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Recent Results on the Selfadjoint Trotter—Kato Product Formula
in Operator Norm with Open Problems*

@RK#E —#¥ # (Takashi Ichinose)
Department of Mathematics, Faculty of Science, Kanazawa University

Abstract. The norm convergence of the Trotter-Kato product formula with optimal
error bound is shown for the semigroup generated by those operator sum and form sum
of two nonnegative selfadjoint operators A and B which are selfadjoint.

1. Introduction and Result

Let A and B be nonnegative selfadjoint operators in a Hilbert space H with domains
D[A] and D|[B]. Consider their operator sum A+ B with domain D[A]ND|B], and their
form sum A+ B with form domain D[A/2]ND|[B/?]. We assume that D[A/2|ND[B/?]
is dense in . We denote this operator sum as well as the form sum by the same symbol
C,ie. C:=A+ Band C:= A+B.

In a celebrated paper, Kato [K| proved for the form sum C := A+B

s— lim (e—tB/2ne—tA/ne—tA/2n)n = 35— lim

(e—tA/ne—tA/n)n — e-——tC
n—oo n—00

; (1.1)

in the strong operator topology, uniformly on each compact t-interval in [0, 00).

In this lecture, I will mainly talk about the following two results on the operator norm
convergnce of this formula, based on three joint works with Hideo Tamura [IT], with
Hideo Tamura, Hiroshi Tamura and V. A. Zagrebnov [ITTZ)], and with H. Neidhardt
and V. A. Zagrebnov [INZ].

The result of this kind was first proved by Rogava [R], when C = A + B is self-
adjoint with D[A] C D[B], with error bound O(n~/2logn), and by Helffer [H] for
the Schrodinger operator H = —A + V() with nonnegative potential V(z) satisfying
[8*V ()| < C4 for |a| > 2, with error bound O(n~!). Since then there have appeared
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many papers, which improve either of these two results (See e.g. references in [IT]).
The results presented below extend and properly contain all the so far known results.

First consider the case of the operator sum C' = A + B.

Theorem 1.1 [IT, ITTZ]. If the operator sum C = A+ B is selfadjoint on their domain
D[A] N D[B], then it holds in operator norm that

[[(e~tB/2ne—tA/ng=tB/2nyn _ o~tC|| — O(n"Y),

B B B _ (1.2)
”(e tA/ne tB/n)n_e t0“=o(n 1)’ n — oo,

uniformly on each compact t-interval in [0,00). The error bound O(n™!) is optimal.

Unless the sum A + B is selfadjoint on D[A] N D[B], the norm convergence of the
Trotter—Kato product formula does not always hold, even though the sum is essen-
tially selfadjoint there and B is A—form-bounded with relative bound less than 1. A
counterexample is constructed in [Ta).

Next we come to consider the case of the form sum C = A+B, but this case does
not hold in general, as we have just said above.

We need to assume some additional condition on A and B. Namely, we assme that
for some vy with 1 <y < 1,

D[C"] C D[A”) N D[B"]. (1.3)

Theorem 1.2 [INZ]. Let C = A+B be the form sum with the relation (1.8) among the
fractional powers of A, B and C. Further assume that one of A and B is form-bounded
with respect to the other, namely, D|A'/?] C D[B/?] or D|BY/?] C D[AY?]. Then it
holds in operator norm that

”(emtB/zne-—tA/ne—tB/?n)n _ e-»tCH — O(n—(z'y—l)),

14
|(etA/metB/m) — e~tC|| = O(n~ ")), n — oo, (-4

uniformly on each compact t-interval in [0,00). The error bound O(n~27~1)) is optimal.

Notice here that condition (1.3) excludes the case v = 1, i.e. the case of Theorem
1.1, so that there is no overlap between Theorems 1 1 and 1.2.

Remarks. 1. These theorems hold with the exponential function e~* for e~*4 and
e~tB replaced by the following two different more general real-valued functions f and
g on [0,00), which are Borel measurable and satisfy (i) that 0 < f(s) <1, f(0) =
1, f'(0) = —1, (ii) that for every small € > 0 there exists a positive constant § =

8(¢) < 1suchthat f(s) < 1-8(e), s>e¢, and (iii) that [f]s := sup,.q L& ;Hsl < oo.
Some examples of functions satisfying these conditions (i), (ii), (iii) are

f&) =€, f(s)=(1+k18)*, k>0 (1.5)
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A function f(s) satisfying (i) has property (ii), if it is non-increasing. Condition (ii) is
necessary.

2. The symmetric product case of Theorem 1.2 is proved in [ITTZ| also for the
operator sum C := A; + .-+ 4+ A,, of m nonnegative selfadjoint operators Ai,...,An.

3. We also mention the trace norm case will be derived from these theorems.

As a matter of fact, the Trotter—-Kato product formula is a useful tool in quantum
mechanics and statistical mechanics. For instance, Brascamp and Lieb [BL] studied the
Prékopa-Leindler and Brunn-Minkowski theorems to log concave functions and derived
as an application inequalities for the fundamental solution of the diffusion equation
with a convex potential. There they are using the Trotter product formula. I should
also like to mention it may be used to prove Cwickel-Lieb—Rozenblum estimate giving
the asymptotic formula for the number of the negative eigenvalues of the Schrédinger
operator [RS].

In [I1] and its extended version [I 2], we have discussed some aspect of the convergence
of the time-sliced approximation to Feynman path integral in imaginary time. For
another review about our results on the subject, we also refer to [Z)].

In Section 2, to prove the theorems, we describe the key lemmas without proof.
Section 3 gives some typical examples for the two theorems. In Section 4 some open
problems are presented.

2. How to Prove Theorems

To prove the theorems, we shall establish the following key memmas, an operator-
norm version of Chernoff’s theorem with error bounds.

In these lemmas, let C be a nonnegative selfadjoint operator in a Hilbert space H and
let {F(7)}r>0 be a family of selfadjoint operators with 0 < F(r) < 1 with F(0) = I.
Define for 7 > 0

S, = 7(1 - F(r). (2.1)

Lemma 2.1 [IT]. Let 0 < o < 1. If it holds that
I(1+8)7 =1+ 0)7H < Car®, 710, (2:2)
with a constant Cy > 0, then it holds that, for any 8 > 0 with0 < 6 < 1,
|F@t/n)™ —e €| < Mat™ 1’ n=, n— oo, (2.3)
for allt > 0, with a constant C, > 0,.

Therefore, for 0 < oo < 1 (resp. o = 1), the convergence in (2.2) is uniform on each
compact t-interval in the open half line (0,00) (resp. in the closed half line [0,00)).
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Lemma 2.2 [INZ]. Let 0 < a < 1. Then it holds that

I(1+tS,)" = (1 +tC)7 Y| < Cu(r/t)®, 0<T<t<], (2.4)
with a constant C, > 0, if and only if it holds that
|F(T)Y™ —e7 || < Mu(T/t)%, 0<r1<t<]1, - (2.5)

with a constant M, > 0.

Here note that, indeed, Lemma 2.2 is extending Lemma 2.1 for the case 0 < a < 1
until (2.2) and (2.3) become equivalent assertions, but says nothing for the case a = 1.

For the proof of the theorems, take F(7) := e""B/2¢=74¢~7B/2 and apply these key
lemmas, then we get the symmetric product case in (1.2)/(1.4). The nonsymmetric prod-

uct case follows from the symmetric one, because we can show ||F(t/n)" — G(t/n)"| =
O(n~1), where G(7) := e ™" 75,

3. Examples

Ezample for Theorem 1.1 :
Consider the Schrodinger operator

-l v 2, Kk Yo, 2 o, 12003
C= 2( iV — A(z)) +|93|+ 7|:L'] + 7|x| (3.1)

in L*(R®) with magnetic fields V x A(z) bounded, where k, ., t, are nonnegative
constants.

It is known that this C is selfadjoint in L?(R3®). Theorem 1.1 applies with error
bound O(n™1).

Ezample for Theorem 1.2 :

Let Q2 be a bounded domain in R? with smooth boundary 8. Let A and B be
the Dirichlet Laplacian and Neumann Laplacian in €, respectively. Namely, put A :=
—3Ap with domain D[A] = W2(Q) N W¢(Q), and B := —1 Ay with domain D[B] =

{u e W2(Q); g';[aﬂu =0}.
Then D[AY/?] = W§(Q) € WY(Q) = D[B/?], and hence
DIC'/?] = D|AV?| n D[B"?) = D[4?] = W} (@),
so that C = A+B becomes
~Ap = (=1Ap)+(-1Ay). (3.2)
It is known ([F], [G]) that |

DA% = {u e W(@)u| =0}, % <a<l;

Wi (Q), , % <a< %,

DBt = { {u e W= (Q); Zu

v

asz:o}’ 8<axl.
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Consequently, for 3 < a < 2,
D[C®] = D[4 € D[B®].

Thus by Theorem 1.2, we have for every K :=2a — 1 < kg := % (a=

o

)y
“[etAD/2ﬂetAN/2n]'n _ etAD“ — O(n—-n), (33)

uniformly on each compact t-interval in [0, 00) as n — oo.
However, for %— < a <1, Theorem 1.2 does not apply.

4. Some Open Problems.

1. Theorem 1.1 is a final result in a sense, but Theorem 1.2 not yet, for its statement is
not symmetric with respect to two selfadjoint operators A and B. Namely, so as to make
it symmetric, can we not remove the condition that “one of A and B is form-bounded
with respect to the other, i.e. D[AY/?] C D[B'/?] or D[BY/?] C D[AY/?]” ?

In other words, can we not prove Theorem 1.2 without this condition ?

2. How about the case where one of A and B is not bounded below, though we are
assuming the sum C = A + B in a form sense is bounded below ?

3. Doesn’t the pointwise convergence of the integral kernels hold in Theorems 1.1 and
1.2 or don’t the theorems imply it, when these semigroups have their integral kernels ?

4. How about the case where one of A and B is m~accretive ?

5. How about the nonlinear analogue ? Note that in the strong operator topology case,
Kato and Masuda [KM] extended Kato’s result [K] to the nonlinear semigroups with
subdifferential generators.
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