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NOTE ON REALIZATION OF CUSP CROSS-SECTIONS
OF COMPLEX HYPERBOLIC ORBIFOLDS

#B¥E (YOSHINOBU KAMISHIMA)

INTRODUCTION

Long and Reid [3] has shown that every flat manifold of dimension
n > 3 arises as some cusp cross-section of a finite volume cusped (real)
hyperbolic orbifold. Mcreynolds has proved that every 3-dimensional
infranil manifold is a cusp of a complex hyperbolic 2-orbifold. Long
and Reid [4] has also proved that some compact flat 3-manifold cannot
be a cusp cross-section of a 1-cusped finite volume hyperbolic manifold.
Inthis note we give a negative answer similarly to the flat case.

Theorem 1. There exists a 3-dimensional closed Heisenberg infranil-
nilmanifold which cannot be a cusp cross-section of a 1-cusped finite
volume complex hyperbolic 2-manifold.

1. HEISENBERG LIE GROUPS

Let K be the field of real numbers R, complex numbers C respec-
tively. Denote ¢ = 1,2 accroding to R, C. We define the bilinear form
@ on the K-vector space K"+

Q(Z, w) = —21W1 + ZpWa + - - - + Zp4oWn4o.

Let P : K" — {0}—KP"*! be the projection onto the c(n + 1)-
dimensional K-projective space respectively.

When GL(n + 2,K) is the group of all invertible (n + 2) x (n +
2)-matrices with entries in K, the K-Lorentz group O(n + 1,1; K)
is defined to be the subgroup {4 € GL(n + 2,K) |Q(Az, Aw) =
Q(z,w) V z,w € K™'}. The kernel of this action is the center C'(K)
isomorphic to {£1} if K = R or the circle S! if K = C. Let PO(n +
1,1;K) be the quotient group O(n+1,1;K)/C(K), It is customary to
write PO(n + 1,1;K) as PO(n + 1,1), PU(n + 1, 1) respectively. If we
choose the quadratic space VZ™? ™! = {z € K2 - {0}| Q(z, 2) = 0},
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then P (V})C(nw) 1 is the (¢(n+ 1) — 1)-dimensional sphere S**1-1 in
KP*. As the group PO(n + 1,1; K) leaves S¢"*1U-1 invariant and .
transitive. This gives the geometry (PO(n + 1, 1; K), S+-1), Ac-
cording to whether K = R, C, we get the conformally flat geometry,
(PO(n + 1,1),8™), the spherical CR geometry (PU(n + 1,1), S%1).
The imaginary part of C, ImC is the real vector space R. (In addition,
ImR =0.)

The K-Heisenberg nilpotent Lie group Nk is the the product ImK x
K" with group law:

(1.1) (a,2) - (byw) = (a + b —Im(z,w), z+w),
where the Hermitian inner product (-,-) on K" is defined as
(z,w) =21 - w1+ Zp - Wy + -+ + Zn - Whn.

Here z is the complex conjugate of z. It is easy to see that Nk is 2-step
nilpotent, i.e. Mg, Nk] = (ImK, 0). Identified (ImK,0) with ImK, it
is the central subgroup C(Nk) of Nk. This induces a canonical central
group extension:

(1.2) 1-C(Nk)— Nk — K"—1.

Acoording to whether K = R, C, Nk is described as the vector space
R™, and the Heisenberg nilpotent Lie group N. Each space R", N has
the conformally flat structurte, spherical C'R structure respectively.
Let Sim(Nk) be the subgroup of the automorphism group Aut(Nk)
whose elements preserve the geometric structure on Nk respectively. |
Then Sim(Nk) is isomorphic to the semidirect product R x (O(n) x
R*), N x (U(n) x R) respectively. Note that Sim(Nx) for K = C are
called generalized similarity transformations generated by translations,
rotations and similarities in the sense of each geometry. Obviously
as Sim(Nk) acts transitively on Nk, we arrive at the K-Heisenberg
geometry: (Sim(R"), R"), (Sim(N), ). Note that the group Sim(Nk)
acts on Nk as follows: (z € R", (b,v) e N =R x C"):

If (2,(A,t)) € R* x (O(n) x R*),
((2,(At)) z=2z+1t- Az.
If ((a,2), (A, 1)) € N % (U(n) x RT),
((a,2),4A,t) - (b,v) = (a+ - b,t - Av).
Letting O(n,K) = O(n), U(n) respectively, we write the above group
Sim(Nk) = Nk % (O(n,K) x RY).

On the other hand, we observe that Sim(Nx) is realized as the max-
imal amenable Lie subgroup of PO(n+ 1, 1; K), $¢"+1)-1) - Choose the
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standard basis {ej, ... ,ens2} of K"*? with respect to the Hermitian
form @ for which Q(e,e;) = —1,Q(e;,e;) = 65 (4,5 = 2,... ,n+
2), Q(el,ej) =0 (]22, ,'n+2)

Let P: (O(n+1,;K), Vi ™ (PO(n+1,1;K), S€+D-1) be the
equivariant projection as before.

If we put f1 = (e1 + ens2)/ V2, fris = (e1 — ent2)/V2 respectively, then
the vectors fi, fn42 lie in the cone V;,C(’Hz) ' of K™*2, We call P(f,) =
oo the point at infinity (north pole) in S¥™*+V-1. (Similarly, P(fny2) =
0 the origin (south pole) of S¢**1-1)) The stabilizer at {co} of the
isometry group Iso(H™) is isomorphic to PO(n + 1,1;K) e x {7),
where 7 is the identity, K = R or the involution, K = C. The ge-
ometry (PO(n + 1,1;K), S€"+D-1) restricts the geometry (PO(n +
1, 1; K) oo, ST — {00}) which is isomorphic to the K-Heisenberg
geometry (Sim(Nk),Nk). Moreover we observe how Sim(Nk) is re-
alized as the stabilizer of PO(n + 1, 1; K) at oo under the identifica-
tion Mg = Set-1 _ oo}, First note that if G is a subgroup of
PO(n + 1,1; K) which leaves f; invariant, then PG is isomorphic to
PO(n + 1,1;K) . Now each element g of G has the following form
with respect to the basis {fi,ez,... ,ent1, fasa}:

A NGB 2z
g={0 B y
0 0 u
satisfying that

(1) A\, u € K* with u = 1.

(2) B is a matrix contained in O(n), U(n) respectively.

(3) y is an n-th column vector, and z € K with zZu + gz = |y|%
Then K-Heisenberg Lie group Nk is the subgroup consisting of the
following matrices for K = R, C, H respectively;

1t BEN\ (1t BE_jg
01 yl|. o1 & .
0 0 1 00 1

It can be checked that the correspondence

A NGB 2z L
(1.4) 0 B gy |~ ((-Im(zA),yA),(B,N)
0 0 pu

is an isomorphim of G onto R™ % (O(n) x R*) (respectively N x (U(n) x
C*).) As the center C(K) = {1}, S, {£1} respectively, this induces
an isomorphism from PG = PO(n + 1, 1; K), onto Sim(Nk) = Nk X
(O(n, K) x R*) respectively. Denote the group of rigid motions of Nk



by E(Mk) = Nk x O(n,K). Form the group E"(Nk) = E(Nk) % (1)
which is a subgroup of Iso(HE ™) e

Definition 1.1. We call E"(Nx) the K-Heisenberg euclidean group.
A generalized K-Heisenberg infranilmanifold (orbifold) is a compact
manifold (orbifold) Nx /T such that T' is a (torsion free) discrete co-
compact subgroup of E"(Nk). In addition, if T’ belongs to E(Nk), then
Nk /T is called a K-Heisenberg infranilmanifold.

Given a noncompact finite volume hyperbolic manifold Hiz™' /G, the
form of a cusp-cross section is described as a generalized K-Heisenberg
infranilmanifold:

(1.5) Nk /T where Go, =T C E"(Nk).

An automorphism A of the K-Heisenberg euclidean group E™(Nk)
is defined by h = (ho, k) : Nx—Nk, more precisely h € O(n), h =
(1,k) € U(n). The group E"(Nxk) acts on Nk as follows (see (1.3)): if
(b, w) € Nk,

((a, 2), k) - (byw) = (a, 2) - h(b,w) = (a,2) - (ho(b), h(w))
| = ((a + ho(b) — Im(z, h(w))), z + h(w))

We can define a map ¥y : ET(NK)%ET(NK) for each real nonzero
number §:

(16) \Ilg((a,z), h) = ((92 ) 6 - Z)’ h)

for (a, z) € Nk, h € O(n,K) x (7).
As ((a,2), h)((b,w),9) = ((a + h(b) — Im(2, h(w)})), h o g), it is easy
to see that Wy is an isomorphism of E"(Nk) onto istself.

2. GEOMETRIC BOUNDARY

We shall consider whether every Heisenberg infranilmanifold can be
arised, up to diffeomorphism, as a cusp cross-section of a complete
finite volume 1- cusped complex hyperbolic manifold. In [1], Burns
and Epstein has obtained the C R-invariant u(M) on the 3-dimensional
strictly pseudoconvex C R-manifolds M provided that the holomorphic
line bundle is trivial. Let NV be a compact strictly pseudoconvex com-
plex 2-dimensional manifold with smooth boundary M. Then they
have shown the following equality in [2]:

1 1
(2.1) [ a=zd=xth) -3 [ &+uan.
N 3 3JN
Here ¢ is a lift of ¢; by the inclusion j* : H3(N, M : R)—H?*(N : R).



Let E"(M) = N x U(1) be the 3-dimensional C-Heisenberg eu-
clideanm group (cf. 1.1). Let L : E"(N)—U(1) be the holonomy homo-
morphism.

Theorem 2.1. There exists a 3-dimensional infarnilmanifold N'/T°
which does not bound a complete complex hyperbolic 2-manifold (no
cusp cross-section of one cusped complex hyperbolic manifold).

Proof. There exists a 3-dimensional Heisenberg infranilmanifold M =
N/T but not a homogeneous space and the holonomy group L(T') is
odd cyclic (see [5] for the classification. ) Suppose that M is realized
as a cusp-cross section of a complete finite volume one-cusped complex
hyperbolic manifold W = HZ /7. Then we view M as a boundary of W
where W\O0W supports a complete complex hyperbolic structure. The
spherical CR-structure on M is induced from the complex hyperbolic
structure on W. Let p : W—W be the finite cover, say of order ¢, whose
induced covering M of M is now a nilmanifold (possiblly consists of a
finite number of such manifolds). We may assume £ is odd prime (see
[5]). Since W admits a complete Einstein-Kahler metric, we know that

Cy— gcf = 0. Moreover, since M is a spherical CR manifold with trivial
holomorphic line bundle, it follows that u(M) = 0. Applying the above
equality to W, we have x(W) = 31-/‘7‘,&% As p*(e,(W)) = (W) by
naturality and p,[W] = {[W],

(2.2) /W 2 = (W), (W) = @W), W),

~

Since x(W) = £x(W), it follows that
(2.3) 3x(W) = (&G(W), [W]).

As a consequence, & (W) could be an integer, i.e.é (W) € H3(W, N :
Z) so that j*¢1 (W) = (W) € HX(W : Z).

On the other hand, given a C R structure on M, there is the canonical
splitting TM ® C = BY° @ B%! where B0 is the holomorphic line
bundle. Since M is an infranilmanifold but not homogeneous, B° is
nontrivial, i.e.¢;(B!?) # 0. (In fact, it is a torsion element in H?(N :
Z), because the ¢-fold covering M has the trivial holomorphic bundle.)
The spherical CR manifold M has a characteristic CR vector field
(Reeb field) &. If €' is the vector field on M pointing outward to W,
then the vector fields (¢!, £) generates a trivial holomorphic line bundle
TC on M for which TW ® C|M = B + TC @ B% + TC%. In



particular,
0=135*(E(W)) = i*ci(W) = ¢ (B + TCH?) = 1 (BY9),

which is a contradiction.
O
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