NOTE ON REALIZATION OF CUSP CROSS-SECTIONS OF COMPLEX HYPERBOLIC ORBIFOLDS

神島芳宣 (YOSHINOBU KAMISHIMA)

Introduction

Long and Reid [3] has shown that every flat manifold of dimension $n \geq 3$ arises as some cusp cross-section of a finite volume cusped (real) hyperbolic orbifold. Mcreynolds has proved that every 3-dimensional infranil manifold is a cusp of a complex hyperbolic 2-orbifold. Long and Reid [4] has also proved that some compact flat 3-manifold cannot be a cusp cross-section of a 1-cusped finite volume hyperbolic manifold. In this note we give a negative answer similarly to the flat case.

Theorem 1. There exists a 3-dimensional closed Heisenberg infranilnilmanifold which cannot be a cusp cross-section of a 1-cusped finite volume complex hyperbolic 2-manifold.

1. Heisenberg Lie groups

Let **K** be the field of real numbers \mathbb{R} , complex numbers \mathbb{C} respectively. Denote c = 1, 2 accroding to \mathbb{R}, \mathbb{C} . We define the bilinear form Q on the **K**-vector space \mathbf{K}^{n+2} :

$$Q(z,w) = -\bar{z}_1 w_1 + \bar{z}_2 w_2 + \cdots + \bar{z}_{n+2} w_{n+2}.$$

Let $P: \mathbf{K}^{n+2} - \{0\} \longrightarrow \mathbf{K}\mathbb{P}^{n+1}$ be the projection onto the c(n+1)-dimensional **K**-projective space respectively.

When $GL(n+2, \mathbf{K})$ is the group of all invertible $(n+2) \times (n+2)$ -matrices with entries in \mathbf{K} , the \mathbf{K} -Lorentz group $\mathbf{O}(n+1,1;\mathbf{K})$ is defined to be the subgroup $\{A \in GL(n+2,\mathbf{K}) \mid Q(Az,Aw) = Q(z,w) \; \forall \; z,w \in \mathbf{K}^{n+1}\}$. The kernel of this action is the center $C(\mathbf{K})$ isomorphic to $\{\pm 1\}$ if $\mathbf{K} = \mathbb{R}$ or the circle S^1 if $\mathbf{K} = \mathbb{C}$. Let $PO(n+1,1;\mathbf{K})$ be the quotient group $O(n+1,1;\mathbf{K})/C(\mathbf{K})$, It is customary to write $PO(n+1,1;\mathbf{K})$ as PO(n+1,1), PU(n+1,1) respectively. If we choose the quadratic space $V_0^{c(n+2)-1} = \{z \in \mathbf{K}^{n+2} - \{0\} | Q(z,z) = 0\}$,

Date: June 1, 2004.

¹⁹⁹¹ Mathematics Subject Classification. 53C55, 57S25, 51M10.

Key words and phrases. Real, Complex, Quaternionic hyperbolic manifold, Cusp, Group extension.

then $P(V_0^{c(n+2)-1})$ is the (c(n+1)-1)-dimensional sphere $S^{c(n+1)-1}$ in \mathbb{KP}^{n+1} . As the group $PO(n+1,1;\mathbb{K})$ leaves $S^{c(n+1)-1}$ invariant and transitive. This gives the geometry $(PO(n+1,1;\mathbb{K}), S^{c(n+1)-1})$. According to whether $\mathbb{K} = \mathbb{R}, \mathbb{C}$, we get the conformally flat geometry, $(PO(n+1,1), S^n)$, the spherical CR geometry $(PU(n+1,1), S^{2n+1})$. The imaginary part of \mathbb{C} , $Im\mathbb{C}$ is the real vector space \mathbb{R} . (In addition, $Im\mathbb{R} = 0$.)

The **K**-Heisenberg nilpotent Lie group $\mathcal{N}_{\mathbf{K}}$ is the the product $\operatorname{Im} \mathbf{K} \times \mathbf{K}^n$ with group law:

$$(1.1) (a,z)\cdot(b,w)=(a+b-\operatorname{Im}\langle z,w\rangle,\ z+w),$$

where the Hermitian inner product $\langle \cdot, \cdot \rangle$ on \mathbf{K}^n is defined as

$$\langle z, w \rangle = \bar{z}_1 \cdot w_1 + \bar{z}_2 \cdot w_2 + \dots + \bar{z}_n \cdot w_n.$$

Here \bar{z} is the complex conjugate of z. It is easy to see that $\mathcal{N}_{\mathbf{K}}$ is 2-step nilpotent, i.e. $[\mathcal{N}_{\mathbf{K}}, \mathcal{N}_{\mathbf{K}}] = (\operatorname{Im} \mathbf{K}, 0)$. Identified $(\operatorname{Im} \mathbf{K}, 0)$ with $\operatorname{Im} \mathbf{K}$, it is the central subgroup $\mathcal{C}(\mathcal{N}_{\mathbf{K}})$ of $\mathcal{N}_{\mathbf{K}}$. This induces a canonical central group extension:

$$(1.2) 1 \rightarrow \mathcal{C}(\mathcal{N}_{\mathbf{K}}) \rightarrow \mathcal{N}_{\mathbf{K}} \xrightarrow{P} \mathbf{K}^{n} \rightarrow 1.$$

According to whether $\mathbf{K} = \mathbb{R}, \mathbb{C}, \mathcal{N}_{\mathbf{K}}$ is described as the vector space \mathbb{R}^n , and the Heisenberg nilpotent Lie group \mathcal{N} . Each space \mathbb{R}^n , \mathcal{N} has the conformally flat structurte, spherical CR structure respectively. Let $\mathrm{Sim}(\mathcal{N}_{\mathbf{K}})$ be the subgroup of the automorphism group $\mathrm{Aut}(\mathcal{N}_{\mathbf{K}})$ whose elements preserve the geometric structure on $\mathcal{N}_{\mathbf{K}}$ respectively. Then $\mathrm{Sim}(\mathcal{N}_{\mathbf{K}})$ is isomorphic to the semidirect product $\mathbb{R}^n \rtimes (\mathrm{O}(n) \times \mathbb{R}^+)$, $\mathcal{N} \rtimes (\mathrm{U}(n) \times \mathbb{R}^+)$ respectively. Note that $\mathrm{Sim}(\mathcal{N}_{\mathbf{K}})$ for $\mathbf{K} = \mathbb{C}$ are called generalized similarity transformations generated by translations, rotations and similarities in the sense of each geometry. Obviously as $\mathrm{Sim}(\mathcal{N}_{\mathbf{K}})$ acts transitively on $\mathcal{N}_{\mathbf{K}}$, we arrive at the \mathbf{K} -Heisenberg geometry: $(\mathrm{Sim}(\mathbb{R}^n), \mathbb{R}^n)$, $(\mathrm{Sim}(\mathcal{N}), \mathcal{N})$. Note that the group $\mathrm{Sim}(\mathcal{N}_{\mathbf{K}})$ acts on $\mathcal{N}_{\mathbf{K}}$ as follows: $(x \in \mathbb{R}^n, (b, v) \in \mathcal{N} = \mathbb{R} \times \mathbb{C}^n)$:

(1.3) If
$$(z, (A, t)) \in \mathbb{R}^n \times (O(n) \times \mathbb{R}^+)$$
,

$$((z, (A, t)) \cdot x = z + t \cdot Ax.$$
If $((a, z), (A, t)) \in \mathcal{N} \times (U(n) \times \mathbb{R}^+)$,

$$((a, z), A, t)) \cdot (b, v) = (a + t^2 \cdot b, t \cdot Av).$$

Letting $O(n, \mathbf{K}) = O(n)$, U(n) respectively, we write the above group $Sim(\mathcal{N}_{\mathbf{K}}) = \mathcal{N}_{\mathbf{K}} \rtimes (O(n, \mathbf{K}) \times \mathbb{R}^+)$.

On the other hand, we observe that $Sim(\mathcal{N}_{\mathbf{K}})$ is realized as the maximal amenable Lie subgroup of $PO(n+1,1;\mathbf{K})$, $S^{c(n+1)-1}$). Choose the

standard basis $\{e_1, \ldots, e_{n+2}\}$ of \mathbf{K}^{n+2} with respect to the Hermitian form Q for which $Q(e_1, e_1) = -1, Q(e_i, e_j) = \delta_{ij}$ $(i, j = 2, \ldots, n + 2), Q(e_1, e_j) = 0$ $(j = 2, \ldots, n + 2).$

Let $P: (\mathbf{O}(n+1,1;\mathbf{K}), V_0^{c(n+2)-1}) \rightarrow (\mathbf{PO}(n+1,1;\mathbf{K}), S^{c(n+1)-1})$ be the equivariant projection as before.

If we put $f_1 = (e_1 + e_{n+2})/\sqrt{2}$, $f_{n+2} = (e_1 - e_{n+2})/\sqrt{2}$ respectively, then the vectors f_1 , f_{n+2} lie in the cone $V_0^{c(n+2)-1}$ of \mathbf{K}^{n+2} . We call $P(f_1) = \infty$ the point at infinity (north pole) in $S^{c(n+1)-1}$. (Similarly, $P(f_{n+2}) = 0$ the origin (south pole) of $S^{c(n+1)-1}$.) The stabilizer at $\{\infty\}$ of the isometry group $\mathrm{Iso}(\mathbb{H}^{n+1}_{\mathbf{K}})$ is isomorphic to $\mathrm{PO}(n+1,1;\mathbf{K})_{\infty} \rtimes \langle \tau \rangle$, where τ is the identity, $\mathbf{K} = \mathbb{R}$ or the involution, $\mathbf{K} = \mathbb{C}$. The geometry $(\mathrm{PO}(n+1,1;\mathbf{K}),S^{c(n+1)-1})$ restricts the geometry $(\mathrm{PO}(n+1,1;\mathbf{K}),S^{c(n+1)-1})$ which is isomorphic to the \mathbf{K} -Heisenberg geometry $(\mathrm{Sim}(\mathcal{N}_{\mathbf{K}}),\mathcal{N}_{\mathbf{K}})$. Moreover we observe how $\mathrm{Sim}(\mathcal{N}_{\mathbf{K}})$ is realized as the stabilizer of $\mathrm{PO}(n+1,1;\mathbf{K})$ at ∞ under the identification $\mathcal{N}_{\mathbf{K}} = S^{c(n+1)-1} - \{\infty\}$. First note that if G is a subgroup of $\mathrm{PO}(n+1,1;\mathbf{K})$ which leaves f_1 invariant, then PG is isomorphic to $\mathrm{PO}(n+1,1;\mathbf{K})_{\infty}$. Now each element g of G has the following form with respect to the basis $\{f_1, e_2, \ldots, e_{n+1}, f_{n+2}\}$:

$$g = \left(\begin{array}{ccc} \lambda & \lambda^t \bar{y} B & z \\ 0 & B & y \\ 0 & 0 & \mu \end{array}\right)$$

satisfying that

- (1) $\lambda, \mu \in \mathbf{K}^*$ with $\bar{\lambda}\mu = 1$.
- (2) B is a matrix contained in O(n), U(n) respectively.
- (3) y is an n-th column vector, and $z \in \mathbf{K}$ with $\bar{z}\mu + \bar{\mu}z = |y|^2$.

Then **K**-Heisenberg Lie group $\mathcal{N}_{\mathbf{K}}$ is the subgroup consisting of the following matrices for $\mathbf{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}$ respectively;

$$\left(\begin{array}{ccc} 1 & {}^t\bar{y} & \frac{|y|^2}{2} \\ 0 & \mathrm{I} & y \\ 0 & 0 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & {}^t\bar{y} & & \frac{|y|^2}{2} - \mathbf{i}a \\ 0 & \mathrm{I} & y \\ 0 & 0 & 1 \end{array}\right).$$

It can be checked that the correspondence

(1.4)
$$\begin{pmatrix} \lambda & \lambda^t \bar{y}B & z \\ 0 & B & y \\ 0 & 0 & \mu \end{pmatrix} \mapsto ((-\operatorname{Im}(z\bar{\lambda}), y\bar{\lambda}), (B, \lambda))$$

is an isomorphim of G onto $\mathbb{R}^n \rtimes (\mathrm{O}(n) \times \mathbb{R}^*)$ (respectively $\mathcal{N} \rtimes (\mathrm{U}(n) \times \mathbb{C}^*)$.) As the center $\mathcal{C}(\mathbf{K}) = \{\pm 1\}, S^1, \{\pm 1\}$ respectively, this induces an isomorphism from $PG = \mathrm{PO}(n+1,1;\mathbf{K})_{\infty}$ onto $\mathrm{Sim}(\mathcal{N}_{\mathbf{K}}) = \mathcal{N}_{\mathbf{K}} \rtimes (\mathrm{O}(n,\mathbf{K}) \times \mathbb{R}^+)$ respectively. Denote the group of rigid motions of $\mathcal{N}_{\mathbf{K}}$

by $E(\mathcal{N}_{\mathbf{K}}) = \mathcal{N}_{\mathbf{K}} \rtimes O(n, \mathbf{K})$. Form the group $E^{\tau}(\mathcal{N}_{\mathbf{K}}) = E(\mathcal{N}_{\mathbf{K}}) \rtimes \langle \tau \rangle$ which is a subgroup of $Iso(\mathbb{H}^{n+1}_{\mathbf{K}})_{\infty}$.

Definition 1.1. We call $E^{\tau}(\mathcal{N}_{\mathbf{K}})$ the **K**-Heisenberg euclidean group. A generalized **K**-Heisenberg infranilmanifold (orbifold) is a compact manifold (orbifold) $\mathcal{N}_{\mathbf{K}}/\Gamma$ such that Γ is a (torsion free) discrete cocompact subgroup of $E^{\tau}(\mathcal{N}_{\mathbf{K}})$. In addition, if Γ belongs to $E(\mathcal{N}_{\mathbf{K}})$, then $\mathcal{N}_{\mathbf{K}}/\Gamma$ is called a **K**-Heisenberg infranilmanifold.

Given a noncompact finite volume hyperbolic manifold $\mathbb{H}^{n+1}_{\mathbf{K}}/G$, the form of a cusp-cross section is described as a generalized **K**-Heisenberg infranilmanifold:

(1.5)
$$\mathcal{N}_{\mathbf{K}}/\Gamma$$
 where $G_{\infty} = \Gamma \subset \mathrm{E}^{\tau}(\mathcal{N}_{\mathbf{K}})$.

An automorphism h of the **K**-Heisenberg euclidean group $\mathrm{E}^{\tau}(\mathcal{N}_{\mathbf{K}})$ is defined by $h = (h_0, \hat{h}) : \mathcal{N}_{\mathbf{K}} \to \mathcal{N}_{\mathbf{K}}$, more precisely $h \in \mathrm{O}(n)$, $h = (1, \hat{h}) \in \mathrm{U}(n)$. The group $\mathrm{E}^{\tau}(\mathcal{N}_{\mathbf{K}})$ acts on $\mathcal{N}_{\mathbf{K}}$ as follows (see (1.3)): if $(b, w) \in \mathcal{N}_{\mathbf{K}}$,

$$((a, z), h) \cdot (b, w) = (a, z) \cdot h(b, w) = (a, z) \cdot (h_0(b), \hat{h}(w))$$

= $((a + h_0(b) - \operatorname{Im}\langle z, \hat{h}(w) \rangle), z + \hat{h}(w))$

We can define a map $\Psi_{\theta} : E^{\tau}(\mathcal{N}_{\mathbf{K}}) \longrightarrow E^{\tau}(\mathcal{N}_{\mathbf{K}})$ for each real nonzero number θ :

(1.6)
$$\Psi_{\theta}((a,z),h) = ((\theta^2 \cdot a, \theta \cdot z),h)$$

for $(a, z) \in \mathcal{N}_{\mathbf{K}}$, $h \in \mathcal{O}(n, \mathbf{K}) \rtimes \langle \tau \rangle$.

As $((a, z), h)((b, w), g) = ((a + h(b) - \operatorname{Im}\langle z, h(w)\rangle), h \circ g)$, it is easy to see that Ψ_{θ} is an isomorphism of $E^{\tau}(\mathcal{N}_{\mathbf{K}})$ onto istself.

2. Geometric boundary

We shall consider whether every Heisenberg infranilmanifold can be arised, up to diffeomorphism, as a cusp cross-section of a complete finite volume 1- cusped complex hyperbolic manifold. In [1], Burns and Epstein has obtained the CR-invariant $\mu(M)$ on the 3-dimensional strictly pseudoconvex CR-manifolds M provided that the holomorphic line bundle is trivial. Let N be a compact strictly pseudoconvex complex 2-dimensional manifold with smooth boundary M. Then they have shown the following equality in [2]:

(2.1)
$$\int_{N} c_2 - \frac{1}{3}c_1^2 = \chi(N) - \frac{1}{3}\int_{N} \bar{c}_1^2 + \mu(M).$$

Here \bar{c}_1 is a lift of c_1 by the inclusion $j^*: H^2(N, M: \mathbb{R}) \rightarrow H^2(N: \mathbb{R})$.

Let $E^{\tau}(\mathcal{N}) = \mathcal{N} \rtimes U(1)$ be the 3-dimensional \mathbb{C} -Heisenberg euclideanm group (cf. 1.1). Let $L : E^{\tau}(\mathcal{N}) \to U(1)$ be the holonomy homomorphism.

Theorem 2.1. There exists a 3-dimensional infarnilmanifold \mathcal{N}/Γ which does not bound a complete complex hyperbolic 2-manifold (no cusp cross-section of one cusped complex hyperbolic manifold).

Proof. There exists a 3-dimensional Heisenberg infranilmanifold $M=\mathcal{N}/\Gamma$ but not a homogeneous space and the holonomy group $L(\Gamma)$ is odd cyclic (see [5] for the classification.) Suppose that M is realized as a cusp-cross section of a complete finite volume one-cusped complex hyperbolic manifold $W=\mathbb{H}^2_{\mathbb{C}}/\pi$. Then we view M as a boundary of \bar{W} where $\bar{W}\backslash\partial W$ supports a complete complex hyperbolic structure. The spherical CR-structure on M is induced from the complex hyperbolic structure on W. Let $p: \bar{W} \to \bar{W}$ be the finite cover, say of order ℓ , whose induced covering \tilde{M} of M is now a nilmanifold (possibly consists of a finite number of such manifolds). We may assume ℓ is odd prime (see [5]). Since W admits a complete Einstein-Kähler metric, we know that $c_2-\frac{1}{3}c_1^2=0$. Moreover, since \tilde{M} is a spherical CR manifold with trivial holomorphic line bundle, it follows that $\mu(\tilde{M})=0$. Applying the above equality to \tilde{W} , we have $\chi(\tilde{W})=\frac{1}{3}\int_{\tilde{W}}\bar{c}_1^2$. As $p^*(\bar{c}_1(W))=\bar{c}_1(\tilde{W})$ by naturality and $p_*[\tilde{W}]=\ell[W]$,

(2.2)
$$\int_{\tilde{W}} \bar{c}_1^2 = \langle \bar{c}_1^2(\tilde{W}), [\tilde{W}] \rangle = \langle \bar{c}_1^2(W), \ell[W] \rangle.$$

Since $\chi(\tilde{W}) = \ell \chi(W)$, it follows that

(2.3)
$$3\chi(W) = \langle \bar{c}_1^2(W), [W] \rangle.$$

As a consequence, $\bar{c}_1(W)$ could be an integer, i.e. $\bar{c}_1(W) \in H^2(W, N : \mathbb{Z})$ so that $j^*\bar{c}_1(W) = c_1(W) \in H^2(W : \mathbb{Z})$.

On the other hand, given a CR structure on M, there is the canonical splitting $TM \otimes \mathbb{C} = B^{1,0} \oplus B^{0,1}$ where $B^{1,0}$ is the holomorphic line bundle. Since M is an infranilmanifold but not homogeneous, $B^{1,0}$ is nontrivial, i.e. $c_1(B^{1,0}) \neq 0$. (In fact, it is a torsion element in $H^2(N:\mathbb{Z})$, because the ℓ -fold covering \tilde{M} has the trivial holomorphic bundle.) The spherical CR manifold M has a characteristic CR vector field (Reeb field) ξ . If ϵ^1 is the vector field on M pointing outward to W, then the vector fields $\langle \epsilon^1, \xi \rangle$ generates a trivial holomorphic line bundle $T\mathbb{C}$ on M for which $TW \otimes \mathbb{C}|M = B^{1,0} + T\mathbb{C}^{1,0} \oplus B^{0,1} + T\mathbb{C}^{0,1}$. In

particular,

$$0 = i^* j^* (\bar{c}_1(W)) = i^* c_1(W) = c_1(B^{1,0} + T\mathbb{C}^{1,0}) = c_1(B^{1,0}),$$

which is a contradiction.

Acknowledgement. We would like to thank Professor S. Kamiya for his contribution and effort to this project. From 1999-2003, he has organized the worskshop concerning hyperbolic geometry and related topics every year. It was a great benefit to discuss and konw many splendid results through the workshop.

REFERENCES

- [1] D. Burns and C. L. Epstein, "A global invariant for three-dimensional CR-structure," Invent. Math., (1988), 333-348.
- [2] D. Burns and C. L. Epstein, "Characteristic numbers of bounded domains," *Acta Math.*, (1990), 29-71.
- [3] D.D. Long and A.W. Reid, "All flat manifolds are cusps of hyperbolic orbifolds", Algebraic and Geometric Topology. vol. 2 (2002) 285-296.
- [4] D.D. Long and A.W. Reid, "On the geometric boundaries of hyperbolic 4-manifolds", Geometry and Topology. vol. 4 (2000) 171-178.
- [5] D. B. Mcreynolds, "All nil 3-manifolds are cusps of complex hyperbolic 2-orbifold. Preprint

都立大学 数学 (Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, JAPAN)

E-mail address: kami@comp.metro-u.ac.jp