obooo0ooooOooO 13880 20040 103-112

103

L, - L ESTIMATES OF THE OSEEN SEMIGROUP
IN EXTERIOR DOMAINS

YUKO ENOMOTO AND YOSHIHIRO SHIBATA

We consider the following Oseen equation:
Uy — Au+ (Uoo - Vu+ Vo =f  in (0,00) x Q,
(1) V-u=0 in (0,00) x Q,
ulsg = 0, uli=o = a,
where () is an exterior domain with smooth boundary 0Q in R® (n > 3). When u,, = 0,
the equation is the Stokes one. Our treatment below is including the Stokes equation.

First of all, we introduce the notation throughout the paper. For two Banach spaces X
and Y, £(X,Y) denotes the set of all bounded linear operators from X into Y. We put

By = {z € R"| |z| < b} (b>0),

0, =Qn By,
Con ()" ={u e Ce(Q)" | V-u =0},
Ty LI

Jp() = o ()",
Jpop(2) = {u € J,(Q) | u(z) = 0 for |z| > b},
Gp() ={Vm € Ly()" | 7 € Lyp1oc()}

and () is a function in C*°(R™) such that ,(z) = 0 for |z| < b—1 and py(z) = 1 for
2| > b
The Banach space L,(§2)" admits the Helmholtz decomposition:

Lp(ﬂ)n = Jp(ﬂ) @ GP(Q)'

Let P be a continuous projection from L,(2)" onto J,(2). Applying P to the Oseen
equation, we have

U + P(—A + (ue - V))u = Pf,
ulag = 0, uli= = a.
Let us define the operator O, by O, = P(—A + (us - V)) with the domain:
D, (0y,,)={ue€ Jp(2)N Wj(ﬂ) | ulaq = 0}

By Miyakawa [3], we know that O, generates an analytic semigroup {T,_, (¢)}:>o-
Our main theorem is the followiong one.
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Theorem 1. Let oy be a positive number and 1 < p < ¢ < co. Assume that |ue| < o .
For anyt > 0,

_nfl_1
) T Wallzo@) < Crawot 2 Dlallye)  (p,9) # (1,1), (00, 00),
1
() |IVTu,(t)allLye) € Crgoot” 3(5-3)- Yallp,@ 1<p<a<n, (p,g)#(1,1).
Moreover, if [us| # 0 and t > 1 then we have

_nf1_1)_1
(4) 10T (Bally@) € Cpgoot 2\? ) *all@ (p,q) # (1,1), (00, 00),
(5)
nfl_
10, VT, (t)allL, @) < Cpaot 3G73)7 lallz, @ 1<p<q<n, (p,q)#(1,1).

A crucial step of our approach is to show the following local energy decay of the Oseen
semigroup.

Theorem 2. Let 1 < p < 0o and gg > 0. Assume that |u| < 0o. Then, for any b > by
and any nonnegative integer k, there ezists a positive constant Cip b 0o,n Stuch that

_ntk
188 Tue (t)allwz (@) < Chippoom ¢ 2 Nlally@  for "t 21, Ya € J,p(Q),
where by is a fized positive number such that Q° C By, _,.

To use a cut-off technique later on under the Helmholtz decomposition, we use the
following Bogovskii lemma.

Lemma 3 ([1], [2]). Let 1 < p < oo and let m be a nonnegative integer. Then, there
ezists a bounded linear operator B : W, (D) — W**(D) such that

V-Bfl=finD and |Bflllwp+ip) < Clifllwpw)

where D is a bounded domain with Lipschitz boundary in R", W;"(D) Cs°(D) I ond

W (D) ={ue W;"(D) | Jpudz =0}.

Sketch of proof of Theorem 1. We define a solution operator in R™. Let ¢(z) be a
function in L,(R™)" satisfying V - ¢ = 0 in R". We define S, (t)c(z) by the formula:

0 = () [ == s

Put v(t,z) = Sy, (t)c(z), then v satisfies the equation:

—Av+ (oo - V) =0 in (0,00) x R",
V.v=0 in (0,00) x R”,

V|t=0 = €.

Moreover, when 1 < p < ¢ < oo, by the Young inequality we can show that
o nfL_1 .ttlgl '
(6) 18200 ()l e@m < O RG220,
a —2(i-L)-(G+it
(7 1882 v()|| 7 < Ct 2(5-9)-(+5 )IchL,(g) 0<t< 1.
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For ¢ > 1, we will prove the following L, - L, estimates:

®) T Wl < Ol 1<p<g<oo,
(9 V7., (t)aHLq(o) <ori6 D@ 1<p<qsn
To do this put a(z) = T,_(1)a(z) and u(t,z) = T, (t)é(z). By the analytic semigroup

theory, for any nonnegatlve integer N
a€Dy(0,,) and lallwpm(e < Cllallz,@).

1st step.
Let m be a nonnegative integer. For any ¢ > 0, we shall prove the following estimates:

(10) [u(®) lwzmay < C(1 + )75 |lalL, @),
(11) lue(®llwamayy < C(1 + )% ¥ |lal|L, ),
(12) [u(t)llwzr @) < C( +8)7% lal|z, @),
(13) hae(®)llwar@y < C(1+ )% 7| allz, ),

where 1 < p < 00.
Let N be a natural number such that N > % (f;-:- +2m + 6) and let 1 < p < co. There

exists a c(z) € W2V (R") such that ¢(z) = &(z) on  and V - ¢ = 0 in R*. Moreover,
(14) llellwzy®ny < Clléllwzn @) < Cllallz, @)
By (6), (7) and (14), for any t > 0 we put v(¢,z) = S, (t)c(z) then we have

180 ()llwzrsr ey < CL+8)" %7l 0,
where j =0, 1, 2. Let us define w by the following formula:
w=1u— @p41v — B[(Vipy1) - v].
Then, w = u in Q) and w satisfies the equation:
—Aw+ (U - VIw+Vr =g in (0,00) x Q,
V-w=0 in (0,00) x Q,
w[aﬂ =0, w|t=0 =d,
where
= =2(Vep1)(Vv) = (App1)v + [(Uoo - V)pta]v
~ (0= A+ (veo - V) Bl(Vipasa) -],
d = @py1c— B[(Vippis) - .
It is easy to show that g and d satisfy the properties:

8ig(t) € Dp(O7) N Jpp41 (), nan(t)qum(m C(1+t)% *IlaIIL,,m),
d € Dp(OY )N Tpps1 (), I dllwzma) < Cllallz,(@)-
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By Duhamel’s principle, w is represented by

w(t,9) = Tuo (9d(2) + [ Tuc(t = )a(e)s.

Since g and d have compact supports, we can use the local energy decay theorem Then,
by the local energy decay estimate, we have

w(®)|wzmy) < C(1+1)7%||a|l,@)-
Moreover, we have
lwe(®)llwam(ay) < C(L+1)7% “%lallz,@)-

Therefore we obtain (10) and (11). Since m is arbitrary, by Sobolev’s embedding theorem,
we obtain (12) and (13). ‘
2nd step.

We estimate the pressure =, that is, for t > 0 we prove

(15) Ir(®)llwzm(y < C(1+ )77 lal|z @),
(16) () lwam@y < C(L +t)7% |la||L @),

where 1 < p < oo.
We may assume without loss of generality that fﬂb n(z)dz = 0. By Poincaré’s inequality,
we have

|7 (@) llwzm@s) < ClIVA(E)lwem-1(q,)
< Cllus — Au + (oo - V)ullwzm-1(g,),

which implies that (15) holds. Using the Sobolev’s embedding theorem again, we obtain
(16).
3rd step.

We shall prove the following L, - L, estimates:
(17) (@) g < €A+ EE D)l 1<p<g<on,
(18) IVt e < €1+ 726D Hally@  1<p<a<

Since we have already had the estimate of u in 4, in order to obtain (17) and (18), it is
sufficient to estimate u outside of ;. Let us define z by the formula:

z=(1—ws)u+B[(Vs) - ul.
Then, z = u in Qf and z satisfies the equation:
—Az 4 (U - V)z+ V|1 = )] =h  in (0,00) x R",
V-z=0 in (0,00) x R”,

zlt=0 = €,



where

h=2(Vep) (V) + (Aps)u + (oo - V)s]u — (Vo )
+ (0 — A+ (v - V) B[(Viop) - ],
e=(1—@)a+B[(Ves) - al.

It is easy to show that A and e satisfy the inequalities:
1A (t )”W”"-‘(Rn) c(1+ t)"i%HaHLp(g),
llellwzmgm) < CllallLy(@),
where 1 < p < oco. By Duhamel’s principle, z is represented by
i
2(t,2) = Su_ (De(z) + / Su_ (t — 8)Ph(s)ds.
By L, - L, estimate, we have
5w (Delz@ey < €1 +8)E67 al 1,0,
IV Sue @ellzem < O+ 1) F670) a1, ),
where 1 < p < ¢ < co. Let p be a number such that 1 < p < min (g—,p). Since
IPA) |z, @) < C(1 + 1)~ | al|, @),
we have
t
I [ Sualt = A dslzywn < OOl
t
v / Sun(t — 5)PA(s)ds ) < C,()]allz,
0
where

L(t) = /t(1 it —s) 31 4 ) Hds,
Jp(t)=/t(1+t—s) 3(5-9)- 2(1+s) *ds

and 1 < p < g < co. Therefore, we obtain
12(8) | zg(em) < C(1 +t)-?<ﬂ>||aan<m 1<p<g<
IV2@)llzg@n < CO+8)7 3670 5ol  1<p<g<n
Now, for 0 < t < 1, we shall prove the following L, - L, estimates:
(19) I @l < O 26790l 2,0,
(20) VT (B)allzyey < CE 3G9 la 1,),
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where 1 < p € q < co. In the similar manner, we have

(21) 18T, (Dallzyey < CF 267875 la]l1,0),

(22) 8.V Tus (allzy(@) < CEEE0) 7 a1, @)-
If u together with some 7 satisfies the equation:

M — Au+ (U - Vu+Vr=f inQQ,
V-u=0 in Q,
u=0 on 01},

then there exists an R > 0 such that for A € Z, = {\ € C | |[u|*Re A+ |Im A|> > 0} with
1Al > R,

(23) Ml zy@ + M2Vl L@ + Vel @ < Cllflzy@),
where 1 < p < co. The analytic semigroup T (t)a is represented by

Tu (t)a = / A+ 0, ) a dA
r
with suitable contour I' in some sector. By the resolvent estimate (23), for 0 < ¢ <1

(24)  ||Tuw (Vallz @) + 51V (Ballz,(@) + V2T (DallLy@) < CllfllLp@)-

n(ioL
In view of the complex interpolation: W, (-4) _ (L, W} ]5(1_ 1)) interpolating (24) and
P g

Sobolev’s embedding theorem, we obtain the L, - L, estimates (19) and (20).
Next, for 0 < ¢ < 1 we shall prove

(25) ITue(Dallzai) < C F ol  1<p<co.

A Besov space B;‘:: , is continuously included in L, and it is obtained by the real interpo-
lation: B?; = [L,, Wg]%,l. Interpolating two formulas: || Ty, (t)al|z,@) < CllalL,@) and
|17 (Ballwze) < Ct~ a1, (), we have (25).
Finally, for ¢ > 0 we shall prove

(26) ITuw®alizge < O HDall@  1<gs<eo
For a € J;(2), we define T, (t)a by the duality

(Tuo. (t)a,b) = (a, T—u,, ()b) for Yb € Coo ().
Then, we have

[(Tuw ()0, 0)] < CllallLy @) | T-uen (2)B]| Lo ()
< Cllallzyay 2 |[bllz, @)

where 1 < ¢ < co and ?11'+ ql—, = 1 which implies that (26) holds. This completes the proof
of Theorem 1. a
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Now, we shall prove our local energy decay theorem. Before going to a sketch of the
proof of Theorem 2, we introduce the following definition concerning some regularity of
the resolvent operator.

Definition 4. Let B be a Banach space and || - ||5 its norm. Let 7, (¢) be a function in
C*(R™\{0}) with its value in B, which depends on u,, € R*. Let o4 be a positive number.
Assume that |7y (?)]|z..rB) < C When |us| < 0o for some constant C independent of
oo. We say that T, (t) is uniformly n-regular in B if whenever |ue| < 04, Ty, (2) satisfies
the following properties :

When n is even, for any nonnegative integers m, M and N with N > m there hold the
following seven inequalities :

182N 0F T T ()] ums) < ClAl;
18N 0F T T, ()]l mp) < CIAE 1< Y <2
AN 0F ™ T, ()llLywos) < CIAIF
Is¥oz T Tuee(8)llz,®B) < C 1< Yg < o0;

SN T, ()rame) < C 1< Vg <2
IIAh[st?:"Tuw(s)]HL,,(R,B) < Clhl

1
1<%g<00, 0<m< 2 —2 r=1and 3;

n
18 Tun () SC 1<m < 5 =2,

When n is odd, for any nonnegative integer m, M and N with N > 2m there hold the
following seven 1nequa,ht1es :

1821V 8l T, (5)lln s < ClAl
1AnlsV T, ($)llzmmy < OB,
A+ 0k ]““"‘T o llzwn) < C;
Is¥0 T, (iymy <C 1< Ya <2
IO T (Nlzary < ClA| 179 <2, 0<m <[] -5
1

I AR[sM O Ty (5)] gy < CIAIZ 1< Yg< 00, 0K MK H — b

n
“SMB:‘Tum(S)“Lw(R,B) <C 1<mK [5] -1,
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where [%] =
independent of h and u; and for any B-valued function g(s) and h € R\{0} we have put

n —

1 :
. Here, the constant C' depends on n, m, r, M, N and oo, but is

1
Ry q
19)l2ues) = { / ugtsm%ds} 1 <g< oo
19/l Lo ®,B) = ess supllg(s)||5;
seR\{0}

Abg(s) = g(s + h) —2g(s) + g(s — h);
Ang(s) = g(s + h) — g(s).

Theorem 5. Let X = L (L,,(R"), W2(B})), and ao > 0. Assume |tco| < 0o. If we put

AR U £iéx )
N e i
and E,_(s)f = U, (s) * f, then E,_(s) is uniformly n-regular in X.

To prove Theorem 2, we construct a parametrix. For f(z) € L,(2), we put fo(z) =
f(z) for z € Q and fy(z) =0 for = ¢ Q. Let us put

B0 (N)f = Go-1Buca (M) fo + (1 = 01-1) Fusa (M) f + Guca (V)
Puoo()\)f = (Pb-IHfO + (1 - ‘Pb—l)num()‘)fa
where Gu o, (A)f = B{(Ves-1) * (Bue (N fo = Fur (A )] and (v, ) = (Fuge (A, Tuse (A)f)

is a solution to the Oseen equation:
A=A+ (U V))v+Vr=f inf,
V-v=0 in Q‘ba
v=0 on 0.

Then, ®,_(A\)f and P,_())f satisfy the equation:

A=A+ (oo * V) Buee W) f + VPue V) f = (T + Voo (A))f in
V&, (\)f =0 | in Q,
q)uoo()\)f =0 on (')Q

Moreover, ®,_(\)f is uniformly n-regular in C® (R\{0}; £(Lpp(€), W2(£))). For I +
V,.. (), we obtain the following lemma.

Lemma 6. Let 1 < p < oo and A € B, U{0}. Then, I + T, _(A) : Lp(Q) — Ly (D)
has the bounded inverse (I+¥,_()))™'. Moerover, (I + T, (W)7! is uniformly n-regular
in L (Lpp(), Lpp(£2))-

Note that, the resolvent operator of the Oseen equation is represehted by

()‘ + ®“oc-)—1f = QU'eo(A) (I + ‘I’“oo(/\))-l f fOI' Vf € JPJ’(Q)'
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Sketch of proof of Theorem 2. Let X = £ (J,,(2), W2(,)). Using a cut off function
wr(s), we have

T (t) = /_ ” e pp(s) @, (i5) (I + ¥, (is)) " ds

o0

+ / e (1 — wr(s))(is + O, ) ds
=hL(t)+ L(t) € X.
In order to estimate I5(t), we use the following theorems about the resolvent.

Theorem 7. Let 1 < p < oo. Then, p(Q,,) D —X,.,. Moreover, for any oo > 0 and
Ao > 0 there exists a Cp 4y 5, > 0 such that

IO+ 0u)™ Fllwz@ + MO+ Ou) ™ Fllzp) € Croopollfllzo@y, Y € Tp(9),
provided that Re A 2 0, [A\| > Ao and |ue| < oo.
Theorem 8. Let 1 < p < o0, 0p > 0 and |us| < 09. Then there exist 0 < &y < % and
Ry = Ro(p, 00) > 0 indepedent of uo, such that

I+ Ou) ™ fllzp@) + 1A+ Ou) * Fllwzie) < Coll Fllzpay 7 € 3o(2)

provided that |A\| > Ro and |arg \| < 7 — &.

By Theorems 7 and 8, we have

10 L(t)llx < Crat™ Yk, “IeN.

Next, we estimate /;(¢). Observe that

OFIL(t) = /_ ” (—is)f e r(s) By, (15) (I + U, (is)) " ds.

[e o]

To estimate /;(¢), we introduce the following space.

Definition 9 ([4]). Let X be a Banach space with norm |-|x. Let N be a positive integer
and a = N + 0 with 0 < o < 1. Put

C*(R; X) = {f € C"'(R; X) N C°(R\{0}; X)| {Fax < oo},

where
(ax = ;1::0/: (%)jf(f) Xd”i‘ig |A]~ /_Z Ay (%)Nf(’r) Xd{
f0<o<l,
(flax = ]é/_: (;;)J f(r) de' +il;1£ |h|~! /_: Al (%_)Nf(r) qu-

if o =1.
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Theorem 10. If f € C*(R; X) then
1/ ()llx < O+ 7)™ *(Narxs

where

f(T) = /;°° e f(¢)dt.

Since (—is)*pp(s)®u,, (18) (I + ¥y, (35)) 7" € C™*(R, X), by Theorem 10 we have
I6FL(®)lx < Copll )7 YkEN.
This completes the proof of Theorem 2. O
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