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RECENT PROGRESS ON THE NONLINEAR SCHRODINGER
EVOLUTION PROBLEM

J. COLLIANDER

This note outlines the talk given at the Kyoto meeting on harmonic analysis and
nonlinear PDEs in July 2003. We describe part of the joint work [2] with Michael
Christ and Terry Tao. The description below is somewhat informal and more precise
statements can be found in [2].

We consider the initial value problem
—ius + Agu = wlu|Plu
(NLSp) omod
(0, z) = ug(z) € H*(RY)
and ask:
Question: What is the minimal H* regularity for which local well-posedness holds?
Scaling invariance:
uy is a solution of NLSp if and only if u is a solution of NLSp where

up(t,z) = A"/ =Dy (t/X2,z/X), A > 0.

80— d 2
“u)‘(t)”H; =A% a"u(t)”ff’u Sc = 3~ ;—:T

Galilean invariance:
gyt is a solution of NLSp if and only if « is a solution of NLSp where

(gou)(t,z) = e“"%se"g'u(t,x —t), vE R

lgoull g ~ (1 + [0)°~* g, 59 =0.

Local Well-Posedness Theorem (Cazenave-Weissler):
NLSp is locally well-posed! in H? if s > max(sg, s.)-

Our work addresses the optimality of this restriction on the Sobolev index s.

Let B%(4) denote the ball {¢ € H* : ||¢ — || < R}. Let S denote the Schwartz
functions. :

1When s = s, the lifetime of local existence depends upon the profile of the initial data; in
the other cases the lifetime is determined by the H? norm of the data.
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Theorem 1. Let p > 1 be odd, d > 1, w = 1. If s < max(sy,s.) then for all
t > 0 there exits u;(0),u2(0) € B2N S such that for any 0 <d Ke< 1

u1(0) — u2(0) € B5(0),
u1(t) — ua(t) € H*\Bg,(0).
where u;(0) = w;(t) are solutions of NLSp for i =1,2.

Thus, the solution map Snzsp(t) which maps initial data ug to the solution u(t) is
not locally uniformly continuous on H* when s < max(sg, Sc).

e For the focusing case w = —1, this was established using soliton or blow-
up solutions in works by Birnir-Kenig-Ponce-Svanstedt-Vega, Kenig-Ponce-
Vega.

e For the defocusing w = +1, p = 3, d = 1 case, this was established in [1]
using modified scattering solutions found by Ozawa.

e The general case is obtained using approximation via small and zero dis-
persion versions of NLSp.

e We have also obtained similar results [2] for certain semilinear wave equa-
tions.

Theorem 2. Let p > 1 be odd, d > 1, w = £1. If0 < s < 8, or s < —% then for
any € > 0 there exists u(0) € S and there exists a t € (0,€) such that u(0) — u(t)
solves NLSp and

(0l e <&

u®lae > -

Thus, the solution map Snysp is not continuous at 0 for s in these regimes. The
situation when 0 < s < s, exploits a low to high frequency mass transfer. For
s < —%, a high to low transfer is used.

We briefly describe the construction of a parametrized family of solutions used to
prove Theorems 1 and 2.

¢ solves zNLSp if and only if u(t,z) = ¢(t, zv) solves NLSp where

{ —igy + 12 By¢ = w|[P'

(ZNLSP) ¢(0, a;) = ¢0(1‘) € HJ(Rd)

For small dispersion (v < 1 or » — 0), we expect that zNLSp solutions are approx-
imable by ODEp solutions

—idet = wld|P—L
(ODEp) { ige+ = w|pP"" ¢ )
#(0,7) = ¢o(z) € H*(R?).
The ODEp solution is given by '
O (t,y) = po(y)eHi®W)

which reveals an explicit phase behavior.
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Using the energy method, we prove that there are indeed solutions of zZNLSp which
may be approximated by solutions of ODEp on a time interval whose length goes
to infinity as v — 0. We return these zZNLSp solutions to the original setting and
apply Galilean and scaling symmetries to obtain a parametrized family of solutions
of NLSp. We then adapt the Birnir-Kenig-Ponce-Svanstedt-Vega, Kenig-Ponce-
Vega arguments to force phase decoherence of the ODEp solutions and use the
approximation result to transfer this decoherence to the NLSp solutions. This is
how we prove Theorem 1.

A direct calculation shows the explicit ODEp solutions have Hg norms which grow
with time, for j = 0,1,...,p—1. This reveals a low to high frequency mass transfer.
The ODEp solution emerging from initial data whose Fourier transform is zero near
the zero frequency may also be shown to excite frequencies near the zero frequency
thus revealing a high to low frequency mass transfer. The scaling invariance is used
to speed up these mass transfers to prove Theorem 2.
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