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Recent Results on the Selfadjoint Trotter-Kato Product Formula
in Operator Norm with Open Problems’

金沢大理 一瀬 孝 (Talmhi Ichinose)
Department of Mathematics, Faculty of Science, Kanazawa University

Abstract. The norm convergence of the Trotter-Kato product formula with optimal
error bound is shown for the semigroup generated by those operator sum and form sum
of two nonnegative selfadjoint operators $A$ and $B$ which are selfadjoint.

1. Introduction and Result

Let $A$ and $B$ be nonnegative selfadjoint operators in a Hilbert space $H$ with domains
$D[A]$ and $D[B]$ . Consider their operator sum $A+B$ with domain $D[A]\cap D[B]$ , and their
form sum $A\dotplus B$ with form domain $D[A^{1/2}]\cap D[B^{1/2}]$ . We assume that $D[A^{1/2}]\cap D[B^{1/2}]$

is dense in $H$ . We denote this operator sum as well as the form sum by the same symbol
$C$ , i.e. $C:=A+B$ and $C:=A\dotplus B$ .

In a celebrated paper, Kato [K] proved for the form sum $C:=A\mp B$

$s- \lim_{narrow\infty}(e^{-tB/2n}e^{-tA/n}e^{-tA/2n})^{n}=s-\lim_{narrow\infty}(e^{-tA/n}e^{-tA/n})^{n}=e^{-tC}$ , (1.1)

in the strong operator topology, uniformly on each compact $t$-interval in $[0, \infty)$ .
In this lecture, I will mainly talk about the following two results on the operator norm

convergnce of this formula, based on three joint works with Hideo Tamura [IT], with
Hideo Tamura, Hiroshi Tamura and V. A. Zagrebnov [ITTZ], and with H. Neidhardt
and V. A. Zagrebnov [INZ].

The result of this kind was first proved by Rogava [R], when $C=A+B$ is self-
adjoint with $D[A]\subseteq D[B]$ , with error bound $O(n^{-1/2}\log n)$ , and by Helffer [H] for
the Schrodinger operator $H=-$A $+V(x)$ with nonnegative potential $V$ (x) satisfying

$|\mathrm{a}$
’ $V(x)|\leq C_{\alpha}$ for $|$ a$|\geq 2,$ with error bound $O(n^{-1})$ . Since then there have appeared
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many papers, which improve either of these two results (See e.g. references in [IT]).
The results presented below extend and properly contain all the so far known results.

First consider the case of the operator sum $C=A+B.$

Theorem 1.1 [IT, ITTZ]. If the operator sum $C=A+B$ is selfadjoint on their domain
$D[A]\cap D[B]$ , then it holds in operator norm that

$||(e^{-tB/2n}e^{-tA/n}e^{-tB/2n})^{n}-e^{-tC}||=O(n^{-1})$ ,
(1.2)

$||$ $(e^{-tA/n}e^{-tB/n})^{n}-e$ $-tC||=O(n^{-1})$ , rz $arrow \mathrm{o}\mathrm{o}$ ,

uniformly on each compact $t$ -interval in $[0, \infty)$ . The error bound $O(n^{-1})$ is optimal.

Unless the sum $A+B$ is selfadjoint on $D[A]\cap D[B]$ , the norm convergence of the
Trotter-Kato product formula does not always hold, even though the sum is essen-
tially selfadjoint there and $B$ is A-form-bounded with relative bound less than 1. A
counterexample is constructed in [Ta].

Next we come to consider the case of the form sum $C=A\dotplus B$ , but this case does
not hold in general, as we have just said above.

We need to assume some additional condition on $A$ and $B$ . Namely, we assme that
for some 7 with $\frac{1}{2}<\gamma<1,$

$D[C^{\gamma}]\subseteq D[A^{\gamma}]\cap D[B^{\gamma}]$ . (1.3)

Theorem 1.2 [INZ]. Let $C=A\dotplus B$ be the form sum with the relation (1.3) among the
fractional powers of $A$ , $B$ and C. Further assume that one of $A$ and $B$ is form-boun$ded$

with respect to the other, namely, $D[A^{1/2}]\subseteq D[B^{1/2}]$ or $D[B^{1/\mathit{2}}]\subseteq D[A^{1/2}]$ . Then it
holds in operator norm that

$||(e^{-tB/2n}e^{-tA/n}e^{-tB/2n})^{n}-e^{-tC}||=O(n^{-(2\gamma-1)})$ ,
(1.4)

$||(e^{-tA/n}e^{-tB}/n)^{n}-e$$-tc||=O(n-(2\gamma-1))$ , $narrow\infty$ ,

unifomly on each compact $t$ -interval in $[0, \infty)$ . The error bound $O(n^{-(2\gamma-1)})$ is optimal.

Notice here that condition (1.3) excludes the case y $=1,$ i.e. the case of Theorem
1.1, so that there is no overlap between Theorems 11 and 1.2.

$f(s)=e^{-s}$ , $f(s)=(1+k^{-1}s)^{-k}$ , $k>0.$ (1.5)
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A function $f(s)$ satisfying (i) has property (ii), if it is non-increasing. Condition (ii) is
necessary.

2. The symmetric product case of Theorem 1.2 is proved in [ITTZ] also for the
operator sum $C:=A_{1}+\cdot$ . . $+A_{m}$ of $m$ nonnegative selfadjoint operators $A_{1}$ , . . . , $A_{m}$ .

3. We also mention the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ norm case will be derived bon these theorems.

As a matter of fact, the Rotter-Kato product formula is a useful tool in quantum
mechanics and statistical mechanics. For instance, Brascamp and Lieb [BL] studied the
Pr\’ekopa-Leindler and Brunn-Minkowski theorems to $\log$ concave functions and derived
as an application inequalities for the fundamental solution of the diffusion equation
with a convex potential. There they are using the Trotter product formula. I should
also like to mention it may be used to prove Cwickel-Lieb-Rozenblum estimate giving
the asymptotic formula for the number of the negative eigenvalues of the Schr\"odinger
operator [RS].

In [I 1] and its extended version [I 2], we have discussed some aspect of the convergence
of the time-sliced approximation to Feynman path integral in imaginary time. For
another review about our results on the subject, we also refer to [Z].

In Section 2, to prove the theorems, we describe the key lemmas without proof.
Section 3 gives some typical examples for the two theorems. In Section 4 some open
problems are presented.

2. How to Prove Theorems

To prove the theorems, we shall establish the following key memmas, an operator-
norm version of Chernoff’s theorem with error bounds.

In these lemmas, let $C$ be a nonnegative selfadjoint operator in a Hilbert space $\mathcal{H}$ and
let $\{F(\tau)\}_{\tau\geq 0}$ be a family of selfadjoint operators with $0\leq F(\tau)\leq 1$ with $F(0)=I.$
Define for $\tau>0$

$S_{\tau}=\tau^{-1}(1-F(\tau))$ . (2.1)

Lemma 2.1 [IT]. Let $0<\alpha\leq 1.$ If it holds that

$||$ $(1+S_{\tau})^{-1}-(1+C)^{-1}||\leq C_{\alpha}\tau^{\alpha}$, $\tau\downarrow 0,$ (2.2)

with a constant $C_{\alpha}>0,$ then it holds that, for any $\delta>0$ tool $0<\delta\leq 1,$

$||F(t/\mathrm{r}\mathrm{z})n-e^{-tC}||\leq M_{\alpha}t^{-1+\alpha}e^{\delta t}n^{-\alpha}$, $narrow\infty$ , (2.3)

for all $t>0,$ with a constant $C_{\alpha}>0,$ .
Therefore, for $0<\alpha<1$ (resp. $\alpha=1$), the convergence in (2.2) is uniform on each

compact $t$ -interval in the open half line $(0, \infty)$ (resp. in the closed half line [0, $\infty$) $)$ .
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Lemma 2.2 [INZ]. Let $0<\alpha<1.$ Then it holds that

$||$ $(1\mathrm{H}S_{\tau})^{-1}-(1+tC)^{-1}||\leq C_{\alpha}(\tau/t)^{\alpha}$ , $0<\tau\leq t<1,$ (2.4)

with a constant $C_{\alpha}>0,$ if and only if it holds that

$||F(\tau)^{t/\tau}-e^{-tC}||\leq M_{\alpha}(\tau/t)^{\alpha}$ , $0<\tau\leq t<1,$ (2.5)

with a constant $M_{\alpha}>0.$

Here note that, indeed, Lemma 2.2 is extending Lemma 2.1 for the case $0<\alpha<1$

until (2.2) and (2.3) become equivalent assertions, but says nothing for the case $\alpha=1.$

For the proof of the theorems, take $F(\tau):=e^{-\tau B/2}e^{-\tau A}e^{-\tau B/2}$ and apply these key
lemmas, then we get the symmetric product case in (1.2)/(1.4). The nonsymmetric prod-
uct case follows ffom the symmetric one, because we can show $||F(t/n)n-$ $G(t/77)n||=$
$O(n^{-1})$ , where $G(\tau):=e^{-\tau A}e^{-\tau B}$ .

3. Examples

Example for Theorem 1.1 :
Consider the Schr\"odinger operator

$C=- \frac{1}{2}(-i\nabla-A(x))^{2}+\frac{k}{|x|}+\frac{y_{\mathit{0}}}{7}|x|^{2}+\frac{t_{o}}{7}|x|^{2003}$ (3.1)

in $L^{2}(\mathrm{R}^{3})$ with magnetic fields 7 $\cross A(x)$ bounded, where $k$ , $j_{\mathit{0}}$ , $t_{o}$ are nonnegative
constants.

It is known that this $C$ is selfadjoint in $L^{2}(\mathrm{R}^{3})$ . Theorem 1.1 applies with error
bound $O(n^{-1})$ .
Example for Theorem 1.2:

Let $\Omega$ be a bounded domain in $\mathrm{R}^{d}$ with smooth boundary an. Let $A$ and $B$ be
the Dirichlet Laplacian and Neumann Laplacian in $\Omega$ , respectively. Namely, put $A:=$
$- \frac{1}{2}\Delta_{D}$ with domain $D[A]=W^{2}(\Omega)\cap W_{0}^{1}(\Omega)$ , and $B:=- \frac{1}{2}\Delta_{N}$ with domain $D[B]=$

$\{u\in W^{2}(\Omega);\varpi|_{\partial\Omega}\theta u=0\}$ .
Then $D[A^{1/2}]=W_{0}^{1}(\Omega)\subseteq W^{1}(\Omega)=D[B^{1/2}]$ , and hence

$D[C^{1/2}]=D[A^{1/2}]\cap D[B^{1/2}]=D[A^{1/2}]=W_{0}^{1}(\Omega)$ ,

so that $C=A\dotplus B$ becomes

$-\mathrm{A}_{D}$ $=(- \frac{1}{2}\Delta_{D})\dotplus(-\frac{1}{2}\Delta_{N})$ . (3.2)

It is known ([F], [G]) that

$D[A^{\alpha}]=$ {$u\in W^{2}$’(O); $u|_{\partial\Omega}=0$}, $\frac{1}{2}<\alpha<1;$

$D[B^{\alpha}]=\{$

$W^{2\alpha}(\Omega)$ , $\frac{1}{2}<\alpha<\frac{3}{4}$ ,
$\{u\in W^{2\alpha}(\Omega);\frac{\partial}{\partial\nu}u|_{\partial\Omega}=0\}$ , $\frac{3}{4}<$ cx $<1$ .
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Consequently, for $\frac{1}{2}<\alpha<\frac{3}{4}$ ,

$D[C^{\alpha}]=D[A^{\alpha}]\subseteq D[B^{\alpha}]$ .

Thus by Theorem 1.2, we have for every $\kappa:=2\alpha-1<\kappa_{0}:=\frac{1}{2}$ (a $= \frac{3}{4}$ ),

1 $[e^{t\Delta_{D}/2n}e^{t\Delta_{N}/2n}]^{n}-e^{t\Delta_{D}}||=O(n^{-\kappa})$ , (3.3)

uniformly on each compact $t$-interval in $[0, \infty)$ as $narrow\infty$ .
However for $\frac{3}{4}\leq$ a $\leq 1,$ Theorem 1.2 does not apply.

4. Some Open Problems.

1. Theorem 1.1 is a final result in a sense, but Theorem 1.2 not yet, for its statement is
not symmetric with respect to two selfadjoint operators $A$ and $B$ . Namely, so as to make
it symmetric, can we not remove the condition that “one of $A$ and $B$ is form-bounded
with respect to the other, i.e. $D[A^{1/2}]\subseteq D[B^{1/2}]$ or $D[B^{1/2}]\subseteq D[A^{1/2}]$ ” ?

In other words, can we not prove Theorem 1.2 without this condition ?

2. How about the case where one of $A$ and $B$ is not bounded below, though we are
assuming the sum $C=A+B$ in a form sense is bounded below ?

3. Doesn’t the pointwise convergence of the integral kernels hold in Theorems 1.1 and
1.2 or don’t the theorems imply it, when these semigroups have their integral kernels ?

4. How about the case where one of $A$ and $B$ is $m_{\Gamma}$accretive ?

5. How about the nonlinear analogue ? Note that in the strong operator topology case,
Kato and Masuda [KM] extended Kato’s result [K] to the nonlinear semigroups with
subdifferential generators.
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