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Extendability of symplectic torus actions
with isolated fixed points

RERKRFREGRREFEN EMHEE (Shunji TAKUMA)
Department of Mathematics, Osaka Univesity

1 Abstract

I itemise the abstract of my talk in the following.

Problem : When does or doesn’t a given effective and symplectic torus
group action on a compact connected symplectic manifold with iso-
lated fixed points extend to an effective and symplectic action of a
higher dimensional torus group ?

Method : Translating geometrical objects into graphical objects (due to
recent works of V. Guillemin and C. Zara [5, 6, 7, 8]) and considering
the above problem on the graphical level.

Result : I obtained a necessary condition for the torus action to extend.
That is, if the torus action extends, then a certain obstruction must
vanish.

2 From geometric data to graphical data

Here I introduce the graphical object obtained from geometric data under
suitable assumptions, which is introduced and studied by V.Guillemin and
C.Zara.

Consider
(M2 ,J): a cpt.conn.symp.mfd.with a compatible alm.cpx.str.

T™: an n-dim.torus acting on M effectively and preserving w and J.

Assume
(1) MT discrete, and
(2) isotropy weights at Vp € M7 are pairwise linearly independent.



With this assumption, we obtain the following graphical objects:

(T, 8, a):Goreskey-Kottwitz-MacPherson graph.
(“GKM graph” or “GKM 1-skeleton”)
which consists of three data
I' : a d-valent graph
6 : a connection on the graph
a : an axial function

Let’s describe these three data in detail in the following.
The graph:
I'= (Vr, Er)
Vr = M7 (the fixed point set),
embedded CP*’s fixed by }

codimension one subtori
consisting of pairs (p, X) with p € 7.

Er C Vi %

Notation:
e=(p,Z) = (p,9) (£7 = {p,q})
€= (qa 2) = (q,p)
E, = {e € Erli(e) = p}

The connection:
6 = a collection of bijections {6.}ccpy:
O : Ep = Ey (e = (p,q))
satisfying
(1) fe(e) =€, and (2) b = (oe)—l

The azial function:
a = a map from Er to t* satisfying
(1) a(e) = —ale), for Ve € Er
(2) a(6.(f)) = a(f) + c(f,e)ale), for Vf € Ey.), Ve € Er.

Moreover, I give the following additional assumption which Guillemin and

Zara did not assume in[].

The effectiveness condition:

13



14

For any p, let E, = {f1,..., fa}. Then
a(fﬁ) ;
ged : | 1<i1<--<in<dp=1
a(fi,)

3 Translation of the Extendability

From now on we assume k = d —n > 1 (this number is called the com-
plexity of the torus action).

The T-action extends to a T' x S*-action.
| implies
The axial function « lifts to the axial function (a, m) commuting the
following diagram.

t*

x R

(aym l
pr1

¢

o

Ey

Y

In this way we obtain an extra function m. Since I will discuss whether
the extra function exists or not, I abstract the properties of the fuction and .
redefine it as follows.

Definition 1 We call the map m : Er — Z C R satisfying the following
conditions an extra weight:
(1) m(8.(f)) = m(f) + c(f,e)m(e), for Vf € Ey.), Ve € Er, and
(2) (a, m) satisfies the effectiveness condition.

4 Construction of the Obstruction

Let G, be the d-dimemsional torus acting standardly on T, M = C9, and
let g, be its Lie algebra.

Note that Map(E,,R) = g,, Map(E,,Z) = L(g,), where L(g,) is the
lattice of gp.

Parallel transport along an edge



For an edge e = (p,q) we define a map e : L(g,) = L(g,), m — e(m) by
the equation

e(m)(ge(f)) = m(f) + (£, e)m(e)
for Vf € E,.

A loop in the graph

We call a loop a sequence of edges e; - -- e, with i(e;) = t(e,) = p and
t(ej) =i(ej+1) (=1,...,r —1). (denoted also by =)
A loop is called trivial if it is written in the form e; ---€,&, - - - &;.
Let L(T',p) the set of all loops based at p. L(T',p) has a group structure if
we quotient it by trivial loops. |

Parallel transport along a loop
For a loop vy =e€; ---e, € L(T', p), we define v : L(g,) = L(g,) by

v(m) = e(--- (er(m)) - --).
This leads us to the L(T', p)-action on L(g,).

.......

/L(sp,_l)

L(gp) /
\ ’ L(gp,)

L(gp,)

The obstruction
The axial function at p, a, € Map(E,, t*), is considered as a linear map
L3 L(gy). Then we have the following short exact sequence

00— L(t) ._._fﬁ_> L(gp) ks

L(gp)/Imoy, — 0.

Here we have the following important lemma.

Lemma 1 For A € L(g,)/Ima, and m € (n,)"1(A),

1.(ap, m) i3 effective <> A is primitive.

2. For a loop vy based at p, y(m) —m depends only on A, does not depend
on the choice of m.
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Definition 2 We define a map eo(p, A) : L(T',p) — L(g,) by
eo(p, A)(7) =v(m) —m
for m € (mp)71(4A).
From above we have our result:

Theorem 1 There ezists an eztra weight for o if and only if there exists
a primitive A such that eo(p,A) = 0.

5 Some Properties

1. (Calculation rule)
For two loops v and & € L(T, p),

eo(p, A)(76) = eo(p, A)(7) + eo(p,7(A))(4) (1)

Note that £(T',p) acts also on the quotient space L(g,)/Ima,.

In the case that the complexity is one,
2. The L(T, p)-action on L(g,)/Ima, = Z is very easy to understand. This
action is given by the homomorphism

L(T,p) = Isom(L(gp)/Imay,) = Z,
v —  sgn(y),

where

sgn(y) = sgn(6,) x (-1)1"\. (2)

0. : the holonomy map E, — E, along v w.r.t the connection 6.
|7l : the number of the edges of which + consists. The length of ~.

3. (Calculation rule)

eo(p, A)(76) = eo(p, A)(7) + sgn(7)eo(p, A)(9) ®3)

6 Example

1. 3-flag variety SL(3;C)/B with standard T-action

The graph T is visualized as follows.
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Let the base vertex p = A and let E, = {fi = AB, fo = AF, fs = AD}.
All loops are of the length even. The holonomy along each loop is trivial.
Thus sgn(v) = 1 for all loops «y. Hence the action of £(T', p) on L(g),/Im(a;y)
is trivial.
z1 = (1,0), z2 = (—1,1) and zy + z2 = (0, 1) are weights at p.
L(T, p) is generated by four loops, e.g., ABCDA, ADEFA, ABCFA, ABEFA.
eo(p, 1)(y) for these generators are written in the following table in which
the columns express the values of eo(p, 1)(7).

ABCDA | ADEFA | ABCFA | ABEFA
h -1 1 -2 -1
fa -1 1 1 2
f3 -2 2 -1 1

By calculation rule (1) or (3), for example, we have

¢0(ABCDEFA) = eo(ABCDA-ADEFA)
= ¢0(ABCDA) + ¢o(ADEFA)
= Y-1,-1,-2)+%(1,1,2)
= (0,0,0).

In this case eo is an additive function.
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