On weak dividing in n-simple theories

前園久智 (Hisatomo MAESONO) 早稲田大学メディアネットワークセンター (Media Network Center, Waseda University)

Weak dividing was originally defined by Shelah in [1]. After a long time, Dolich characterized that notion in simple context in [2]. Then Kim and Shi continued the investigation, in particular they proved that a theory T is stable if and only if weak dividing is symmetric in [3]. Recently, the class of simple theory was split into $\omega + 1$ subclasses by Kolesnikov in [4]. He used the notion of n-simplicity for $n \leq \omega$. I studied his paper and had some consideration about the relation with weak dividing. At first, we recall some definitions in [4].

For $n \geq 2$, let the symbol $\operatorname{Ind}(x; y_0, \dots, y_{n-1})$ denote the type expressing that y_0, \dots, y_{n-1} are indiscernible over x.

Definition 1 Fix $1 \le n \le k < \omega$. Take a formula $\varphi(x, y_0, \dots, y_{n-1})$ and a partial type p(x). Define $D_n[p, \varphi, k] \ge \alpha$ by induction on α .

(1) $D_n[p, \varphi, k] \geq 0$ if p is consistent.

(2) for α limit, $D_n[p, \varphi, k] \ge \alpha$ if $D_n[p, \varphi, k] \ge \beta$ for all $\beta < \alpha$;

(3) $D_n[p,\varphi,k] \ge \alpha+1$ if for every finite $r \subseteq p(x)$ there is a sequence $\{a_i | i < \omega\}$ such that for all $\bar{\imath} \in [\omega]^n$

 $D_n[r \cup \{\varphi(x, \bar{a}_{\overline{\imath}})\} \cup \operatorname{Ind}(x; \bar{a}_{\overline{\imath}}), \varphi, k] \ge \alpha$

and the set $\{\varphi(x, \bar{a}_{\overline{i}})|\overline{i} \in [\omega]^n\}$ is $[k]^n$ -contradictory.

The expressions $D_n[p, \varphi, k] = \alpha$, $D_n[p, \varphi, k] = -1$, and $D_n[p, \varphi, k] = \infty$ are defined as usual.

Definition 2 Let $\alpha \leq \omega$. We say that a complete theory T is α – simple if for all $n < \alpha$, for all $\varphi(x, y_0, \ldots, y_n)$ and k > n+1 the rank $D_{n+1}[x = x, \varphi, k]$ is bounded.(i.e. is less than ∞ .)

Definition 3 (1) A formula $\varphi(x, y_0, \ldots, y_{n-1})$, a set of sequences $\{I_{\eta} | \eta \in ([\omega]^n)^{<\omega}\}$, and $k < \omega$ witness the n-tree property if for every $\eta \in ([\omega]^n)^{\omega}$, the type $\{\varphi(x, \bar{a}_{\eta[l]}^{\eta[l]}) | l < \omega\}$ is realized by \bar{b}_{η} such that sequences $\bar{a}_{\eta[l]}^{\eta[l]}$ are

indiscernible over b_{η} for each $l < \omega$ and for every $\eta \in ([\omega]^n)^{<\omega}$ the set $\{\varphi(x, \bar{a}_{\overline{\imath}}^{\eta})|_{\overline{\imath}} \in [\omega]^n\}$ is $[k]^n$ -contradictory where $\bar{a}_{\eta[l]}^{\eta[l]} := \{a_{i_0}^{\eta[l]}, \dots, a_{i_{n-1}}^{\eta[l]}\}$ for $\eta[l] = i_0 \cdots i_{n-1}$.

(2) A theory T has the $n-tree\ property$ if there exist a formula, a set of parameters, and a number k witnessing the n-tree property.

The next proposition is proved by the definitions.

Proposition 4 ([4]) A theory T is α – simple if and only if it does not have an (n+1) – tree property for any $n < \alpha$.

Kolesnikov defined some notion of dividing for n-simple context.

Definition 5 For $n < \omega$, we say that a formula $\varphi(x, a_0, \ldots, a_{n-1})$ n - divides over A if there is an indiscernible sequence $\{a_i | i < \omega\}$ over A and $b \models \varphi(x, a_0, \ldots, a_{n-1})$ such that $\{a_0, \ldots, a_{n-1}\}$ are indiscernible over b and the set $\{\varphi(x, \bar{a}_{\bar{\imath}}) | \bar{\imath} \in [\omega]^n\}$ is $[k]^n$ —contradictory for some k.

Remark 6 It is clear that for n = 1 the definition is the same as that of dividing.

We recall the definition of weak dividing to make sure.

Definition 7 We say that $p(x) = \operatorname{tp}(a/B)$ weakly divides over $A \subseteq B$ if there is a formula $\psi(x_1, \ldots, x_n)$ over A such that $[p]^{\psi} := p(x_1) \cup \ldots \cup p(x_n) \cup \{\psi(x_1, \ldots, x_n)\}$ is inconsistent while $[q]^{\psi}$ is consistent where $q(x) = \operatorname{tp}(a/A)$.

The next facts are easily checked.

Fact 8 Let $A \subset B$ and $\varphi(x_0, \ldots, x_{n-1}, b)$ be a formula over B. Suppose that there is an indiscernible sequence $\{a_i|i<\omega\}$ over A satisfying; $\models \varphi(a_0, \ldots, a_{n-1}, b)$ and $\{a_i|i< n\}$ are indiscernible over b. If the type $\{\varphi(x_0, \ldots, x_{n-1}, b)\} \cup Ind(B; \{x_i|i<\omega\})$ is inconsistent, then there is a formula $\psi(a_0, \ldots, a_{n-1}, z)$ such that $\psi(a_0, \ldots, a_{n-1}, z)$ n-divides over A.

Fact 9 Let $A \subset B$ and $p(x) = \operatorname{tp}(a/B)$. Suppose that there is a formula $\varphi(x_0, \ldots, x_{n-1})$ over A and an infinite indiscernible sequence $\{a_i | i < \omega\}$ over A with $\operatorname{tp}(a_0/A) = p \lceil A$ such that

 $\models \varphi(a_0,\ldots,a_{n-1})$ and

the type " $\{\varphi(x_0,\ldots,x_{n-1})\} \cup Ind(A;\{x_i:i<\omega\}) \cup \bigcup_{i<\omega} p(x_i)$ " is inconsistent.

Then p weakly divides over A.

Moreover if T is simple, then p divides over A.

The case is problematic when realizations of the formula can not be extended to an infinite indiscernible sequence over the original parameters. I tried to use the facts above for the argument of weak dividing in n-simple theories, but I have no result to show here.

We can define an analogy of weak dividing for n-dividing.

Definition 10 Let $A \subset B$. And let $p(x_0, \ldots, x_{n-1})$ be a complete type over B such that $p(x_0, \ldots, x_{n-1}) \vdash Ind(A; x_0, \ldots, x_{n-1})$. We say that $p(x_0, \ldots, x_{n-1})$ " weakly n-divides over A" if there are $k < \omega$ and a formula $\psi(x_0, \ldots, x_{k-1})$ over A such that $\{\psi(x_0, \ldots, x_{k-1})\} \cup \bigcup_{\overline{\imath} \in [k]^n} p(\overline{x}_{\overline{\imath}}) \upharpoonright A$ is consistent while $\{\psi(x_0, \ldots, x_{k-1})\} \cup \bigcup_{\overline{\imath} \in [k]^n} p(\overline{x}_{\overline{\imath}})$ is inconsistent where $p(\overline{x}_{\overline{\imath}}) = p(x_{i_0}, \ldots, x_{i_{n-1}})$ for $i_0 < i_1 < \cdots < i_{n-1} < k$ and k > n.

Remark 11 When n = 1, "weak 1-dividing" is the same as "weak dividing".

Notation

¿From now, we denote $[p]^{\psi}$ for the type $\{\psi(x_0,\ldots,x_{k-1})\}\cup\bigcup_{\overline{\pmb{\imath}}\in[k]^n}p(\bar{x}_{\overline{\pmb{\imath}}}).$

Fact 12 Let $A \subset B \subset C$.

- (1) If tp(a/C) does not weakly n-divide over B, then tp(a/B) does not weakly n-divide over A.
- (2) If tp(a/C) does not weakly n-divide over B and tp(a/B) does not weakly n-divide over A, then tp(a/C) does not weakly n-divide over A.

Fact 13 Weak n-dividing has the local character.

Fact 14 If $\operatorname{tp}(b/Aa_0 \ldots a_{n-1})$ n-divides over A, then $\operatorname{tp}(a_0 \ldots a_{n-1}/Ab)$ weakly n-divides over A.

Remark 15 Naturally, we define weak n-dividing for complete types as follows:

a complete type p weakly n-divides over A if its implies a formula which weakly n-divides over A.

Lemma 16 Let $A \subset B$. And let $p(x_0, \ldots, x_{n-1})$ be a complete type over B such that $p(x_0, \ldots, x_{n-1}) \vdash Ind(A; x_0, \ldots, x_{n-1})$.

Then the following are equivalent;

- (1) p does not weakly n-divide over A.
- (2) For any set $C := \{a_i | i \in I\}$ satisfying that for any n-sequence $a_{i_0}, \ldots, a_{i_{n-1}} \in C$ with $i_0 < i_1 < \ldots < i_{n-1}, \models p \lceil A(a_{i_0}, \ldots, a_{i_{n-1}}), \text{ there is } B' \text{ such that } \operatorname{tp}(B/A) = \operatorname{tp}(B'/A) \text{ and for any } a_{i_0}, \ldots, a_{i_{n-1}} \in C \text{ with } i_0 < i_1 < \ldots < i_{n-1}, \operatorname{tp}(B'/a_{i_0} \ldots a_{i_{n-1}}A) = \operatorname{tp}(B/a_0 \ldots a_{n-1}A).$

The further characterization needs to investigate the relation between n-simple theories and n-dividing more.

References

- [1] S.Shelah, "Simple unstable theories", Ann.of Math.Logic 19 (1980) P177-203
- [2] A.Dolich, "Weak dividing, chan conditions and simplicity", preprint (2002)
- [3] B.Kim and N.Shi, "A note on weak dividing", preprint (2002)
- [4] A.Kolesnikov, "n-simple theories", preprint (2003)