NOTES ON DISCRETE SUBGROUPS OF $PU(1,2; \mathbb{C})$ WITH PARABOLIC ELEMENTS

Shigeyasu KAMIYA * 神谷 茂保 岡山理大 (工)

1 Introduction

In the study of discrete groups it is important to find out conditions for a group to be discrete. Shimizu's lemma gives a necessary condition for a subgroup of PSL(2;C) containing a parabolic element to be discrete. In this paper we give analogues of Shimizu's lemma for a subgroup of isometries of complex hyperbolic 2-space.

This is a joint work with John. R. Parker (University of Durham).

2 Shimizu's lemma

Let B(z) = (az + b)/(cz + d) with $a, b, c, d \in \mathbb{C}$ and ad - bc = 1. If B does not fix ∞ , the isometric circle I(B) of B is defined as a circle centered at $B^{-1}(\infty)$ with radius 1/|c|, that is,

$$I(B) = \left\{ z \in \hat{\mathbf{C}} | |z - B^{-1}(\infty)| = \frac{1}{|c|} \right\}.$$

We denote the radius of I(B) by r_B .

Theorem 2.1 ([11], [13]). Let G be a discrete subgroup of PSL(2;C) containing a parabolic element A with A(z) = z + t (t > 0). Then for any element B of G with $B(\infty) \neq \infty$, $r_B \leq t$.

This theorem is known as Shimizu's lemma. In general, we say that a set Y is precisely invariant under the subgroup H in G, if

(1) H is the stabilizer of Y in G, and

^{*}This research was partially supported by Grant-in-Aid for Scientific Research, JSPS (No. 15540192)

(2) $B(Y) \cap Y = \emptyset$ for all $B \in G \setminus H$.

Where there is no danger of confusion, we will simply say that Y is precisely invariant under H. As a corollary to Theorem 2.1, we have

Corollary 2.2. Let Γ be a Fuchsian group acting on the upper half plane $\mathbf{H}^1_{\mathbf{C}} = \{z \in \mathbf{C} | Im(z) > 0\}$, and let $A \in \Gamma$ with A(z) = z + t (t > 0). If the stabilizer Γ_{∞} of ∞ is generated by A, then

$$U = \{z \in \mathbf{H}^1_{\mathbf{C}} | Im(z) > t\}$$

is precisely invariant under Γ_{∞} .

Remark 2.3. This corollary shows that the action of Γ on U is the same as that of the cyclic subgroup generated by A on U, whenever A generates the stabilizer of ∞ .

3 Preliminaries

We give some definitions and fix notation. Let $C^{2,1}$ be a complex vector space of dimension 3, equipped with the Hermitian form of signature (2,1) given by

$$\langle z^*,w^*
angle = z_1^*\overline{w_3^*} + z_2^*\overline{w_2^*} + z_3^*\overline{w_1^*}$$

for $z^*=(z_1^*,z_2^*,z_3^*), \ w^*=(w_1^*,w_2^*,w_3^*)\in \mathbf{C}^{2,1}$. An automorphism A of $\mathbf{C}^{2,1}$, that is a linear bijection such that $\langle A(z^*),A(w^*)\rangle=\langle z^*,w^*\rangle$ for any $z^*,w^*\in \mathbf{C}^{2,1}$, is called a unitary transformation. We denote the group of all unitary transformations by $\mathrm{U}(1,2;\mathbf{C})$. Let V_0 be the set of points z^* in $\mathbf{C}^{2,1}$ such that $\langle z^*,z^*\rangle=0$ and let V_- be the set of points z^* in $\mathbf{C}^{2,1}$ satisfying $\langle z^*,z^*\rangle<0$. It is clear that both V_0 and V_- are invariant under $\mathrm{U}(1,2;\mathbf{C})$. Let π be the canonical projection map from $\mathbf{C}^{2,1}-\{0\}$ to $\pi(\mathbf{C}^{2,1}-\{0\})$ defined by $\pi(z_1^*,z_2^*,z_3^*)=(z_1,z_2)$, where $z_i=z_i^*/z_3^*$ for i=1,2. We write ∞ for $\pi(1,0,0)$. We may identify $\pi(V_-)$ with the Siegel domain

$$\mathbf{H}_{\mathbf{C}}^2 = \{(z_1, z_2) \in \mathbf{C}^2 | 2Re(z_1) + |z_2|^2 < 0\}.$$

Set $\mathrm{PU}(1,2;\mathbf{C})=\mathrm{U}(1,2;\mathbf{C})/(\mathrm{center})$. We can introduce the Bergman metric in $\mathbf{H}_{\mathbf{C}}^2$. With respect to this metric, an element of $\mathrm{PU}(1,2;\mathbf{C})$ acts on $\mathbf{H}_{\mathbf{C}}^2$ as an isometry. We see that $\mathrm{PU}(1,2;\mathbf{C})$ is the group of all biholomorphic isometries of $\mathbf{H}_{\mathbf{C}}^2$. Now we define H-coordinate system in $\overline{\mathbf{H}_{\mathbf{C}}^2}-\{\infty\}$, where $\overline{\mathbf{H}_{\mathbf{C}}^2}=\mathbf{H}_{\mathbf{C}}^2\cup\partial\mathbf{H}_{\mathbf{C}}^2$. The H-coordinates of a point (z_1,z_2) in $\overline{\mathbf{H}_{\mathbf{C}}^2}-\{\infty\}$ are defined by $(\zeta,v,k)_H$ in $\mathbf{C}\times\mathbf{R}\times\mathbf{R}_+$, where $z_1=-|\zeta|^2-k+iv$ and $z_2=\sqrt{2}\zeta$.

We introduce the Cygan metric ρ , which is appropriate to our situation. The Cygan metric $\rho(p,q)$ for $p=(\zeta_1,v_1,k_1)_H,\ q=(\zeta_2,v_2,k_2)_H$ is defined by

$$\rho(p,q) = ||\zeta_1 - \zeta_2|^2 + |k_1 - k_2| + i(v_1 - v_2 + 2Im(\zeta_1\overline{\zeta_2}))|^{\frac{1}{2}}.$$

We note that this Cygan metric is invariant under Heisenberg translations. Now we define the isometric sphere I(B) of an element B of $PU(1,2;\mathbb{C})$ with $B(\infty) \neq \infty$. If B is of the form

$$\left(egin{array}{ccc} a & b & c \ d & e & f \ g & h & j \end{array}
ight),$$

then the isometric sphere I(B) of B is defined as ρ -sphere centered at $B^{-1}(\infty)$ with radius $\sqrt{1/|g|}$, that is,

$$I(B) = \left\{ z \in \overline{\mathbf{H}_{\mathbf{C}}^2} | \ \rho(z, B^{-1}(\infty)) = \sqrt{\frac{1}{|g|}} \right\}.$$

We denote the radius of I(B) by R_B .

4 Discrete subgroups of PU(1,2; C) with parabolic elements

We show complex hyperbolic versions of Shimizu's lemma.

Theorem 4.1 ([6], [7]). Let G be a discrete subgroup of $PU(1,2; \mathbb{C})$, which contains a vertical translation A with the form

$$\left(\begin{array}{ccc} 1 & 0 & it \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right),\,$$

where t > 0. Then for any element B of G with $B(\infty) \neq \infty$,

$$R_B^2 \leq t$$
.

Theorem 4.2 ([12]). Let G be a discrete subgroup of $PU(1,2; \mathbb{C})$. Let $A \in G$ be a Heisenberg translation with the form

$$\left(\begin{array}{ccc} 1 & -\sqrt{2}\overline{\tau} & s+it \\ 0 & 1 & \sqrt{2}\tau \\ 0 & 0 & 1 \end{array}\right),$$

where $s = -|\tau|^2$. If B is an element of G with $B(\infty) \neq \infty$, then $R_B^2 \leq \rho(AB(\infty), B(\infty))\rho(AB^{-1}(\infty), B^{-1}(\infty)) + 4|\tau|^2.$

Remark 4.3. If A is a vertical translation, then $\rho(AB(\infty), B(\infty))\rho(AB^{-1}(\infty), B^{-1}(\infty)) = t$ and $\tau = 0$. Therefore we have $R_B^2 \le t$. Thus Theorem 4.2 is a generalization of Theorem 4.1.

By using Theorems 4.1 and 4.2, we can construct precisely invariant regions.

Theorem 4.4 ([7], [12]). Let G be a discrete subgroup of PU(1,2; \mathbb{C}). Assume that the stabilizer G_{∞} of ∞ consists of Heisenberg translations.

(1) If G_{∞} contains a vertical translation A, then

$$U_A = \{(\zeta, v, k)_H | k > \rho(A(z), z)^2 = t\}$$

is precisely invariant under G_{∞} .

(2) If G_{∞} does not contain a vertical translation A, then

$$U_A = \{(\zeta, v, k)_H | k > \rho(A(z), z)^2 + 8|\tau|^2\}$$

is precisely invariant under G_{∞} .

Next we discuss a discrete group with a screw parabolic element.

Theorem 4.5. Let G be a discrete subgroup of $PU(1,2; \mathbb{C})$ containing a screw parabolic element A with the form

$$\left(\begin{array}{ccc} 1 & 0 & it \\ 0 & u & 0 \\ 0 & 0 & 1 \end{array}\right),$$

where $u = e^{i\theta}$, $|u - 1| < \frac{1}{4}$ and $t \sin \theta > 0$. If B is an element of G with $B(\infty) \neq \infty$, then

$$R_B^2 \leq \frac{\rho(AB(\infty), B(\infty))\rho(AB^{-1}(\infty), B^{-1}(\infty))}{K^2},$$

where $K = \frac{1+\sqrt{1-4|u-1|}}{2}$.

Remark 4.6. If |u-1|=0, then A is a vertical translation and $R_B^2 \leq t$.

We construct a precisely invariant region in the case where a discrete group G contains a screw parabolic element.

Theorem 4.7. Let G be a discrete subgroup of $PU(1,2; \mathbb{C})$. Let A be a screw parabolic element of G with the form

$$\left(egin{array}{ccc} 1 & 0 & it \ 0 & u & 0 \ 0 & 0 & 1 \end{array}
ight),$$

where $u=e^{i\theta}$, $|u-1|<\frac{2}{9}$ and $t\sin\theta>0$. Assume that the stabilizer of ∞ is generated by A. Then the sub-horospherical regin U defined by

$$U = \left\{ (\zeta, v, k)_H | k > \frac{2|2\zeta|^2(u-1) + it|}{1 - 6|u-1| + \sqrt{1 - 4|u-1|}} \right\}.$$

is precisely invariant under G_{∞} in G.

Remark 4.8. If u = 1, then A is a vertical translation and $U = \{(\zeta, v, k)_H | k > t\}$, which coincides with U_A in (1) of Theorem 4.4.

References

- [1] A. Basmajian and R. Miner, Discrete subgroups of complex hyperbolic motions, Invent. Math. 131 (1998), 85-136.
- [2] A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York 1983.
- [3] L. R. Ford, Automorphic Functions (Second Edition), Chelsea, New York, 1951.
- [4] W. Goldman, Complex hyperbolic geometry, Oxford University Press, 1999.
- [5] Y. Jiang, S. Kamiya and J. Parker, Jørgensen's inequality for complex hyperbolic space, Geom. Dedicata, 97 (2003), 55-80.
- [6] S. Kamiya, Notes on non-discrete subgroups of $\tilde{U}(1,n;F)$, Hiroshima Math. J. 13 (1983), 501-506.
- [7] S. Kamiya, Notes on elements of U(1,n;C), Hiroshima Math. J. 21 (1991), 23-45.

- [8] S. Kamiya, Parabolic elements of U(1,n;**C**), Rev. Romaine Math. Pures et Appl. 40 (1995), 55-64.
- [9] S. Kamiya, On discrete subgroups of PU(1,2;C) with Heisenberg translations, J. London Math. Soc. (2) 62 (2000), 817-842.
- [10] S. Kamiya and J. Parker, On discrete subgroups of PU(1,2;C) with Heisenberg translations II, Rev. Romaine Math. Pures et Appl. 47 (2002), 687-693.
- [11] I.Kra, Automorphic forms and Kleinian groups, W.A.Benjamin. Readings, MA,1972.
- [12] J. Parker, Uniform discreteness and Heisenberg translations, Math. Z. 225 (1997), 485-505.
- [13] H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math., 77 (1963), 33-71.

Okayama University of Science 1-1 Ridai-cho, Okayama 700-0005 JAPAN e-mail: kamiya@are.ous.ac.jp