE DN B2 L, (EY2IEF
T)MESHONERE LTOFEE LB ZLICk->T, F LOMERASERShE, Thic ok
T LT,

(8) b1y b & FICATHET 2B OKEKRE L. c1,...,c; 2R TE F LOBMRET 2, &
DeE C={e1,...,cm} %, bICHIHET HEAMMRER (2 system of closed curves associated to b) &
WHZ LT B,

(4) MAHEbICH L, METHHMMBEC = {c1,...,cn} 2 F L TTIEH (Ailing) TH B (0 F 1,
U Ucy BWF LOEROFEBRAZAMMRERDS) & &, b IIRAN(flling) THE LD, &
51, b LEMERET OB FIENTH S & &, bITKREFRMM(stably filling) 11D Z &I
T35,

(5) b DBHEE {tiy,.. ., i, } (k> 2) I L. BEEZROEDAL n: DEXxIU---UD% xI - FxI
T, 2O, L, REB HOKERD ST, p(n(D? x {0}U---UDE x {0})) = p(n(D? x
{1}U---UDE x {1})) /=T b OMEET 5 & ¥, F{THK(parallel family) TH5 & \H Z &I
5. Figure 1 (1) #3Hg.

(6) bDEHEE {tiy,.. . ti} (k> 1)IKL. FxIDOBER (OF) x I DFEHDERHE N T, ti,... t,
2 EB, 0L b ST, p(NN(F x {0}) =p(N O (F x {1})) 2T onEET S L ¥,
388k (peripheral family) T&% % £ \v ) Z 21C¥T 5, Figure 1 (2) 258,

(7) b DATIE, £ EIETHIE7EE %R, P-th(P-family) 2MEEZ 21T 5,

n(obx U--U ix)

T LD s
N

k aFx|
parallelf amily

i
N
peripheralf amily /
\ 7

/
L =y

(1 . (2)

FIGURE 1. parallel family and peripheral family

LT, ERBEBRDERNTES,
Theorem 1.2. f % S,(F) O T 5 F 0REEGKL L, b BT HEAEL T 5.

() fHEENERICA Y FEy F THADETHRMEIL. b BAHTHEZ L THD.,
(i) fASTIHEMRCAY My 7 THOLETHEMER. b W PEEELH. 3. REFENT

RNWZ L ThHb,
(iii) fFAMET )V I7BRICAY N v 7 THIXDE+HERMEIL, o BEERENTHY, o, PHEE
EERNILTHA,

Remark. EB%. b L bF 2B 51, Proposition 1.1 & 9. fIHE%E&KICA Y Ny 2 Th5, T,
() BE->TBZ L, fARHMERICAY MYy 2 ThREFHEMIE. ThMESERICA Y b
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¥y 2 THdILiled, £ REFENEAMIIEERTRINIZSRVOT, (1) & (i) 5, B
W72 (e, AHICR Y 2R V)S(F) otid. BHEWERICA Y My ZIZR6RVI eAhhrs, Zhick
D, FEO S(F) OBMHETIERL. 87 V7B Y by 2 kY, B, () & (i) 3EETSH
5Lk,

14. R 200K C = {c1, + yemb C ={c,, ¢, } MEHE(equivalent) TH 5 &%, & c; # (B
MR LU ICRERE Y 7 THH LI Z L TH D,

Definition 3. C = {c1,...,cm} Z F L OBMfRE L T 5.

(1) CicxtL. C L EMERMAERD C' BTEMNTH D L &, KEFHRN(stably filling) THDLWVI T L
Ny R

(2) REFSEN2PAMMIE C WROFKE 2T L & HH (x) #FDL I T LTS,

(i) /EED c; 1IRIM(primitive) (ie., CARPBAHMc 2L > TETH, s lE P REIEY S
2672w (p22).

(i) e & cj i3 BAHARE L Q) RERNE v TR (£ 5).
(iii) ¢ ITEROF ICRER—TTER,

FICATRET 50240 b \CARET 2 BARIARG %2 f (TS 2 BARRERIR (a system of closed curves associated
to f) ERESRZ 2IZL, Cf ={cf,...,cf} TRT. '
RREGIAR T SMAMREZA VS L. RORPBLND,

Corollary 1.3. f % S,(F) D TH2RAEEMHL L, ¢f ={c,... [} 2T 2EAMMELTE. b
L. CF HE (») 2800613, FIB7 ) VIBBICA Y NEy JIcR 5,

Remark. (a) bU fA'zy, ...,z ZEEIERERBRL THE251E 11 (x) O%MH (1) BFREIIR S (Claim
51 DA EBME). IS, n=10FA. v 12 1ZOAACR Y FITREEABROI LS, #HE
(x) DEHIL. [{c1} PRERENT, 1D, ¢ FHEROF ISKE b —TTER] LEBLEINS, (b)
Corollary 1.3 D3#lt, n>2 O—RDOEFA. RIZLRWV. LAL, n=10HAIKE. (a) oML Eh:
HE () 2AOGAE EHERFLIRS (10] 2 58).
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2. EXAMPLE

In this section, we give some applications of Corollary 1.3.

Example 1. Let f be an automorphism in S3(F) such that f(z1) = z9, f(z2) = 1, f(x3) = z3 and
Cf is given by Figure 2. Then f is isotopic to a pseudo-Anosov automorphism in S3 (ﬁ‘) Note that the
automorphism f with the the given system of closed curves Cf below is not unique, but for each f, f' is
isotopic to a pseudo-Anosov automorphism in S3(F).

In fact, by Corollary 1.3, it is sufficient to show that Cf = {ci1,c2} has property (x), where ¢; =
p(t]) * p(tf) and ¢, = p(t]). It is straightforward to check that C/ satisfies (i), (i) and (iii). To show
that it is stably filling, we first find a hyperbolic structure on F such that the curve c; is realized as a
closed geodesic. In fact this can be done by decomposing F into a pair of pants. Then it is known that

a closed geodesic on a closed hyperbolic surface which cuts the surface into open disks is stably filling.
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FIGURE 2

Since F —¢; consists of open disks, {¢;} is stably filling, and is also {¢;, c2}. This fact can be also checked
by [7], in which Hass and Scott gave a combinatorial criteria showing the given system of closed curves

are stably filling.

Example 2. Let f be an automorphism in S3(F) such that f(z;) = z3, f(z2) = z1, f(z3) = z» and Cf
is given by Figure 3. Then the same argument as above shows that Cf = {¢1} (¢; = p(t{ Y p(t) » p(t:{ )

has property (+) and f is isotopic to a pseudo-Anosov automorphism in Ss(F).

FIGURE 3

3. ISOTOPIES OF ESSENTIAL CIRCLES ON A SURFACE

In this section we will prove the following result which implies that an isotopy sending a family of
circles on a surface F' to themselves is essentialy unique if F' has negative Euler characteristic.

Let F be a compact, orientable surface of negative Euler characteristic and a,, . . ., ax mutually isotopic,
pairwise disjoint essential circles on F. Let Aj,..., Ax be a pairwise disjoint, monotone (meaning no
local maxima and minima) annuli in F x I such that p(0(A; U---U Ag)) = a; U---Uag. Then a map
o:{1,...,k} = {1,...,k} is determined so that A; connects a; o = a; X {0} and a,(;)1 = @0 X {1}.
Ay U .- U A corresponds to an isotopy sending ay U - - U a, to itself. Then we have:

Lemma 3.1. (1) o(i) =i fori =1,...,k, i.e., 8A; = a; x {0,1}. (2) A; can be isotoped to a vertical
annulus a; x I by a level preserving isotopy which is the identity on F x {0, 1}.

Proof. First we suppose that F is a closed surface of genus g. Choose a family of 2g essential simple
closed curves €, -+ ,£24 on F as in Figure 4; Uiilsk cuts F into a single disk and a; is homologous to
none of €1, -+, £25. Without loss of generality, we may assume that the curve g; is precisely as in Figure
4 (1) or (2) depending on whether a; is non-separating or separating: a; Nes = {2}, a; Ne; = {z;, zl}.
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In fact, for a given essential simple loop a; on F, there is a diffeomorphism A : F — F sending a; to the
curve as in Figure 4 (1) or (2). Then we have the required situation by applying Ax id. : F xI — F x L.

(1)a; snon-separating (2)a,; ss eparating

FIGURE 4

In the following we may relabel the indices and orient a; so that a1, ..., ax are homotopic as oriented
curves, and if a; is separating, then a; intersects €; at 2; and 2 with opposite directions and (a; U---U
ag) N g; appears zg, ..., 22, 21, 21, 24, - - ., 2, in circular ordering on ¢;.

Let Ej, be the vertical annulus p~1(gx) for 1 < k < 2g.

Since a; is essential, A; is incompressible. Thus we may assume, by a level preserving isotopy fixing
F x {0,1}, that each A; intersects E4 (resp. E;) transversely and that each component of A; N E4 (resp.
A; N E;) does not bound a disk in E4 (resp. F;). Note that each level preserving isotopy keeps 4;
monotone.

We first consider the case where a; is non-separating.

Claim 3.2. A; N E; consists of an arc {; isotopic to a vertical segment by a level preserving isotopy

leaving its boundary invariant.

Proof. Since a; Ne4 = {2;}, there is no boundary-parallel arc in E4. Hence (A; U- - U Ax) N Ey consists

of an essential monotone arc, say as in Figure 5.

=1 k=1 =3
FIGURE 5

Take a subfamily Ay, A,(),. .., Agi-1(1) of the annuli such that j € {1,...,k} satisfies 63(1) =1 and
no proper subfamily satisfies this property. Let 7/ be a torus obtained from A; U A, 1y U+ U Agi-1(1)
by identifying their boundaries via the identification (z,0) = (z,1). Then there is a map p’ such that the
following diagram commutes:

Connecting the arcs ¢1,{,(1),---,(si-1(1) in a suitable order, we obtain an essential loop a on T,
which satisfies p/,([e]) = [e4]™ € m1(F, 1) for some integer m. Assume for a contradiction that m > 0.
Then p/,([]) is nontrivial. The essential loop a; ¢ also gives an essential loop B8 on T”. Note that since

[a]‘l'ﬁ] = [Blla] € m(T"), PL(le)pu((8]) = pL(B1)p.(led) in m1(F,z1). Furthermore, since |es Nas| =1,
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AU A,,(l) U---u Ao-j—l(l) T

p

F

?.([e]) and p,([8]) generate a rank two free abelian subgroup in m;(F,z;). This contradicts that the
genus of F is greater than one.
It follows that m = 0, hence p(8¢;) = z; and we can isotope A; (fixing F x {0,1}) so that A; N E,

consists of a single vertical segment. O(Claim 3.2)

This claim implies the first assertion of Lemma 3.1 in the case where a; is non-separating.

Now let us show that A; can be isotoped to the vertical annulus as required. Since E3NEy, E4NE;y (if
g > 2) and A; N E4 consist of a vertical segment respectively, we can isotope without changing A; N Ey so
that A;NE; =0 and A;NEs = 0 (if g > 2); here we use also a fact that a;Ne3 =0, a;Nes =0 (if g > 2)
and an incompressibility of A;. For other E; (s # 3,4, 5), since a; Ne; = 0 and A; is incompressible, we
can isotope further by a level preserving isotopy fixing F x {0, 1} so that A; N E, is empty or consists
of essential circles in E,; each circle is also essential in A; because E, is incompressible. In the latter
case a; is homotopic to €,, a contradiction. Since A; intersects only E4 or E; in vertical segments and
EyU---UEy, cuts F x I into a [disk]x I, we can isotope A; to the vertical annulus by a level preserving
isotopy as desired.

Next we consider the case where a; is separating.

In this case, A; N E; consists of two properly embedded arcs ¢; and {] in E;.
Claim 3.3. 9¢; = {(2i,0), (2i,1)}, and hence 8¢, = {(2,0), (2, 1)}.

Proof. If ¢; is boundary-parallel arc, then since A; is boundary-incompressible and F x {0} is incom-
pressible, there should be a bigon D C F with 0D = dy Ud; such that dy C a; and dy C ;. This is
impossible, see Figure 4 (2). Thus 8¢; = {(2i,0), (2i,1)} or 8¢ = {(zi,0), (2, 1)}, for otherwise, as in
Figure 6 (1), there would be a boundary-parallel arc in (A; U .-+ U Ax) N E;. In fact, since no ¢;’s are
boundary parallel, these arcs define a bijection 7 on {2, ..., 21,2],..., 2} so that {; connets the points
(2i,0) and (7(z;),1). Then since (] is also a component of A; N E;, ¢! connets the points (2},0) and
(r(2)),1) = (7(2)',1). If 7(2) = z; (vesp. 7(2;) = 2}), then 7(2;)’ denotes 2] (resp. 2;).

Let us show that 7(z;) = 2;,. Suppose to the contrary that 7(2;) # z; for some i. If 7(2z;) = z; for
some j # 1, say as in Figure 6 (1) in which i =1 and j = 2, then there would be a boundary-parallel arc
in (A1 U---U Ag) N Ej, a contradiction. If 7(z;) = 2} for some j, say asin Figure 6 (2) in which i = 2
and j = 2, then sliding the oriented closed curve a;o along the annulus A; to obtain an oriented closed
curve aj,;. Then since a; g is orientedly homotopic to a; 0, p(a;1) and p(aj,0) have opposite orientations.
This implies that a; and d; (the closed curve obtained from a; by inverting its orientation) and freely
homotpic in F, hence F would be non-orientable, a contradiction.

O(Claim 3.3)

Thus we have a situation, say as in Figure 7.

This observation implies the first assertion of Lemma 3.1 in the case where a; is separating.
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(zd )zl ) i) (1) (zd ) ) (1) (1)

i N i:”’/////
Ej EJ- /
@8 ) (2P ) (z10) (20) 20 )\@P WN\

(1) (2)

FIGURE 6
Zl
¢,
k=1 k=1
FIGURE 7

Let us show that A; is also isotoped to the vertical annulus as required in this case. By using the
same argument in the proof of Claim 3.2 for a torus T’ obtained from single A;, ¢; and ¢/ are shown to
be isotopic to vertical segments by a level preserving isotopy leaving their boundaries invariant. Then,
as in the above, we can isotope 4; (fixing F x {0, 1}) so that ANE, = @ (s # j), thus we can isotope 4;
to the vertical annulus by a level preserving isotopy as desired.

Finally suppose that F has genus g and d boundary components. We can find a system of properly
embedded arcs {e1,...,€24,01,...,04-1} so that they cut F into a single disk. Then the result follows by
applying the same argument as above. (The proof is easier, because p~'(e;) and p~1(dx) is a rectangle,

not an annulus.) O(Lemma 3.1)

4. ProoOF OF THEOREM 1.2

Let f be an element in S,(F) and bf an associated braid.

4.1. Proof of (i). This is certainly well-known, but for completeness, we give a proof. If bf is trivial,
then f is isotopic to the identity map, which has period 1. Conversely if f is isotopic to a periodic
automorphism, then by Proposition 1.1, bf has a finite order in the braid group. If bf is nontrivial, then
[5, Theorem 8] shows that F would be S2 or the projective plane RP?2, contradicting our assumption.
Thus b7 is trivial.

4.2. Proof of the “only if?’ part of (ii). Assume that f is isotopic to a reducible automorphism. Then
there is an essential 1-submanifold C = a3 U+ Uam C F such that f(C) is isotopic to C on F. In the

following, we assume that f(as,) is isotopic to a;, i.e., a, is isotopic to f~(a;) (i =1,...,m) on E.
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The isotopy from f~1(a;) to ax, (1 <% < m)on F is realized as a family of monotone annuli Ay, ... An
in ' xI C FxIsothat 84; = (f~(a1) x {0}) U (ak, x {1}), ..., 8Am = (f 1{am) x {0})U(ak,, x{1}).
Note that A; N ({z;} xI)=0fori=1,...,m, j=1,...,n. Since f is isotopic to the identity on F,
we have a level preserving diffeomorphism of F x I sending (z,0) to (f(z),0) and (z,1) to (z,1), which
deforms also the vertical segment {z;} x I to a monotone arc t/ with 8t/ = {(z;,0), (z4,1)}, where
z; = f(z;). Then t{,...,tf define a braid b' in F x I (see, Definition 1). Simultaneously, the annuli
A, ..., Ay, are also deformed to a family of monotone annuli Ay, ..., Ay in F x I, each of which is disjoint
from the braid b/ and satisfies that 04; = (a; x {0}) U (ak; x {1}). Let us choose annuli Ay, ..., Ay (after
changing their indices if necessary) so that p(8(A1U- - -UAr)N(F x {0})) = p(8(A1U- - -UAL)N(F x {1}))
and no proper subset satisfy this property. .

If a; bounds a disk D; on F, then since C is an essential 1-submanifold on F', D; contains at least two
points of {z1,...,z,}. Then for each i, A4; N(F x {0}) bounds a disk D; o C F x {0} and 84;N(F x {1})
bounds a disk D;; C F x {1}. By the irreducibility of F' x I, the 2-sphere A; U D; o U D; ; bounds a
3-ball B;. It turns out that each B; contains m strings in b for some integer m > 2 independent of i.
The collection of strings in 5/ each of which is contained in By U --- U By, would be a parallel family,
contradicting the assumption.

Hence a; is also essential on F and A; is incompressible in F' x I. Then Lemma 3.1 (1) implies that
k =1 and Lemma 3.1 (2) shows that A; can be isotoped to the vertical annulus a; x I by a level preserving
isotopy fixing F x {0,1}. Under this level preserving isotopy, the braid b/ = (t{ ooty F x I) is also
isotoped to another braid b’ = (t},...,t,; F x I) (without moving their endpoints), which is equivalent
to bf; they define equivalent systems of closed curves. Since the annulus A; is disjoint from bf, ay x I
does not intersect b’ neither, and hence a; N (UL, p(t})) = p(a; x I) Np(b’) = p((a; x I) N¥') = p(B) = 0.
Since b7 is stably filling, by definition, UP_,p(t;) must intersect every essential embedded loop. It follows
that a; would be parallel to a component of 8F with the parallelism containing some specified points
z;. This implies that a; x I, and hence A, is the frontier of a collar neighborhood N(2¢ §! x I x I) of
a component of (8F) x I. Since N(= S x I x I) contains some strings t;;f , there would be a peripheral
family each member of which is in N. This contradicts b/ having no P-families.

4.3. Proof of the “ if? part of (ii). Suppose that the braid bf has a P-family or is not stably filling.
Then by definition, (1) b has a parallel family {t{l, . t{; } or (2) b/ has a peripheral family {tf1 yeee t{k},
or (3) bf is equivalent to a braid &' = (t;,...,t,; F x I) such that p(t}) U--- U p(t,) does not intersect
an essential embedded loop a.

In each case, C = p(n(8(D} x {0} U--- U D2, x {0}))), the frontier of p(N N (F x {0})) in F, or the
embedded loop a is an essential 1-submanifold which is isotopic to the image of f on F. This means that

f is isotopic to a reducible automorphism.
5. PROOF OF COROLLARY 1.3
Corollary 1.3 follows immediately from Theorem 1.2 (iii} and the claim below.

Claim 5.1. If the system of closed curves Cf = {c{ ,---,ct.} has property (x), then the braid bf =
(t1,...,tf; FxI) is stably filling and has no P-families.

Proof. Suppose that we have a parallel family {t;,,...,t;,} (k > 2), which consists of some cyclic
subfamilies. The cyclic families give a subsystem of closed curves in Cf. Since k > 2, the subsystem
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contains a closed curve homotopic to a nontrivial power of a closed curve or a pair of mutually homotopic

closed curves. (If f fixes z;, ...,z pointwisely, i.e., b7 is a pure braid, then we have the latter possibility.)

This contradicts the assumption. If we have a peripheral family {t;,,...,t;, }, then clearly c{ is homotoped

into a component of OF, contradicting the assumption. Let &' = (t},...,t,; F x I) be a braid equivalent

to bf. Then the system of closed curves C’ corresponding to b is equivalent to Cf. Since Cf is stably

filling, by definition, €’ is filling. O(Claim 5.1)
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