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L% — L7 estimate of the Stokes semigroup in a perturbed
half-space

BERAXYE AR E#  (Kubo Takayuki)
BREHEA% 4MH R (Shibata Yoshihiro)!

1 Introduction

Let © be a perturbed half-space with smooth boundary Q2 in R} (n > 3); to be precise,
we call an open set ) the exterior domain of R} if there is a positive number R such that
Qn{z € RY; |z| > R} = {z € R}; |z| > R}. In Q x (0,00), we consider the nonstationary
Stokes initial boundary value problem concerning the velocity field u(z,t) and the scalar
pressure p(z,t):

u—Au+Vp=0 in § x (0,00),

V-u=0 in £ x(0,00), (1.1)
u(z,t) =0 on 99 % (0,00), '
u(z,0) =a(z) in Q,
where u; = 0u/8t, A is the Laplacian in R}, V = (1, ..., On) with 8; = 0/0z; is gradient,

and V- u =divu = ) 7_, Oju; is the divergence of u.

To discuss our results more precisly, at first we outline at this point our notation used
throughout the paper. To denote the special sets, we use the following symbols:

Br={z€R}; |z| < R}, Qr =QN Bg.

We will use the standard notations L9(£2) with norm || - ||Le() (or || - |l¢ if the underling
domain is known from the context ). We put

LP(Q) = {u={(u1,...,un); uj € LP(Q),j=1,---n},

L2(Q) = {uel?(Q); u(z) =0 for || > R},

JP(Q) = the completion in 17(f) of the set {u € C5°(Q); V-u=0in Q},
(@) = {uelP(Q); u(z)=0for |z| > R},

F@) = (VpelP(Q); pe L. (@)

For Banach spaces X and Y, B(X,Y) denotes the Banach space of all bounded linear
operators from X to Y. We write B(X) = B(X, X).

For the exterior domain Q, R. Farwig and H. Sohr [7] proved that the Banach space
17(R) (1 < p < o) admits the Helmholtz decomposition : L7 () = JP(Q) & GP(Q2), where
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@ denotes the direct sum. Let P be a continuous projection from ILP (Q) to J? (). The Stokes

operator A is defined by A = —PA with domain D(A) = {u € JP(Q) NW3P(Q); ulsq = 0}

It is proved by R. Farwig and H. Sohr that —A generates an analytic semigroup e~*4 in

IP(Q).
Now we state our main results.

Theorem 1.1 (Local energy decay) Let 1 < p < oo and let m be a nonnegative integer.
R is any positive number such that Q\Br = R} \Brg. Then, for anyt > 1, a € Jg(Q), there
exists a positive constant C, ,, such that

“3;" a”L"(nR) < C'p mt" —m”a”Lp (1.2)

Theorem 1.2 (L? — L" estimates) Let n > 3.
1. Forallt>0,a€J¥R) and 1 < g <r < oo(g # oo, r#1), there holds the estimate:
lle=*4allur(a) < Court™ /9" |a|a (- (1.3)
2. Forallt>0,ac€ .Uq(Q) and 1 < q < r < n, there holds the estimaie:
Ve~ allyray < Cqrt= /=M%= 5 la||pe (g (1.4)

2 The representation formula of the solution to the
Stokes resolvent problem in R}

In this section, we shall give the solution formula of the Stokes resolvent problem:

—_ — R : n

A=Au+ Vp: fi V.u=0 in Ri, (2.1)
u=20 on z,=0.

Let Py f and 7, f be defined by Py f = u and m) f = p which satisfy (2.1). By Farwig-Sohr(7],

we can construct Pyf € W2?(R7) and m\f € WP (R7) by using partial Fourier transform,

which satisfies the estimate:

1P fllwasms) + IV fllLeme) < Ceallfllzems),

provided that A € 3, and |A| > Ag. We shall investigate the property of Pyf and =) f near
A = 0 when f has compact support.

In the course of our argument below, we shall use the following proposition which is
proved by using the residue theorem.

Proposition 2.1 For nonnegative integer k, the following equalities are valid:

k A I e
L oo eizg‘,.&'li dfﬂ _ ( + |2£ ) \/A‘Hf z| z> 0,
2r —00 A + |§'2 (—Z)k(A + lf’lz)'z_ e-mlll 2 < 0
1 /00 eirEngk s = 2: [}§'|’= 1e-l€'llzl _ ( —\/A+|€’I’lzl] z>0,
[E12(A+ %) . NG

—z) [mk 1,-1€'liz] -(/\Hﬁ'lz \/le?m] 2 <0,
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In order to obtain representation formula of solution (P f, mx f), first we extend a given
external force f = (f1,...,fa) to F = (ff,...,fi_1,f2), where f¢(z) and f°(z) denote the
even extension and the odd extension respectively defined by

e _ f(:c’,:r,,) z, >0, o - f(lf',.’tn) z, >0,
f (Z’) - {f(xl,"xn) Tn < 0, f (1") - {“f(l',,—'wn) Tn < 0.

Let (U, ¥) be the solution in a whole space corresponding to this F, namely (U, V) is the
solution of the equation:

A-AWU+V¥=F, V.-U=0 in R". (2.2)
By the Fourier transform, (2.2) is reduced to the following equations:
A+ DT () +igT(E) = F(§)  for R™ (2:3)
Since A¥ = V - F follows from (2.2), by (2.3) we have

¥e) = F; [—5—,5@ (=), (2.4)
_ ol (an_tF@)],,

where f(€) and Ff(€)](#) denote the Fourier transform of f(z) and the Fourier inverse
transform of f(£) respectively defined by

FO =710 = [ =@ 7 U@ = (55) [ e

For the argument below, we caluculate 5;(5' ,0), where f(ﬁ’ , ) denotes the partial Fourier
transform of f(z) with respect to 2’ = (z1,...,zn—1) definded by

-‘fv(é'/s zn) = / , e-izllﬁlf(xlw xn)d‘t,'

R~

Noticing the formula:

(]

G0 = o [ e==Ti(e)d,

-0

1 [t~ ,
z =§?/_m T3 (€' 6n) den,

2=0

and applying Proposition 2.1 to (2.5), we obtain

G0 = [ O e )+ S b€ (e“/“_""_”" - e""'”")
o VAHET M\ Ve

—ifj}:(ﬁl, :Cn)—i- (e'\/wrn _ e—xulf'l) dz, for j=1,---,n—1, (2.6)

Un(€',0) = 0. 2.1

Secondary, we shall construct a Riemann function (v,8). To this end, put u = U + v and
7 = ® + 6, then (v, 8) enjoys the equation:

A-Aw+V8=0, V-v=0 in R?,
v;(z',0) = —U;(z’, 0) for j=1,---,n~1, (2.8)
va(z’,0) = 0.



A solution (v, 8) to (2.8) is given by the following formula:
173(&’, -'lfn.) — —ﬁ;(f’, 0)e~—«/k+{£112:cn
e”V ’\“Hfllgrn — e_lgllzn é']

A+ €7 - €] lfllg -U'(¢',0), (2.9)
—VAHE Pz _ o—1¢' |z .
— e e
whan) =~y i€’ -U'(¢,0), 2.10
v (5 z ) /\+I£'lz“lfll 3 (f ) ( )
bie'an) = %ﬂe""'”ﬂif'-ﬁ(s',o>; (2.11)

where £’-ff’(§", 0) = ;‘;11 fjﬁ;(ﬁ’, 0). In fact, since A9 = 0 by (2.8), applying the Laplacian
reduces (2.8) to the following equation:

(A= A)Av, =0,
va(z',0) = 0, ‘ (2.12)
Opvn(a’,0) =V’ -U'(z',0),

where U'(z) = (U1,...,Un—1)(z) and V' = (84,...,0,-1). Application of the partial
Fourier transform converts (2.12) into
{ (03 — A= ['1)(85 = 1€'1)on (€', 2n) = O,
2y 0,

vn(gl, 0) =

Bam (€1,0) = i€’ - U'(€',0).

Also application of the partial Fourier transform converts (A — A)v, + 3,0 = 0 in (2.8) and
Af =0 into

(2.13)

(P =92 e =0,
{ 8,0(¢,0)=— (A +1¢'|2 - 82) v (¢, z")lz,‘=0' (2.14)

Solving (2.13)-(2.14), we obtatin (2.10)-(2.11).
Next we shall show (2.9). Application of (2.8) implies that 4;(¢’, z,) satisfies the equation:

—~

—(82 = A= )€ an) = i8¢ 2a), pis
{6.;'(6/’0) = -U;(¢',0), (219)

for j=1,2,--- ,n—1. Solving (2.15), we obatin (2.9). Summing up, we have obtatined the
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solution formulas of (u,p):

~ (! 1 oo iz 1 jSn 7o
'u_)(f 7:371) = E oo € ntn {A—I— e Z Eléf: fk f) Ei.}fflz frg(f):i } dé."‘
— n-l —\/A+¢s %on _ g=1€'lon
e - kz V.= T
for j=12--- n—1 (2.16)
TEhe) = [ e T2 - Z ol G e
ni\S »&n = ox o A+|£'2 “ |€|2 k mz
n-1l - ‘I‘Z"’n —_e ZTn —
. e~ VAt e 1€] ¢ (5,,0)’ (2.17)

B 2R ex
B¢ 2n) = ;7/ ”»“{Zlﬂsz £)+|£Pf,.(£)}d£
VAT LR e '”"Zlékﬁ;(s’,o). (2.18)
=1

1€’

When we consider the expansion formula of (u,p) when |A| < 1, XA € C\(—00,0], we
devide the solution formula of (2.16)-(2.18) into the parts where [¢/| < 2 and where |¢/| > 1
by using the cut-off function. And to analyse the part where |§'| < 2, we use the following
more detailed formulas obatined by applying Proposition 2.1 to (2.16) - (2.18);

1 [ [ eV len—yal  o=/AHEP(mntyn)\ -
'2'/ = — = Fi (€' yn)dyn
VA+TE VA+E]

EJEk e—vk+|€’PI=n—yn]—e—lé‘llz,.—y,.l ) d
+ Z {/ ( ST e I&] Te(€ yn)dyn

12:7(&’:1:71) =

e~ VAHE P (@atya) o l€1matyn) | ~ ;
+/o \/,\_,_ |£:|2 - IEII fk(€ ’yn) Yn
o ~/A+[€Pyn —1€'ya \
_23'\/)\”6’]21’,. e y N y fk(£/ yn)dyﬂ
0 VA€ 1€’ ’

zfa / (e" /A (@ n—yn) _ e"lf'l(x"_y")) }:(‘5,, yn)dyn
2)\
- / (e—\//\+lf'l’(yn—avnj ) FAT R
o G G B L) VAR
0

_9e~VAHE P2 / ” (o= VAFEFa _ o-le'lvn) }Z(i',yn)dyn}
0



"Tr:(fl: zn)

5(5/) :cﬂ)

=3 €58 e~ VAHEPon _ o=[€')zn oo o= /3F1ETYn _
Z ' 712 , 5 fk(f +Yn) dYn
ol AP -1l b VAP
E;8l€) e VA on _o=l€lan poo [V A+ Pun  o=lElyn ) ~

Z 712 ' / vl 7 fk(€ ;yn)dyn
pracl VAHEPE =K Jo VA+ €] €

& e e VAHEPon _ o=l¢lza poo - h\ —

2€]A|£ '6 A+ I£I|2 —elg’l /; (e—\/)\"'lf Py _ e"lf |yn) .f'n(él,yn)dyn, (219)
1 oo e_\/A_"'—lle;l-’n"ynl _mxn"'yn)
—/ - f (€ Yn)dYn

i \TVRTRE  ATEE
> %@i {/'o:’:,l (C_ MR msn) e—le’l(zn—yn)) ﬁ(gi’yn)dyn

k=1

S

_ / (e-,/r+|<'|=(yn—x,.)_e—Ie'l(yn—wn)) Fel€', yn)dyn

Tn

+ / (em VTR entun) _ ol€(entsn) ﬁ(gf,yn)dy,,}
0
o[ (VAT VAReTiewsnd _ erpemilen—snl) T )y
0

2\

_‘/ooo( ’—/\+l{/]Zg"\/A"}'IE’I’(ﬂn‘f‘yn)_lE/Ie—IE'|(3n+yn)) ’J?’:(é',yn)dyn}
"_1' e—\/>‘+[f"21'n._e-|fil3’n 00 ~1/A+]€’ Pyn,_,
;- el v v AL
"2:1 |€!gke-\/ulz's’xn_e—le’lzn /oo e~ VAHEPYn  o=(€'lya Fole' u)d
LN ArRr-El b \VATer Er ) MEemhe
N e=VAHEPen _ o=l€'lzn  poo — ne N\ —
I‘i" VTR f) (e € T gy, 220

-1 E e

k=1

{ e—lfl(m»—yn)}:(g',y,,)dy,,—/ eI NWn=on)F (e ) dyn
0 Tn

[t e
ne1 X I ’ =VA+E Py

szk V -lkgflﬁ +1E'D —1¢'1en i e\/XTW Fi(€, yn)dyn

k=1

S Gkl AF TN jerpen [ [T el o
kX::l A L \/A+|£,P '§l| fk(£ :yn) Yn

WA+ I&’I: + 1D g1z / * (e— ATy _ e—lf’!y») Fal€ un)dya. (2.21)

0

DO e,




3 An expansion of Solution Operator of (2.1)

The aim of this section is to get an expansion of solution operator of (2.1). To this end, we
choose o(r) € C=(R"1) so that

po(ry=1 for r<1 and ¢o(r)=0 for r>2. (3.1)
Put ¢, (r} = 1 — o(r) and set
RPN = Fi'lew(l€'DE(E za)l (=), =12 n (3.2)
I°MNf = Fo'lpw(lENDPE, 2a)] (=),
RS = Fa'lea(lE'NE(€ 2n)l(a"),  §=12--n (3.3)

I°A)f = Fi'leo(lE'NBE 2n)] (=),

where Fg, 1[f({’ ,Zn)](z) denotes the partial Fourier inverse transform with respect to &’

defined by .
1\™ e ,
FAUE e = () [ e s
In particular, setting

RN f HREONS, RPN )+ (BN, .., () (3.4)
OM)f = O°Wf+I°(N, (3.5)

(u,p) = (R(A)f,TI(A)f) is the solution operator which gives us the solution of (2.1). We get
the following theorem for resolvent expansion around the origin .

It

Theorem 3.1 Let n > 2 and Q = R}. We put Uyjs = {X € C;|A| < 1/2}. Then
(R(A),TI(X)) has the following expansion of with respect A € Uyy2\(—0o0,0]:
LA™ + Ga(A\) AR log A+ G3()) n is even,

. ne _ 3.6
LAAT + G2 (M)A log A + G3(A)  n is odd, (3.6)

G
R()),TI{(N) =
(RO),IOV) { ¢
where G1 (), G2(\) and Ga(\) are B(L%(R:), W2P(BE) NWhP (BE))-valued holomorophic
Junction in Uyys.

In order to prove Theorem 3.1, we introduce the following proposition.

Proposition 3.2 Let po(r) be the same as (3.1). Then, the following assertion are valid.
For any non-negative integers a and b, we have the formulas:

= a b-t atb atb
/0 wo(r)r (\/)\+r2) dr = Hap(N) +BLA" + B2 A% logh,  (3.7)

b~1
00 s (VAF 1) — — an o s
/ soo(r)r\(/ﬁ._*;” dr = Hay(\)+BI S+ B2 A log),  (38)
0

where A € C and |A| < 1. Here H, () and fI:,Tb(A) are the holomorophic functions in
XeUy, ={AeCA <L), Bi’b, Bg’b,B;,b and B2, are the real numbers. Moreover,
they have the following properties:

B2,=0 when a+bis an odd number;

2 — .
B, =0 when a+b is an even number;
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— 1 1
IB;,bl S 1) ’Bg,bl S 1) lB:zz,bI S 5) IB | = 2’

and there ezist constants C' and L independence of a and b such that

|Hap(W)| < CL**®,  |Hap(N)| < CL*P e Uy

[Proof of Proposition 3.2] By substituting ¢ = r 4+ v/ A + 72, we see easily the formula
(3.7) and (3.8). In fact,

Hap(A) = /oo wo(r)r® (\//\+_r2)b_1 dr
1 1 a+bd
> > 1 v

£=0,L4+m¢ 2t m=0

( )

A7 T sen(s)
( )
(

A\L+m (1 + ma+b-2(l+rn)
a+b-2(l+m)

£=0,44+m=2Ft m=0

)
),\ *log (1+VI+2),
)

= -()7 = e (5)(4) e
“ 2 1=0 l+m¢_.:t.m—0 m at+b- 2(£+m),
1 a+b+1 a b a b
2 _ ¢
Ba,b - - E) Z Z(_l) ( Vi ( m ) ’

t:(J,L+m=£‘--',té m=0

0 o 7 b-1
T = [ el WA+,

+(.1_)a+b za: b (_1)1( a ) ( b ) A+m (1+ ’_]1+A a+b—1-2(L4m)
2 z=ot+m¢m-_1m 0 ¢ m a+b—-1-2(£+m)
a+bd
+(%) Z Z l)l( )(:l)'\ # 10g (1+VI+)),
£=0 L+m—_‘i‘__“ b—1 m=0
—_— 1 atbd 5 )
1. = = L

S (2> t—oz+§:¢zﬂ_m2—: - ( ) (m)a+b—1—2(£+m)
= 1 a+b+1 a b ,( a ;
Ba,b = "(5) Z E(—l) (z)(m) .

£=0t+m=2atb=t g—x m=0

u

[Proof of Theorem 3.1] The assertion of Theorem 3.1 for |¢/| > 1 follows from Fourier
multiplier theorem, but to get the expansion for |€/| < 1, we need the different method from
the |§’| > 1 case. We explain how to expand the v,(z) only because we can expand all the
other term by the same method. To develope the expansion of v,(z), we separate vy, ()
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into three parts :

1 n il !
we) = (57) [l
_e—\/A+IE’I’wn — el lzn 3:1 i€;
VA+ -]  VA+IER Jo
e~ VAHEPEa _ o—lelzn 20 (g2 o [ =AM+l —l€'lun | < :
- j ’) n d n
fa/ (\//rlﬁ,lz' €] )f;({y)y

" _
e VAHEPYs £(¢0 yn ) dyn

+
STEE-E &= X
Ve o _ o—l€'|zn |2 [ —
¢ e ~VHIEPYn _ o= l€'lun ) £ (€ v )dyn b dE’
e € nlS ), Yn)ay 3
VAFIEP -1 /\/o ( ) T
= I+I1I+111

where py(r) is the same as in (3.1). At first, we consider the first term I:

(5 )/ polleeie e YT e llen 5 gy VAT
a9 0
) Jpe VAER- o A+EP

By using Maclaurin expansion of e®, we can expand the first factor and the second factor
as follows:

fo " 5 € vn)dum.

= \Zle Plznlz—el—ﬁlfl g _wnfl e~ 1€1(1=0)7n o =03/ 2HE P20 gy
+ &2 -1 0
=) Zn p
N E ((P+t)+1)|ff'|t (\/’\_"W) . (3.9)
=V FEPyn
VA+IE?

. ol gl Y
Moreover, we rewrite e'* ¢ f;(¢',z,) as follows:

e,’,,'.f"’f’j(gf’zn) 2/ z(z —y)ffJ y yn dy — Z/ _Ly_)_._g.li ( ) (3‘11)

= z(:—;{r— (vVaFEm). (3.10)

n—

By substituting (3.9)-(3.11) into I, we can rewrite I as follows:

L= (271’)” l’lzl/n— ()dy
« Y Lo P [ eollehieslet (VIFTET)™ (it - ) - e

it (p+t+1)lq!
&%
= —|= fi(y)dy
21!' j=1 mn—l
(—2n )P+ (—yn)? . (i =) W) 00 s4t4n—1 pta-1
X Z A /S"_l ) da‘/; wo(r)r (\/,\ + r2) dr
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Applying Propositon 3.2, when n is odd we have

I=GINF+ A TGN F+ ARG f 4+ A" log AGTY (W) f,

where we have put

CrasiNf = (%)n lni f f(w)dy / ) iy (—i(e! — o) 'y CE T )T

slp+t+1)!¢!
GINf = S_j(Gp,q,,,,(A)f)h,+,+,.-1,p+q(x),

P,q,3,t

G”()\)f = z E (Gp,q,at('\)f) s+t4n— 1p+q’\m’

m=0p+g+s+t=2m

G\ f = Z Z (Grg.et (V) ) Bastan—1p4A™

m=0 p+q+s+t=2m+1
GIV()‘)f = Z Z (Gp,q,a,t(’\)f)Bf+z+n—1,p+q’\m,
m=0p+qts+t=2m
and when n is even we have
I=G N F+ A TGN F+ ARG\ f + A3 log AGTY (M) f,
wherebGP,q,,,t()«)f, G'(AN)f,G"T(\)f and GMT()\)f are the same as in the odd dimension
case, but

]

GV = z Z (Grg.st (N F) Bl yr4n-1,p4A™

m=0p+g+s+t=2m+1

When |z| < R and supp f C {y € R};|y| < R}, we can show that the right hand sides of
G'(A)f (i=1,11,1I1,IV) are absolutely convergent when A € Uy. In fact, since

Rp+q+t+1(2R)s

Gy 0.t N Fl<C ’ bR Cich/
lSllp | P.4q, t( )fl R”,fllL (]R+) S'(p i 1)'q|
by Proposition 3.2, we have

Rp+q+t+1(23)s [eHttn—=1+ptq
sip+t+1)lg!

sup. IGT(A) £

o<

IA

2

P.q,8,t

CCR||fllLs@y) L™ e e LRZ

x CCRr||fllze(m3)

(LR)P+t
(p+t+1)!

LR p+t
CCR”f“LP(R")Ln -1 2LR LRE____'t_'

IA

IA

IA

CCRI|flLsmn) L" " e*ERe R,



where we have used the fact that (p +t + 1)! > p't!. In the same manner, by Proposition
3.2 we have

s 1
G fl < Crllfllzswe IO
G < Crllflle (m+>£p+q+§zzms!(wﬂ)gq!
o0 1 2m—-p-t 1
&l £l (R+),§;p+§zm(p+t+l)! ; s!@m - p—t—s)!

92m—p—t

= Callflemy 20 2. (p+t+1)!(2m—p—1t)!

m=0p+t<2m

o 2m 92m
m

ot 22m
< Callfllemsy Y Y @m0 < Crllfllze@s) Y @ = Crellfllzo@z)
' : m=0 :

m=04£=0
and also we have
1

CR”f“LP(]Kn) z Z -—'———-———T S CRe4“f"Lp(Rn)’
' m=0p+q+s+t=2m+1 slp+t+1)lg! »

4
YW < CaF Il @

IG"T(X) 7]

IN

Therefore, G*(A)f (i = I,II,1I1,1V) are the holomorphic with respect to A € Uy. In the
same way, we obtain the similar expansion formula of 17 and III. This completes the proof

of the proposition. L

4 Continuity property of (R(A),II(A)) near A =0
In this section we shall prove the following theorem:

Theorem 4.1 Let 1 < p < oo and f = (f1,...,fa) € LP(R}) with supp f C Bgr. Let
P\ and 7, be the operators defined in section 2. If we put u = Pof and 7 = mf, then
(u,m) € WEE(RR)" x W,E(RY), and (u, ) satisfies the equation:

oc
—Au+Vr=f, V.-u=0, inR}, u(z’,0) =0,
Moreover (u, ) satisfies the estimates:
“'““WM(B,’;) + ””“Wlm(s_,jr) < CR,L”f“LP(Ri), Jor L>0

sup  [lz"2|u(e)| + lx[* " [ Vu(=)| + =] (2)|] < Crllfllr@s)-
EPSED

and the formula:
}\i_{)l’})[lp,\f - Pofuwmp(sg) + ”WAf - WOfuwlm(Bg) =0 forany L>0,

when n > 3.

In order to show Theorem 4.1, we consider the limit of Pyf and myf as A — 0. To
this end, we only comsider 9;(¢',z,) (j = 1,---,n) defined in (2.19) and (2.20). The

103
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estimates of U(z) follow from the Fourier multiplier theorem, so it suffices to investigate the
Riemann fuction v;(z) (j = 1,---,n). Let v)(z), 8°(z) (j = 1,---,n) be limits to which
v;j(2),0(z) (j = 1,--- ,n) converge formally as A — 0. Below, we consider only the term
I(z) defined by

~ 3 T2 e VAHEPEn _omllon poo [om\AHEPY  o=lElyn ) o
I)\(f s-""n) = Z b\ \//\+ |£,|2 — |€/I [) \/A_"}‘—E/F ‘° ié’] fk(£ ’yn)dym

k=1
which appears as the 7th. term of u,(&,z,) (cf . (2.20)). Put I°(z) = limy,o Ir(2).
Noticing that as A — 0,

—/ g, —1e e, 1
eV ek / I 1HCAHETP—1E D20 gog s 7 e~ 1€1on
VA+IE? -] 0

N A 1 [ e~V HEPYn _ g-1€lun 1 1Y e
ol _ _ 1 Y e
AN VA+HER €] A VA4 e X+ €2 €|

AR I Yn / " = (0/SFTE+=0)IE un g _ e~ lelun

AVA+ 0 1€'|
g"’lellyn 1
- W(I&Iyn -1).

I°(z) has the representation formula:

-1
rE = (L) ot g omllen
T2\ 2r Rn-1 "

n-1 . o0 n—1 1) ‘

% 12! ~ . —1g! g

S B [T enlehn f (e ) + S it / e Wny, i (€', yn)dyn | dE'.
k=1 lé ‘ 0 k=1 0

In order to obtain the decay with respect to |z|, we introduce the following lemma.

Lemma 4.2 Let B be a Banach space and |- |p its corresponding norm. Let o be a number
> —n and set a = N + 6 —n where N > 0 is an integer and 0 < o < 1. Let f(£) be a
function in C°(R"\{0}; B) such that

87 f(¢) € LY(R™; B), (4.1)
107 F(€)ls < Gyl Ye#£0 Yy, (4.2)
o@)= | et pee.

Then, we have

0(e)le < Cna (max Co) e+ Va0, (43)
proof of Lemma 4.2] See Shibata and Shimizu {13 [ ]
)

At first, we consider the following function g(z) corresponding to v°(z):

_(L\" iate &5 cllen [ o (ele=1E"Yn Foet '
g(Z) - (27r> _/Rn—:l € ,{,,zne ‘/[; yﬂlé le f](E )yﬂ)dyﬂd£ .
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There holds the estimate:
188/ 1on] < g1/l e e,
In fact, we have
[’ , ,
Ty o —le¢! o al
192 €len) ane [l Z (aglljgll) (6£' Igll)
o= la |+ esl+-+ladi=lal], [a;]21
la’]

C Z |01 zg eI 1en < Ol |-l lg=31€'Ien

o=1

IA

Therefore

lag,'fjxnyne—l#!(x&yn) < |znyn|je’|t 1 1= HE lmntun) < |¢/| 11l e~ 1€ N mntyn)

And
Sca’lgll—l—'all Z !ag/fa( »Un)l-

’a?,' [ﬁ] (znyn)e_lell(zﬁ-y")}; (ﬁl’ yﬂ)}
i<le’]

Applying Lemma 4.2 with N=n-3, c =1,

bl < o [ [T 5 ) @l < O [l

Iv'|€n—-1

On the other hand, taking (y, |¢/])e~!¢'!¥=| < 1 into consideration, there holds the estimate:

1\"* ;
i " —€'lzn got =C, —(n-2) dz.
0@ < (55) [z [ 1@lde = oz [ el

Hence

Col# |-~ [y 11(2)\d .
o)< {cn T NrATES e

Similarly applying Lemma 4.2 with N =n — 2,0 = 1, we obtain
[Vo(@)] < Calel"® [ 15(z)ldz.
R3
Next we consider

n—1 oo .
go(z) = (%) /m" l giz' ¢’ do (£)|§'| —IE'I-%[) ynMI'e-lf Iy"fj(ﬁ',yn)dyndé'.

then the following estmate holds:

WMMS@/

» 15'1/ 155 y)ldy<0f 1 )ldy.
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We choose @oo(€') =1 — ¢o(€') € C(R™) so that ¢oo(¢') = 1 for |€'| > 2 and ¢ (€') =0

for J¢/] < 1. Se

And then for 1 < p< o0
Uso(z) € W*P(R?) ;[|Ucollwarge) < CllfllLe(ms)- (4.4)

In fact, noticing that

Bl =30l Y amegeel= 3D e Y g,

o=1 ast...ta,=an o>m/2 p=20—an
and
']
|68 lg1 72+ < D 7 lelm 2D g A1 < Cafg] TRV,
£=1
we have

10 0" 6w @NEI < | 3 CleImHT gz g1

o>an/2

<t

< {%lﬂ”i&’l"“"l&l“’” '] > 2

thus there holds the estimate for any 8 with || < 2 and @,

6205 027 [Boo (€)IEI 27| < Cr
Hence by Fourier multiplier theory, we have
Usollwar(mny < CpllflLe(mn)-

Furthermore, we choose % (£') € C®(R™) so that ¢ = 1 for [¢| > 1 and ¢ = 0 for |¢'| < &
Setting Up oo (€', 2n) = Yoo (') Tne -le¢’ lenie’ . T, (f 0), we consider the following estimates
for |B']| < 2:

Yoo (€)
k'l

In the case where |3'| < 1, we set .7-"5',1 [i{' Ul O)e‘m“] (2') = W (z). We have

(€ Tams (€ 2n) = malg'le™ 3112 SR ()P i6 - U (€7, 0)em 3N,

0 lonle e 81€1e+ 228 s)f’]l < Cale 1,

so that by Fourier multiplier theory, we obtain the following estimate:
1182 v, o0l o(r2) < CllWoollLomz) < ClIVUeollLomy)
In the case where |B'| = 2, we set §' = 8] + B4 with |]]| = |85| = 1 then we have

168 Wecllzoy) = | 7o [€)%4i€" - Uaal€', 0)e ™€) ()| < ClIV?Unollzsay)-
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Thus we obtatin the following estimate:
1102 v o llLr m3) < Cl0E Weo|lLo(mz) < Ol V?Ueo|lLr (@)
Moreover noticing that
OnTmeo (€ 2n) = (L= zaf€ e~ Imme= 3o ig” . T (€', 0),
we have the following estimates :

1102, Bn ool Lo (ry) < CIIO% | WoollLo(gy) < ClIV2UeollLrmn),

and
n-1
OTmoo (€' 2n) = ) (2~ zal’ Deen 5’ e~ HElen = Bl Iongsig U (€, 0).
j=1

Therefore we obtain

1103 900 (€, ‘vn)“LP(R") <c|v? Usollz( (R%)-
We have
l|vn,collwar(mz) < CliUoollwar@s) < CllfllLemy)-

The other term of I, enjoys the same estimate. As a result we see I, € VVI P(R%) and

Mnllwar(oi<ry < CrllfllLe(my)s
(@) < Clel~ DI fllrmy),  [VIa(@)] < Clel™ V]I f]|o(ma)

In the same way, we can obtain the decay of velocity term and pressure term:

llvnllw.r 1z1<r) < CrllfllLom2),
lva (2)| < C|wl_("_2)||f||u(m¢), [Vun(z)] < C|$l'("'1)|1fﬂm(m1)

0, € WP (RY) and ||nllwrr(s|<roern) < Crllfilzos)-

Lemma 4.3 Let n > 3 and 1 < p < oo. Let @ = R} or a purturbed half-space. Let
ueE WP (Q) and T € - WL (R2) enjoy

loc
—Au4+Vr=0, V.-u=0 in Q, ulaq = 0. (4.5)

Moreover
sup [|2[*~?|u(e)| + |="~ ! |Vu(e)| + 2" (2)]] < oo
EEB;+,

Thenu=0 and m =0.
[proof of Lemma 4.3] Taking local regularity into account, we may assume that u €
(Q) T € WEP(Q) for 1 < ¢ < 0o. In particularly we may assume that u € W2i(Q), 7 €
W,oe (). Now we choose ¥(z) € C3°(R") such that (z) =1 for |¢| < 1 and %(z) = 0 for
|z] > 2. Set ¥r(z) = ¥(z/L). Since u(z), n(z) satisfy (4.5), we have
0 = (—Au+Vnr,Yru)
= (Vu, (VL)) + (Vu, ($1)Vu) = (m, (Vir)u) — (7,91(V -u))
= (Vu,(Vr)u) + (Vu, (¥2)Vu) — (m, (VYL )u).
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Then the first and the third terms of right hand side tend to 0 as L — o0, and therefore we

have
0= ||Vulls,

which implies that Vu = 0. Therefore ¢ = constant. Since u(z)|an = 0, we obtain u = 0. By
the equation V = 0, which implies 7 = constant. Since 7(z) = O(Jz|~"~1) as || — oo,
7w = 0. This completes the proof.

5 Analysis in 2 by constructing a parametrix

First of all, to construct a parametrix in Q , we intoroduce the Bogovskii lemma [3] which
plays an important role in this paper. To introduce the Bogovskii lemma for any domain
D in R", we define the spaces W, ¥ (D) and WN?(Dpg) as follows.

wY¥P(D) = {f e WNP(D);0%flop =0 for |e|]<N-1} N>1,
wNe(D) = {feWé"’P(D);/ fdz=0} N >1,
Dr

Wor D) = {fero) [ saz=o.

Proposition 5.1 (Bogovskii lemma) Let 1 < p < . For Dp = {2 € R};R <
|z] < R+ 1} and any integer N > 0, there is a linear operator By from Wév‘P(DR) into
Wév+1’p(DR) such that

V-Brf=f, |Brfllwy+.rpp) < Cnprllfllwrepr)s
forany f € Wév’p(DR).

Next we shall introduce the notation in order to constructing a parametrix. Fix R > 0
such that BfNQ = Bf = {z € R%;|z| > R}. Let Er be a bounded domain with smooth
boundary 0Fg such that Er N Bpys = QN Brys. And let Dg be a bounded domain such
that Dr = {z € RT; R+ 1< |z| < R+ 2}. In particular Dp C QN Brys C Er.

Let P.f and m\f be operators given in section 2. Recall thaﬁ w and @ satisfy the
equation:
A=A w+VI=f,, V-w=0 in RE, We,=0 =0,

and the estimate:
1P fllwae(pr) + T fllwrr(pr) < CrllfllLe(o)-

Given f € IL;H_S, we set Af = w, ®f = 7 where w and 7 are the solution to the
equation;

-Aw+ Vr = f, V-w=0 in Epg, wlog, = 0. (5.1)
We know the unique existence of Af € W?P(Eg) and &f € WP (Epg) satisying the estimate:

HASllwa.s(gr) + [IVRSllLe(Er) < CrpllfllLr(B8)-
(cf. Farwig and Sohr [7]). By addition some constant to ®f, we may assume that

/ (@F —nf) dz = 0.
Dgr



Given function f defined on Q, let fo(z) be defined by the formula; fo(z) = f(z) for |z| > R
and fy(z) = 0 for |z| < R. We choose ¢(z) € C$°(R™) so that ¢(z) =1 for || < R+1 and
¢(z) =0 for |z| > R+ 2. We set

Raf = (1-@¢)Af+dAf+B[(VE)- (P~ Aof)].
Then R) flag = 0. Since supp(V¢) C Dg and
[78)-(Prs - anaz =0
we see (Vo) - (Pnf — Af) € W'?(Dgr) and B[(V9) - (Pnf — Af)] € W?P(Dg). Thus
Rof € W2P(Q). Now set IILf = (1 — ¢)7f + ¢@o f, then
A=A)R\f+VI\f=f+S\f, V-Rf=0 in Q, Rxflea =0,
where |

Sxf = 2(V4): (VAS)+ (AQ)Paf + (A = A)B[(V) - (Prf — Af)]
+AAS —2(Ve) : (VAS) — (A$)(AS) — (Vp)rf + (Vo) f.

Then we know Sy : Lf,, 5(Q) — L%, 5(Q) is compact operator (see [8]). What is more we
have the two following lemmas.

Lemma 5.2 For 1 < p < oo, the following relation holds

A—+(},i1§16)3. 15x — Sollc(wp, res(@)) = O-

[proof of lemma 5.2] Lemma. 5.2 follows immediately from lemma 4.1 . u

Lemma 5.3 It holds that
(14 Sp)™ ! € L(Ly r+3(R))-

[proof of Lemma 5.3] Since

Sof = 2Ve):(VPf — Af) + (A)(Pof — Af) — AB[(V9) - (Pof — Af)]
is the compact operator in L, 5(f2), we will show that 1+ So is injective in Lh,s Let
f € L5 ,5(Q) satisfy (1+ So)f = 0. Set u = Rof and = = IIf, and by uniqueness we see
u(z) = 0, m(z) = 0. Therefore

(1— @)Pof + ¢Af +B[(V) - (Po— Aof)] =0 inQ, (52)
(1—-¢)rf+¢2f =0 nQ '

Since ¢(z) = 0 for |z| > R+2, Pof(z) =0, mf(z) = 0. And since ¢(z) = 1 for e} < R+1,
we have Af(z) =0, ®f(z) =0. Put Eg = {z € Eg;|z| > R}U {z € R};|z| < R}. If we
put

_ [ Af(z) l|z|> R,z € Ep, _ | ®f(z) |z| >R,z € ER,
“’(‘”)—{ 0 el <R, P(”)—{ 0 S <R,
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then w € Wz’f’(ﬁ;q) and p € WI’P(EZ) and (w, p) satisfies the equation;
~-Aw+Vp=fo, V- w=0 in Ep, wlyz; = 0.
On the other hand, we have

{ ~APf+Vnf=fo, V-(Pof) =0 in Epg,
Poflygz =0

By uniqueness, we obtain Pyf = w in Eﬁ';g. Notice that V(7 f — p) =0 and
/ (7l‘f —p)dz 2/ (ﬂ'f - @of)dx =0,
Dg Dgr
we see 7f — p = constant = ¢ in Eg. Since
0= / (v f —p)dz = / edz = c|Dgl,
Dr Dgr

we obtain ¢ = 0. Therefore 7f = pin Ep . Asa result, we have
Pof =w=Aof, nf =p=&f . in Eg.
In particular it holds (V¢) - [Pof — Aof] = 0in Q. By (5.2), we have

0=Pf+¢(Aof — Pof) = Bof for |z > R+ 1, z € Q,
C=nf+¢(Sf—7f)=nf for || > R+ 1, z €.

Since Agf =0 and ®of(z)=0forz €Q, 2] <R+ 1,

0 = —-AAf(z)+ Ve flz)=Ff for || <R+ 1, z € Q,
0 = —-ARf+Vrf=Ff for |x[2R+1,mEQ.
Consequently we obtain f = 0. ]

We get the following lemma from lemma 5.2 and 5.3.

Lemma 5.4 There exists \g > 0 such that for A € T, U {0}, |A] < Ao, the following
relations holds:

(1+5)7 e LML), N1+ S) Hews, @) <C

R43
By lemma 5.4, we can denote the solution (u,w) as follows:
uz) = Ra(l+S)7'f
= (1=@)P+8)7 1+ 041+ 5071 +B(Ve) - (PA(1+ S)71F = Ax(1 + S) 1)
m(z) = IL(I+S)7'f=(1-@)r(1+5)7f +¢@o(1+ 5) 7, |
where

A+S)7Yf = [1+S+ (Sx — So)I" L f
1+ So)—l[l +(1+ So)_l(SA - So)]_lf

= (14+80)7! i[(l +80)"H(Sx = So) f,
j=0
Sx—So = 2(Ve):V(Pr— Po)+ (Ad)(Pr — Po) + ApAof
+AB[(V) - (Pr — Po)] — AB[(V$)(Px — Po)].



6 Proofs of Theorem 1.1 and Theorem 1.2

We study coerciveness estimates for A™ and (A—))~! when A € £ = {\ € C\{0}; |arg A| <
8} with |A| > 1.

Proposition 6.1 Let 1 < g < oo and let A be the Stokes operator in Jo(S2).
(1) Assume that u € Dy(A) and Au € W*(Q) for a nonnegative integer m. Then u €
W‘;"‘*'Z(Q) and for some constant Cy, > 0,

llullw m+aa(9) < Cm (|Aullwm.a(a) + llullze@)) - (6.1)

(i) u € Dg(A™), m > 0, then u € W2™(Q) and

l|ullwama(ay < Cm (|A™ ullLe(a) + llullze()) - (6.2)

[proof of Proposition 6.1] The proof of (6.2) is carried out by applying (6.1) and the following
estimate: for any € > 0 and integer £ > 1,

“Al_lUHLq(ﬂ) < 6||A£U”Lq(n) + Csl""“L"(n)’ u€ Qq(A‘)
with some C, > 0. _ .

Proposition 6.2 Let 1 < g < oo and let A be the Stokes operator in Jo(S2).
(i) For a nonnegative integer m,

lA™ ullLe(a) < Cmllullwamaiq)y,  u € Dg(A™). (6.3)
(11) Let 0 < § < m and let m be a nonnegative integer. If f € D (A™), then

104+ llwanssay < CrnllFllwamsgey, (6.4
for any A € %(6).

[proof of Proposition 6.2]
(i) Since Au = —PAu for u € Dy(A) and P is bounded in W(Q) for any nonnegative
integer £, we have

A ullLeq) = IIPAA™  )llLaqay < CIA™ Hullwae(a) < ClIA™ 2ullwas(n)-

Repeating this manipulation leads us to (6.3).
(ii) The estimate (6.4) is an immediate consequence of Proposition 6.1 ,(6.2) and (6.3). In
fact,

(4 +2) " fllwamsa.a(a) Con (A" A+ 2 fllzeg@) + 1A+ 27 fllze(a)

<
< Con (IA™ fllLay + 11fllze(@)) < Cmllfllwam.ea)

|

We shall prove Theorem 1.1 and 1.2 from what we showed in section 5 in the same way

as in Iwashita [9). First, we shall show Theorem 1.1. For this purpose, it suffices to prove
the following theorem:
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Theorem 6.3 Let n > 3 and 1 < q < occ. Then there exists a positive constant C = C(q)
such that the inequality

le™* fllzaey < C(1+1)7"%
is valid for any f € J(Q).

[proof of Theorem 6.3] Since the semigroup e~*4 is bounded in J,(f), it suffices to show
(6.5) for large t > 0. Then let I < d < § < 2w and 0 < € < g9. Let T’ be a contour as
follows :I' = I'; UT'; where

Ifllze@ t>0 (6.5)

Ii={AeC;0< ) <e argh==%6}, Ty ={AeC;|A|>e¢, arg A= £6}.

The semigroup is described as follows :

-1 -1
—tA __ —tA —tA -1
St R(\)dA + 7— X (A+ \)~1d. (6.6)

The second term of the right hand side of (6.6) is estimated as

oo
’_1, / " A+ )1 / e~dr < Ce™°. (6.7)
r;

<C
£(Iy(m) ¢

2

for some ¢,C > 0. In order to estimate the first term of the right hand side of (6.6), we
need the following lemma that is a direct consequence of the formula of the gamma function

I'(0).
Lemma 6.4 (i) For o >0 andt > 0, it holds that

-1 _ _
— e tzza le ——
27t Jp ™

sin o

(o)™t

(ii) For a nonnegative integer j and any t > 0,

-1 iz j d [sinorm i1
—_ - 491
o7 I‘e 2’ log zdz & -

o=j+1

r(o)e*]

Since R(A) is described as

RO = G1 (M)A + G2(MA% log A + Gs(\) n is even, (6:8)
T 1 G1(OAT + Go (M)A T log A+ G3(A) 7 is odd, '
we can apply Lemma 6.4 to obtain
= [ e i < O fllgam, (6.9)
2mi Joy Le(q)
2_—1. / "2 Gy(M)A% (log )) fdX < G Y fllpaey- (6.10)
Iy Le(Q)
Finally the operator G3()) is bounded so that we have
—1 .
2 [P < et (6.11)
Tt I Le(Q) ' :




Combining (6.7) and (6.9)-(6.11) completes the proof of Theorem 6.3. |

We can show Theorem 1.2 from Theorem 1.1 and cut-off technique in the same way as
in Iwashita [9]. In order to show Theorem 1.2, we introduce the Ukai operator E(t) f(z) (cf.
Ukai [14]) which solves the equation:

u—Au+Vp=0, V-u=0 in (0,00) x R},
u‘xn=0 =0, u|t=0 =

with w = E(t)f(x) and some pressure term p(t,z). We know the following fact (cf. Ukai

[14], Borchres and Miyakawa [2]) .

Lemma 6.5 Let 1 < ¢ <1< oo and put o = (% — )/2. Then, we have

”E(t)f”L'(]R_’i'_) S Cat_a”f”Lq(mI),
IVEQS < Cat™ 3| fllzemy), (6.12)
fort > 0.

The next lemma is concerned with the estimate of derivatives of e~*4 f.

Lemma 6.6 Let n > 3,1 < g < oo,d > Ry, and let m be a nonnegative inleger.
(i) There ezists a constant C = C(d, m) > 0 such that

lle™* fllaggzm < C(L+1)" 33| fllag,2m, (6.13)
for any f € Dg(A™) with f =0 for |z| > d.
(i) If f € Dg(A™*1) and f =0 for |z| > d, then

107 llag g.2m < CL+1)"F 3| fllag,2m+2, (6.14)
where the constant C > 0 is independent of f.

[proof of Lemma 6.6] By proposition 6.1 and proposition 6.2, it suffies to verify the
assertions for ¢ large. The proof of (i) can be carried out similarly as in proof of theorem
6.3 with the aid of (6.4) and expansion of R(A).

(ii) For ¢ >> 1 and the contour + introduced in proof of theorem 6.3, the identity
-1 -1
~tA ~tA —tA -1
= — - d\+ — - -A A 1
Oe™ 4 f ami ), e =A)R(A) fdA + 5mi ), e (=N (A=) fd (6.15)
is valid so that (6.14) is obtained by using the expansion and (6.4) in (6.15). |

Put up = =4/ for f € J,(Q). Since up € Dy(AN) for any integer N > 0, it follows from

proposition 6.1 that uo € W2V (Q) and

llwollar.g,2v < Cllfllaq- (6.16)
Put u(t) = e~*4u; and u(t) is satisfied with the following:

Opu(t) — Au(t)+Vp(t) =0 in (0,00) xQ,
V- u(t)=0 in  (0,00) x R,
u(t)|pn =0 on (0,00) x 6Q,

u(0) =y in Q.

In the same manner as in Iwashita [9], by Lemma 6.5 and Lemma 6.6, we have the two
lemmas.
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Lemma 6.7 Let u(t) be as above and d > Ro + 5. For a nonnegative integer m, the
inequalities

lu@llaegom < CL+8)7 % |luollagaisam2, (6.17)
0 u(t)lasgom < C(L+1)7%|luollg g 214 2m+4 (6.18)

are valid for any t > 0, where the constant C depends only on d,m, and q.

Lemma 6.8 Let p(t) be a certain pressure assosiated with u(t). Then,

POl q.2m < C(1+1)™ %] luollr g (214 2m+a- (6.19)

We choose ¢ € C®(R%}) so that ¥(z) = 1 for |2| > d and = 0 for |z| < d— 1. By
proposition 5.1, Lemma 6.7, we can find vs(t) to satisfy the following relation:

Vous(t)=V-Wu®)],  suppst) C {d— 1< o] < d} NRL.
Then v3(t) satisfies the two following estimates:
llva@llgm < O +1)" % |uollaq (21+me2,

[1Bsva (t)llgm < C(1 + t)—"!’L||“o”n,q,[§]+m+4y (6.20)

In fact
e@®llgm < CIY - Bu@lllgme1 = C (19 - u(®)llgme1 + 167 - u(®) 1)
< Cllu®llasgm-1 < C(L+)7 % ||uolla g [21+m+2-

Set v4(t) = Pu(t) — va(t).

Lemma 6.9 Let ¢ < r < oo and v4(t) be as above. Then

A_n

llva@®)llr < C+8) D2 jug|la g 214201475 (6.21)

[proof of Lemma 6.9] 1st step. We set
h(t) = —{2(V¥) - V + (A¢)}u() — (8. — A)va(?) + P(H) VY,
and then see supp h(t) C {d —1 < |z| < d} NR}. Moreover, h(t) satisfies the estimate:
B@)llgm < C(1+1)7% ||uolla,g 2 1+m+a- (6.22)
Here we set vs = up — v3(0) and see V-v4 =0 in R} and
l[vallgm < Cliuolla,qm- (6.23)
v4(t) satisfies the following problem:
{ Byva(t) — Avg(t) + V(¥p(t)) = h(t) in (0,00) x RY,

V-u(t) =0 in (0,00) x R}, (6.24)
v4(0) = vg4 in R}.
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and is hence desrcibed as
t
v4(t) = E(t)vg + vs(t), ws(t) = / E(t — s)Pyh(s)ds.
0

By (6.12),(6.23), we see
lE()vallr < C(L+1)7"llvallg 20141 < C(1+ )77 luollag,r20141-

Next we will estimate vs(t) in the second step.
2nd step: Case 1. We consider the case of 3= > 1. We can estimate vs(t) as follows ;

s@®ll, < C / (14 (t — )=l Poh(8)llg 201415

IN

t
c / (L4 (t = )" ()l lg201 245
t
= C/O(1+(t—s))“’(l+S)'ﬁdSIIUoIIn,q,[%H[zaHs’
where

/:(1+(t—s))‘°(1+s)“?"5ds < C(l+) % <C(l+1)77,

[ase-op s i

We see

IA

C(1+1)~° /5(1 +5) 3ds < C(1+1)7°.
0

lles@)llr < C(L+1)7||uollq,q,(21+{201+5-

Case 2: We consider the case of 7= < 1. Taking o = (% — 2)/2 < 1 and n(1— %) > 1 into

account, we see r > 2. When n > 4, r > -2 follows from r > ¢ > 2. Then We can
;:hl(;ose p>1lsothat (2-2)/2=1+k (0<kK< $). By (6.22), we can estimate v5(t) as
ollows:

sl < € [+ (= ) Poh(e)oods

< C/ot(l +(t = 5))" ()]l 5ds

t
< C/o (1+(t = 5) "M (1 + 5) " T ds|luolla,q 2147
< CL+1) Fjuollngzier < CL+1) " lluollagzitr

Case 3 :We will show 2 < ¢ < r < 3 for n = 3. We choose p > 1 so that 2% > 1 -and
3(% —1)/2 < 1. We have

Hos(@)ll < C/Dt(l +(t— s))‘s(%‘%)/zuPohllp,zds

t
< c / (14 (¢ = 5))~2G=3/2(1 4 5)~F dslluollag 2146
0
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When ¢ > £, taking account of —3(% -42- % + 1< —0o we see

llos (@)l < C(1+1)72G 223 ug|lg 4 a6,

and
llvs ()1l < C(1+18)7|uolla,g 2146

For q = %, noticing that p < % = ¢ we have
—3(3—1 -
lles@)ll- < C(1+8)73~ 5 2 log(1 + t)luolla,g 12146 < C(L+ )~ |fuollag 2146,

since -—% + £ + ¢ < —¢. Summing up, we obtain the assertion of lemma. |
[proof of Thorem 1.2 (1)] At first we shall show (1.3) for ¢ > 1. Since (6.16),(6.17)and
Sobolev’s embedding theorem, we have

lu@llasr < Cllw(t)llag,q 20141
< C(L+8) " % luolla,g (214120143 < C(L+ )" %|fllag,  (6.25)

for d > Ro + 5. On the other hand, by (6.16),(6.20) and (6.21),we see

< lva@®ll- + s @l

< O+ )77 uolla,q 21420147 + C(1 4 1) 729 |[uo|la,q, 21+ (20143

< C+1)7%iflla. (6.26)
Since u(t) = e~*4uy = e~ (114 £ we obtain (1.3) for t > 1.

Secondly we will show (1.3) for 0 < ¢t < 1. Set N = [2¢0]. When N is even, by proposion 6.1
W€ see

lu(lltz2 4.+

- ' N _ - _N
lem4flagw < € (1A% e Fllag + lle™ fllag) < Ot~ ¥/l
Similary

- —Nt3
lle™* flla,q.n+2 < ™73 || flla,.
By using Sobolev’s embedding theorem and an interpolation method, we have
e fllar < Clle™ fllng2e
—o+ & +1 l+o-F-1
C(e®) T ()T Wl
Ct=%|\fllanq-

When N is odd, we consider N — 1 instead of NV in the same way. n
[proof of Theorem 1.2 (2)] We shall prove (1.4) for large ¢ only. Since v4(t) satisfy (6.24),
Ovy(t) is described as the integral form :

IA

t
Bu(t) = OE(t)va +ve, ve(t) = / OE(t — s)Poh(s)ds.
0
We can estimate v4(t) as follows:

l|6va(®)llr < C(1+)7"luolla,g (21+i20147- (6.27)



In fact, since by (6.23) and (6.23) we have
IOE@)valle < CL+1)77 F|lvallg o142 < C(L+1)777 Fluolg 20142,

it is suficient that we consider the estimate of vg(t).
Case 1: We consider the estimate of vg(t) for ¢ > 1. We have

el < © / (L4 (t = 5)) 3| Poh(s)llg o1 2

IA

t
C/o 1+ (t =)™ 3(1 + 5)~ T dslluolla,q[2]41201+6-

Since ¢ < r < n, it follows that 3= > 3 1 that is, a+ < ﬁ, we can see

(1+(t—s)"""31+s)"Fds < CU+t)"F <C(L+1)"775,

hlln\
o

(M1

/ (1+@—-s)F(1+s)Bds < CU+t) " FH <o+ 4.
0

Therefore we can show

llos@)llr < C(1 + 1) 5||uolla,q[31+120]+6-

Case 2: We consider the case that o < 3, n(1 - 1)>1ie. r> 72y, Wecan find p> 150
thatp<qand———=1+2nfor0<n<2 We have

s@ll: < C [ (14 (= )T Poh(@)lads

IA

¢ [ @+ (=) W h(e)] s

IN

t
c / (14 (t = 8)) 9 (1 + 5)™ T dsl uollan g 214 7-
o]

If 32> 1, we have

t
1+ (t~5) D (1+s) Fds < COL+)™F <O+,

e VI

(L4t —) (145 Fds < C(1+1)"CHI-HH <O+
[4]

Therefore we can obtatin the estimate of vs(t):
- —o—1
llws@ll- < C(1+ )~ luolla,graj+7 < C(1+8)777 7| uolla,q 2147

If £ <1, then 0 + 3 < §7. So we have

llos (@)l < C(1+1)™ % |uolla g (2147 < C(1+1)77" #|luolla,g 2147

1117
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Ca.se 3 : We consider the case that o < and 7 < ;%5 Then % > "2——"—1. Provided that
75 > 1, which is always valid when n > 4 “we have

@)l < C / (1+ (t = 8)) ™ 3| Poh(s)llg oo 25

t
< 0 [ @ t=o) 1+ o) Fdsluoln grzrstaoi

Cc(i+ f)_“'%||U0||n,q,[%]+[2o]+6-

A

Case 4: Finally it remain to consider the case that n = 3 and ¢ = » = 2. We choose p so
that 1 < p < %. Then we have

t
foelly < [ (04 (4= ) FHRAG) e
[4)

< C/t(l + (t = 5)) "% F||A(s)||p,2ds

IA

C/ (14 (t = ) "5 5(1+ 5) " ds|juolln g, 2146
< C(L+1)7 % 5 log(l +1)]luolla,, (2146 < C(1+1)77 Hluolla a.[3]+6-

Summing up, we have prove (6.27). |
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