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1 Introduction

This note is based on [19]. We study the initial value problem with periodic
boundary conditions of the following Boussinesq-heat system:

Utt + Usaze = (f1(Uz)0 + f2(Us))z, (t,z) eR* x T, (1.1)
9t - Bzm = fl(um)guzh (12)
U(O, Z) = ’U,o(l'), ’u’t(oax) = ul(x)a B(Ov 'T) = 90(33)’ (13)

where Rt = {t € R |t >0} and T = R/Z.

This system describes the dynamics of first order martensitic phase transitions
occurring in a ring made of shape memory alloys, where u denotes the longitudinal
displacement of the ring, and 6 is the temperature. For more details of the Falk
model system, we refer the reader to Chapter 5 in the literature [5].

Before stating our results, let us first recall some results related to this paper.
Sprekels and Zheng [13] proved the unique global existence of smooth solution for
(1.1)-(1.3). In [6], Bubner and Sprekels established unique global existence results
of (1.1)-(1.3) for data (up,u;,6y) € H® x H' x H', and discussed the optimal
control problem in the case

fi(r) = —r and fo(r) =7° — 1 + 1. (A0)
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T. Aiki [1] proved unique global existence of solution with (ug, u1,6p) € H> x H! X
H* for more general nonlinearity, that is,

fi, f2 € C*(R), (A1)

and
Fy(r) > —=C for r € R, (A2)

where Fy(r) is the primitive of f,(r). We note that the condition (A0) implies the
conditions (A1) and (A2).

Systems related to (1.1)-(1.3) have been studied for the case of viscous mate-
rials, that is,

Utt + Uzzzz — Ugzt = (F1(Uz)0 + f2(Uz))z, (1.4)
0t - H:cm - luztl2 = fl(uz)euzt (15)

The viscosity term simplifies the analysis because this term has smoothing prop-
erty. In fact, K.-H. Hoffman and Zochowski establish the existence result decom-
posing (1.4) into a system of two parabolic equations in [8]. Sprekels, Zheng and
Zhu [14] prove the asymptotic behavior of the solution for (1.4)-(1.5) as ¢t — oo.
However, the literature [5] says that there is no interior friction from the experi-
mental evidence. Moreover, it seems that for (1.1)-(1.4) has not been determined
the asymptotic behavior of the solution as ¢ — oo. Another interesting property
of shape memory alloys is hysteresis. There are a lot of models and results from
this point of view. For related results to hysteresis, we refer to e.g. [2].
System (4.1)-(4.2) conserves the energy, namely, the integral

Bu(®) w(®),00) = 3(lulls + ) + [ 05+ [ Patuas  (19)

does not depend on the time t. Therefore, the energy class of this system is
H? x L? x L'. In the author’s master thesis [18], the unique global existence
theorem in H? x L? x L? is proved, which is slightly smaller than the energy
space. When we consider the solvability of (4.1)-(4.4), the energy class seems
most natural. Nevertheless, there have been no papers on the solvability of (4.1)-
(4.4) in the energy class up to the present. The aim of this paper is to prove the
unique global existence of solution for (4.1)-(4.4) in this space. Here the spaces
W™P and H™ are the standard Sobolev spaces, that is, W™? is equipped with the

norm
Wflwms = 3 105 flzs,

0<k<m
and H™ = W™2,
Our main results in this paper are stated as follows:
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Theorem 1.1 (Local existence and uniqueness). Assume that fi, fo satisfy
the condition (A1). Let any € € (0,1/6) be fized. Then for any (ug,us,6p) €
H?x L*x L', there ezists T = T(||uo|| 2, ||u1]| 22, [|60|21) > O such that the problem
(1.1)-(1.3) has a unigue solution (u,8) on the time interval [0, T), satisfying

u € C([0, T]; H*(T)) N L*(0, T; W>*(T)),
u, € L=(0,T; L*(T)) N L*(0, T; L*(T)),

g € C([0,T]; LX(T)),
8, € L37(0, T; L3+(T)).

Our main tools of the proof of this theorem are the maximal regularity estimate
and the Strichartz estimate. In general, the derivative of a solution for parabolic
equations is less regular than the right-hand side of the corresponding equations.
We call the estimate such a loss of regularity does not occur “maximal regularity”.
For this estimate, we refer to [3], [9] and [10]. The Strichartz estimate established
in [15] is closely related to the restriction theory of the Fourier transform to surfaces
and used often in various areas of the study of nonlinear wave equations. For the
application of this estimate, we refer to [11}, [12], [16] and [17]. Corresponding
results in the spatially periodic setting are established by J. Bourgain [4], and
more transparent version is given by Fang and Grillakis in [7].

Combining this result with the energy conservation law, we obtain the following
global result.

Theorem 1.2 (Global existence). In addition to the assumptions of Theorems
1.1, suppose that (A2) and 0y > 0. Then, the solution given by Theorems 1.1 can
be extended globally in time.

Remark. We note that the nonlinear term of (1.2) is rewritten as the following
form:

fl('ll/a:)eutz = (fl(um)eut)z - f{(ux)umzem - f(uz)ozuta

which makes sense in the distribution class.

2 Preliminary Estimates

In this section, we shall summarize several lemmas to be used in the proof of
Theorem 1.1. The key estimates for this result are a space-time estimate for the
free solution of (1.1) (the so-called Strichartz estimate) and the maximal regularity
estimate of (1.2).



Before the stating these estimates, we introduce several notations. We write a
partial derivative with respect to a variable y as follows:

0

By = -a—y,

and the Lebesgue norm is defined as

\F5 IBLE = (1 Fllcpus = { / ' ( / |f<m,t>|qdz)§dt} ,

in particular

3 =

I1f5 ool = N fllee,, == 1 fllze-

For an 1-parameter (semi-)group V(t), we write

rV)f = /: V(t — s)f(s)ds.

Throughout this paper, C (C(r)) is a positive constant (depending only on r) and
¢’ and g satisfy the relation 1/¢+ 1/¢' = 1.

Proposition 2.1 (Strichartz type estimate [4], [7]). The following estimates
holds,

IVe(-)g; L3l < Cligs L21I, (2.1)
Irva) s Lt < CIfs L, (2.2)
and
Irvasszei| < c|fiLd|, (23)
where V. ;= eFitd:
Proposition 2.2 (Maximal regularity). For any q € (1,00), we have
12T (U)f; LT || < CA+ THIf5 LTI, (2.4)

where U(t) := €',

Proof. For the case the space is R, we can find this estimate in [9] and [10]. By
using cutoff function argument, we can prove 2.4. O
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The following estimates are the standard estimates of the heat equation.

Proposition 2.3 (LP-L? Estimate). For any 1 < ¢ < p < oo and t > 0, we

have
1
008 21 < € (1+ gz ) I L2 (25)
and
Pl < — ¢ 1 1 ;L1 2.6
10:U(8)g; 21| < 5775 \ 1+ simaze=rry ) 195 L2 (2.6)

Remark. In this paper, since global time estimates are not needed, we may regard
these estimates as the following well-known form

C
1V L1 < sy los L2,

and
16:U(t)g;

In the end of this section we formulate estimates obtained by using the Gagliardo-
Nirenberg inequality. We make frequent use of the following lemma in this paper.

C
2 < el 4l

Lemma 2.1. For any p < 22’ there ezist C(p,q,€) > 0 such that

16; L2.L2|| < CTC®a9)|jg; LR L@ )||6,; LETF|7®, (2.7)

where o(€) = % (§$2) and C(p,g,6) = ; — 2525

In particular, for any p < —5§9§2 there erist C(p,€) > 0 such that
16; ZRL2|| < CTO®R||g; L L2 |g,; LAY+, (2.8)

where 03(€) = 5iay and C(p,e) = 7 —

2(_5%_-3?7'
Proof. We only prove (2.8). By the Gagliardo-Nirenberg inequality we have

16; 2|l < C|16; L2 )| 6% g, L3 |85
Therefore, we have
I6; L5 L2]) < © |l 22| %5 g, L3680, LE*
< C||0||f§%?’ no,,p““ﬂﬁ-s Ls+€
< o) 25 g, LIS L+ i

LyLi




By the assumption:

p(4+3) 4
2(5+6¢e) 3 +e
there holds
165 L 2zm’jLaﬁ | < CT‘?(Z?aLcTE“em,La“ I,
which completes the proof. 0

3 Local Existence Theorem

Proof of Theorem 1.1. In this section we prove the local existence for the problem
(1.1)-(1.3). We will denote by f the Fourier coefficient of the function f with
respect to the space variable, i.e.

F= ./T e~ ™ok f(z)dz.

Without loss of generality we may assume T' < 1. We first restate the equation
(1.1). For simplicity, we write F := (f1(v)8 + f2(v)). Since F(0) does not depend
on z, (3.3) can be rewritten as follows:

Uit + Ugzze = {F — F(0)}=. (31)
Let
V= Ug. (3.2)
Differentiating both sides of (3.1), sufficiently smooth solutions satisfy
Vit + Vzgose = {F — F(0)} sz (3.3)

Here for any f such that f(O) =0, we define 872 as follows

21r1,kz

S OIS yhcatest; )

ks£0

We note that by (3.2), 9(0) = 0 and 7(0) =
Putting
* = v +140 %,
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we have
at'l) = Ut + ?;6—2'!)“

= v, £ 00 { )b + OX(F — F(O))}

(3.4)
= v, Fidv +i(F — F(0))
= Fid2 (v £i8]%v,) + i(F — F(0)).
Then (3.3) is made into the following two Schrédinger type equations
dw* = Fid2v* + i{F — F(0)}.
Notice that since
o2 + :
v =5 (v v ), (3.5)

this transformation is useful for the estimate of v;.
We first show the time local existence and uniqueness of solution (v*,v~,6)
with (0) = 0 in the space H* x H' x L. For A > 0, we define the space

X3 = {07, 0 (w*,v7,8)llx = llv*lla + Il lla + 161> < A},
where
[v¥]la = [Jv=; LY He || + 1020 L4,
16115 := 116; L¥ L5l + 110205 L7l5 |-
and the operator A : (v*,v7,8) — (Asvt, A_v™, Ayf) as follows:
Asv® = V(v (0) £ iD (VL) (F — F(0)), (3.6)
Apb = U(¢)80 + L(U) (f1(uz)Buss)- 3.7)

We shall prove that for an appropriate choice of A and T, the operator A is a
contraction of X7 into itself. We note that v*(0, z) and (F — F(0)) have average
zero, therefore, so do A v*.
We show estimates for (3.6).
For the linear part, by (2.1) we have
V()™ (0)lle < [Va ()™ (0); LF HZ|| + 165V (Jv™(0); Lo ||
< Clluollara + [|uallz2)-
Since by the embedding inequality ||v; L®|| < C, we havefori =1,2and j =0, 1,2

179 w); L, |l < C. (3.8)
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For the nonlinear part, by (2.2), (2.3), (2.8) and (3.8) we have

IV )(F=FO)]la < IT(V)(F — F(0)); LL HA| + 8T (Vi) (F — F(0)); L |
< OllBa(fi(0)8 + £o(0)); L.,
< C||£}(v)va + f1(0)6s + f3(v)vs; L. |
< Cllva; L 1165 L3 | + CT@6,; LEX || + CT Y Jug; Lt |
< OTO® |lug; L, |16 P L2 |63 LEE |72
+ OTCO6,; LEX || + CTY?||vg; L 1.
Therefore we obtain the following estimate,

140 [l < Cllluollzz + llurllz2) + CTE (o= [laliB]ls + 161l + lv*]la)- (3.9)

Next we show the estimate for the heat equation (3.7). For the linear part of
(3.7), since € < 1/6 we have

IU)olls = NU(-)80; LE L3 || + 182U (-)60; L3, |

T, 7sTe
< Cllfollzz + Clolzz ( / 5‘(a+€)ds)
0

< 0(1+ 1) 6012 < Oz
For the nonlinear term of (3.7), since

utwofl(ua:) - (utgfl(u:z))z - utaxfl (uz) - uteumzf:ll.(ua:);

we can split the nonlinear term into the six parts as follows:

1) o822}y < (D) 00 £ 0))s LRI + [PV i fi ) LIS

f4e

+ I (U) (e £ () LF L | + | D) (w6 f1 (a))as L,

4
zte

+ | (w8 fr ()i LF L + [PV w1 (a))ass Lk
=L+ ho+ L+ g+ 131+ Isp.
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Using the Holder inequality and the Hardy-Littlewood-Sobolev inequality, we have

nas|| [ o uBuafi () Iy LE
(- — 5)i+i(1-a%)
< OT#3 A.T'Tl—‘llweu$¢f1(uz)|'les L5
< OT+|[uBs0 f1 (uz); LALL|
< OT||us; L lltoes L1116 L Lz,

where 7, q are any numbers such that ¢ > 1 and % + ;= Here fixing

q -_ i-::gz + 3(3+3€), by (2 8) we Obta.ln

9 __
2(4+3¢)"

Il g < C’T,+C(q E)”uhLTm“”umzaLTa,-”“9 LooL1”1—az(s)“9 L3+€Ho'2(s)‘
In the same way, for I > we have

I, < CT? 7|y LLLL,

4(4+-3¢

we have 7 = ==

where 7 and § > 1 satisfy é—{-% = Putting § = 1+ 2%

2(4-}—35)
and

16+3 ?

s Ly ™ L2]| < flus; L 162 LE L3
< llug; L I116:; LEE.
Therefore we have
by < CTT% |luy; L4165 L3
By these estimates, we immediately have

L)< “uteuzzfl(uz);Lflr,:“
< Cllus; Lo |l tiez; L 111165 LT |

< CTO®) |jug; Lt ltoe; L1165 L L[ O)|lg,; L3120,
and

I2 1> < “utozfl(u:E)' L%"z”
4+3e

$+E i
< o745 |juy; L4, N6z L3 LE||
< CT*5% |luy; L |16 L5



For I3, by the Holder inequality and (2.8) we obtain

m<|f (,—_%nuteﬁ(uz)n%ds

<C sup

= (f (t—s>-%ds) ( / [ s ); L des)*‘

< OT% |l fi (us); L5 LY
1_1 o
< CT*7%||ws; LF Lz 16; L7 Lo
$+e
< CT* 9P uy; LELZI||6; LF L1623 L1

where p € (2, g5;—6€)]
Finally, we calculate for the I35. By (2.4) we have,
L+e
Iy < C(1 + T)llweb fi(ua); L |l
< O(1+T)fus; L 116 L .

_18¢
For LT =% _norm of 4, using (2.7) we have

6 Las ¥ | < CTTK%T&)? 6; LR L7965 LI |79,
T

where p(e) = 2125,

Then combining these estimates we obtain the following estimate,

14681ls < Cllbollzy + CTEE(101lsllw*12 + 16llallv™ ). (3.10)
Therefore, combining (3.9) and (3.10),

1A, v™0)llx < Cllluollz, lualz2, [16]2+)
+CTO(|[v*la + [[v*[lall6lle + llo*[[Z]10]]2)
< C(lluollz2, lluallz2, 116}l 22)
+CTO(||(v%, v, 8)llx + (v, v, )% + | (v, v, O)[1%)-

(3.11)

Here by the mean value theorem and (3.8) that for i =1,2 and j =0,1

19 w) - @), L7) <

lv— 9| /01 FI sy + (1 — 8)B)ds; L”ll < Cl|lv —9; L7||-
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By using this, we obtain
IT(VEH(F1(0)8 = f1(0)6)+F2(v) = fo(@)}H]a <
1% (Jjo = a6l + lollal6 ~ Bl + [jo = 3l
and ,
[P (i se)0tke ~ fi@2e)0e) o < O (2118 B + 1w~ a1
Therefore we have
IA(*,v7,6) = A®*,57,6)[x < OT® (1+ |(v*,v7,0)llx + (v, 07, 0)I1%)
x I(w*,v7,6) = (5%,57,0)|x.
(3.12)
Hence it is sufficient to take A = 2C(]|uol g2, ||u1||z2, [|6]|z:) and T such that
CTCE(1+||(v*,v7,0)]lx +]|(v*,v™,8)|%) < 2 to obtain from (3.11) that A maps
X# into itself. (3.12) implies that under the same restrictions on A and 7', the
mapping A is a contraction on X#. The contraction mapping principle shows the
existence of a unique solution within the ball ||(vt,v™,8)||x < A. To prove the
uniqueness within the whole of the space, it is enough to take T sufficiently small.
Then the solution (v*,v™,8) € H* x H* x L with 7%(0) = 0 is obtained, and this
also means the existence of (v,0) € H! x L! with 9(0) = 0 because v = v+ 4+ v~.

Finally we shall verify that the unique existence of v € H! leads to that of

u € H?. We can expand v into the trigonometric series as follows:

v(z) = Zﬁ(k)ez"ik‘”.

k£0

Then if %(0) is obtained, u can be written as

_ i]\(k:) 2nikz -~

u= Z ikt + u(0).
k£0

Obviously the first term of the right hand side converges. The remaining problem
is how 4(0) should be determined. By (1.1),

u(0) = 0.
Therefore we have
u(0) = tu;(0) + ©p(0). (3.13)

which yields the desired result. '
It is also necessary to show u € H2. By the Poincaré inequality,

Jlw = @(0); Lz || < flv; LzI-
Then by (3.13), we have ||u; L2|| < C (0 < t < T). This means u € H?.



4 Some Remarks

In this section, we give two remarks.

4.1 Initial Boundary Value Problem

We can also consider the following initial boundary problem:

Usp + Uzzzz = (f1(Uz)0 + fo(uz))z, (t,z) € Rt x (0,1), (4.1)
et - 93::: - fl (uz)eumt, (4‘2)
U’(Oa "E) = 'U'O(x)’ ut(O,:E) = ul(z)’ 9(07‘73) = 90(33), (4'3)

u(t,0) = u(t, 1) = ugg(t,0) = ugg(t, 1) = 6,(t,0) = 6:(t,1) = 0.  (4.4)
For this problem we also obtain the following theorem.

Theorem 4.1 (Local existence and uniqueness). Assume that fi, f; satisfy
the condition (Al). Let anye € (0,1/6) be fized. Then for any (uo,us,6o) € H? X
L% x L with up(0) = uo(1) = 0, there ezists T = T(||uo||m2, ||uallL2, [|6o][zr) > 0
such that the problem (4.1)-(4.4) has a unique solution (u,8) on the time interval
[0, T}, satisfying

u € C([0,T]; H*(0,1)) n L*(0, T; W*%(0, 1)),
u € L®(0, T; L*(0,1)) N L*(0, T; L0, 1)),

8 € C([0,T]; L*(0, 1)),
8, € L3+(0,T; L3+5(0,1)).

This theorem can be proved in the same way as Theorem 1.1. Roughly speak-
ing, extending the solutions u and 8 of (4.1)-(4.4) as odd and even periodic func-
tions respectively, we regard the initial boundary value problem as the problem
with periodic boundary condition.

4.2 Global Existence Theorem

In order to regard the third term of the right hand side of (1.6) as L'-norm of 6,
we need the following proposition related to a sign property for the temperature
6. The proof is obtained by approximating the energy class solution by smooth
solutions.

Proposition 4.1 (Maximum principle). If p > 0 on T (or [0,1]) then the
solution 6 of (1.1)-(1.3) (or(4.1)-(4.4)) satisfies > 0 a.e. on T (or [0,1]) x[0,T].
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Combining this proposition with the condition (A2) and the energy conserva-
tion law (1.6), we obtain

e (8); L2, lluga(t); L2]] and [9(e); L2 SC for0<t<T.

Then the solution obtained by Theorems 1.1 and 4.1 can be extended globally in
time.
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