TWISTED SECOND COHOMOLOGY GROUP OF A FINITELY PRESENTED GROUP

東京大学大学院数理科学研究科 佐藤隆夫 (TAKAO SATOH) ¹
Graduate school of Mathematical Sciences,
University of Tokyo

Abstract: For a finitely presented group G and G-module M, using combinatorial group theory, a new calculation of a twisted second cohomology group $H^2(G,M)$ is introduced. We apply our method to some well-known groups and calculate their second cohomology groups.

Keywords: twisted second cohomology group

1. Introduction

For a finitely presented group $G = \langle X | S \rangle$, let F be a free group on X and R the normal closure of S in F. If we regard \mathbb{Z} as a trivial G-module, then we have the second homology group

$$H_2(G, \mathbf{Z}) \simeq (R \cap [F, F])/[F, R]$$

of G by Hopf's formula. (See [2].) On the other hand, if G acts on M non-trivially, then a computation of twisted second (co)homology group $H^2(G,M)$ is much more complicated. In this paper, for a finitely presented group G and a G-module M, we introduce one of methods of a calculation of the second cohomology group $H^2(G,M)$ using combinatorial group theory. Furthermore, we apply our method to some well-known groups, for example, the dihedral group D_n , the special linear group $SL(2, \mathbb{Z})$ and the braid group B_3 of index three.

In this paper, we use the following notation. Let G be a group and M a G-module. We denote the group ring of G over \mathbb{Z} by $\mathbb{Z}[G]$. For any $\alpha \in \mathbb{Z}[G]$, we put

$$M^{\alpha} = \{ m \in M \mid \alpha \cdot m = m \},$$

$$\alpha M = \{ \alpha \cdot m \in M \mid m \in M \},$$

where $\alpha \cdot m$ denotes the action of α on m.

¹E-mail addres: takao@ms.u-tokyo.ac.jp

2. The Reidemeister-Schreier Method

In this section, we review the Reidemeister-Schreier method. This is one of methods to obtain a presentation for a subgroup H of a given presented group $G = \langle X \mid S \rangle$. We use the Reidemeister-Schreier method to calculate the second cohomology groups in later sections.

Let F be the free group on X and K a subgroup of F. A subset $T \subset F$ is called Schreier transversal for K in F if T satisfies the following properties

- (1) T is a right coset representative system for K in F,
- (2) $1 \in T$, where 1 is the identity element of F,
- (3) (Schreier property) T contains all initial segments of all elements of T, that is,

$$t = x_{\mu_1}^{e_1} x_{\mu_2}^{e_2} \cdots x_{\mu_n}^{e_n} \in T \Rightarrow x_{\mu_1}^{e_1} x_{\mu_2}^{e_2} \cdots x_{\mu_{n-1}}^{e_{n-1}} \in T$$

where $t = x_{\mu_1}^{e_1} x_{\mu_2}^{e_2} \cdots x_{\mu_n}^{e_n}$ is a reduced word and $e_i \in \{\pm 1\}$, $(1 \le i \le n)$.

Let H be a subgroup of G and H' the inverse image of H under the natural homomorphism $\varphi: F \to G$. We denote a Schreier transversal for H' in F by T. For any $w \in F$, we define $\overline{w} \in T$ by the rule $H'w = H'\overline{w}$. A map

$$\overline{}:F\to T\quad w\mapsto \overline{w}$$

is called a right coset representative function for F modulo H'. For any $t \in T$ and $x \in X$ we put

$$(t,x) := tx(\overline{tx})^{-1}, \quad (t,x^{-1}) := (\overline{tx^{-1}},x)^{-1} \in H'.$$

Let $X^{-1} = \{x^{-1} \mid x \in X\}$. For any word $w = y_1 y_2 \cdots y_n \in F$, $y_i \in X \cup X^{-1}$, we put

$$\tau(w) := (1, y_1)(\overline{y_1}, y_2) \cdots (\overline{y_1 \cdots y_{i-1}}, y_i) \cdots (\overline{y_1 \cdots y_{n-1}}, y_n).$$

The map τ is called the Reidemeister-Schreier rewriting process for H'.

Proposition 2.1. With the above notation, if we put

$$X' = \{(t, x) \in H' \mid t \in T, x \in X (t, x) \neq 1\},\$$

$$S' = \{\tau(tst^{-1}) \in H' \mid t \in T, s \in S\},\$$

then we have

- (1) H' is the free group on X',
- (2) $\ker(\varphi|_{H'})$ is the normal closure of S' in H'.

Hence, H has a presentation $H = \langle X' | S' \rangle$.

This proposition is well-known fact. For details, see [4].

3. A CALCULATION OF THE SECOND COHOMOLOGY OF A FINITELY PRESENTED GROUP

Let G be a group and M a G-module. We assume that G has a finite presentation $G = \langle X \mid S \rangle$. Let F be the free group on X, R the normal closure of S in F and T a Schreier transversal for R in F. From the spectral sequence of the group extension

$$1 \to R \to F \to G \to 1$$
.

we have an exact sequence

$$0 \to H^1(G,M) \to H^1(F,M) \xrightarrow{\operatorname{res}} H^1(R,M)^G \to H^2(G,M) \to H^2(F,M).$$

Since F is the free group, $H^2(F, M) = 0$. Hence, to calculate $H^2(G, M)$, it suffices to calculate the group $H^1(R, M)^G$.

Now, R is a free group. If we can obtain a free basis X' of R, then we can determine a basis of $H^1(R,M)$ as a free abelian group. Furthermore, we see that

$$H^1(R,M)^G$$

$$=\{f\in H^1(R,M)\,|\,f(\sigma^{-1}x'\sigma)=f(x'),\ \forall\sigma\in X,\ \forall x'\in X'\}.$$

In this paper, to obtain a free basis X' of R, we use the Reidemeister-Schreier method. Then, considering the restriction map res: $H^1(F, M) \to H^1(R, M)^G$, we obtain $H^2(G, M)$.

In this method, it is important to construct a Schreier transversal for R in F. The difficulty of the construction of a Schreier transversal depends on not only a given group G but also a presentation for the group G. Hence it is necessary to find a suitable presentation for G.

4. The cyclic group C_n

It is well-known that the (co)homology groups of the cyclic group are completely determined. We, however, dare to apply our method in this case. It is the best way to use a simple example to understand our method. Let C_n be a cyclic group of degree $n \geq 2$. The group C_n has a finite presentation

$$C_n = \langle x \mid x^n = 1 \rangle.$$

Let F be the free group on $\{x\}$ and R the normal closure of $\{x^n\}$ in F.

Lemma 4.1. The group R is a free group with basis $\{x^n\}$.

Proof. Since F is an abelian group, it is clear that $\{x^n\}$ is a free basis of R. However, to understand our method, we apply the Reidemeister-Schreier method to this case.

First, we see that $T = \{1, x, \dots, x^{n-1}\}$ is a Schreier transversal for R in F. Hence, a free basis

$$X^* = \{(t,x) \mid t \in T, \ x \in X, \ (t,x) \neq 1\}$$

of R is calculated as follows:

• For
$$t = x^i$$
, $(0 \le i \le n - 2)$,

$$(t, x) = tx(\overline{tx})^{-1} = x^{i+1}(\overline{x^{i+1}})^{-1} = 1.$$

 $\bullet \text{ For } t = x^{n-1},$

$$(t,x)=x^n(\overline{x^n})^{-1}=x^n.$$

Hence we obtain $X^* = \{x^n\}$. \square

Lemma 4.2. Let M be C_n -module. Then $H^1(R,M)^{C_n} \simeq M^{C_n}$.

Proof. Since R acts on M trivially and R is a free group with basis $\{x^n\}$, we obtain an isomorphism

$$\rho: H^1(R,M) \to M$$

defined by $\rho(f) \mapsto f(x^n)$.

Now, for any $y = x^i \in C_n$, and $f \in H^1(R, M)$, the action of y on f is given by

$$(y \cdot f)(x^n) = yf(yx^ny^{-1})$$
$$= yf(x^ix^nx^{-i})$$
$$= yf(x^n).$$

This shows that ρ is a C_n -isomorphism. Hence we have $H^1(R,M)^{C_n} \simeq M^{C_n}$.

Proposition 4.1. For any C_n -module M, we have

$$H^2(C_n, M) \simeq M^{C_n}/(1 + x + \cdots + x^{n-1})M$$

Proof. It suffices to show that the image of

$$\psi := \rho \circ \operatorname{res} : H^1(F, M) \to M^{C_n}$$

is $(1 + x + \cdots + x^{n-1})M$. For any $[f] \in H^1(F, M)$, we have

$$\psi([f]) = f(x^n)$$

= $(1 + x + \dots + x^{n-1})f(x)$

where [f] denotes the equivalence class of a crossed homomorphism f. This shows $\text{Im}(\psi) = (1 + x + \cdots + x^{n-1})M$. \square

We also obtain the following results. For details, see [6].

5. The dihedral group D_n

For any $n \geq 1$, let D_n be the dihedral group of order 2n. The group D_n has a finite presentation

$$D_n = \langle \sigma, \tau | \sigma^n = \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle.$$

Let F be the free group on $\{\sigma, \tau\}$ and R the normal closure of $\{\sigma^n, \tau^2, \tau\sigma\tau\sigma\}$ in F.

Lemma 5.1. The group R is a free group with basis

$$\left\{x,\,y_k,\,z_k\,\middle|\,0\le k\le n-1\right\}$$

where

$$x = \sigma^{n},$$

$$y_{0} = \tau \sigma \tau^{-1} \sigma^{-(n-1)},$$

$$y_{k} = \sigma^{k} \tau \sigma \tau^{-1} \sigma^{-(k-1)}, \quad (1 \le k \le n-1),$$

$$z_{k} = \sigma^{k} \tau^{2} \sigma^{-k} \quad (0 \le k \le n-1).$$

Proof. It is easily seen that

$$T = \left\{1, \sigma, \dots, \sigma^{n-1}, \tau, \sigma\tau, \dots, \sigma^{n-1}\tau\right\}$$

is a Schreier transversal for R in F. Using the Reidemeister-Schreier method, we show this lemma. \square

Lemma 5.2. Let M be any D_n -module. Then we have

$$H^1(R,M)^{D_n} \simeq L$$

where

$$L = \Big\{ (a,b,c) \in M^{\sigma} \oplus M^{\sigma} \oplus M^{\tau} \ \Big| \ nb = (\tau - (n-1))a, \ (\tau - 1)a + (\tau - 1)b + (\sigma - 1)c = 0 \Big\}.$$

Proposition 5.1. For any D_n -module M, we have

$$H^2(D_n,M)\simeq L/K$$

where

$$K = \left\{ \left((1 + \sigma + \dots + \sigma^{n-1}) s, \right. \right.$$
$$\left. (1 - \sigma^{n-1}) t + \left(\tau - (1 + \sigma + \dots + \sigma^{n-2}) \right) s, \right. \left. (1 + \tau) t \right) \in L \mid s, t \in M \right\}.$$

6. The group
$$PSL(2, \mathbf{Z})$$

Let $PSL(2, \mathbb{Z})$ be the projective special linear group over \mathbb{Z} . The group $PSL(2, \mathbb{Z})$ has a finite presentation

$$PSL(2, \mathbf{Z}) = \langle \sigma, \tau | \sigma^3 = 1, \tau^2 = 1 \rangle.$$

Let F be the free group on $\{\sigma, \tau\}$ and R the normal closure of $\{\sigma^3, \tau^2\}$ in F. To calculate a Schreier transversal for R in F, we prepare the following notations. For $m \geq 1$, $e_i \in \{1, 2\}$ $(1 \leq i \leq m)$ and $k \in \{0, 1\}$, put

$$\alpha_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \sigma^{e_2} \tau \cdots \tau \sigma^{e_m},$$

$$\beta_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \sigma^{e_2} \tau \cdots \tau \sigma^{e_m} \tau.$$

Lemma 6.1. Let

$$T_1 = \Big\{ lpha_k(e_1, \ldots, e_m), \, eta_k(e_1, \ldots, e_m) \, \Big| \, k \in \{0, 1\}, \, m \geq 1, \, e_i = 1, 2 \Big\},$$

and $T_2 = \{1, \tau\}$. Then $T = T_1 \cup T_2$ is a Schreier transversal for R in F.

For $m \ge 1$, $e_i \in \{1, 2\}$ $(1 \le i \le m)$ and $k \in \{0, 1\}$, put

$$v= au^2$$

$$w_k = \tau^k \sigma^3 \tau^{-k}$$

$$x_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau^2 \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-k},$$

$$y_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau \sigma^3 \tau^{-1} \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-k}.$$

Lemma 6.2. The group R is a free group with basis

$$\{v, w_k, x_k(e_1, \ldots, e_m), y_k(e_1, \ldots, e_m) \mid k \in \{0, 1\}, m \ge 1, e_i = 1, 2\}.$$

Lemma 6.3. Let M be any $PSL(2, \mathbb{Z})$ -module. Then

$$H^1(R,M)^{PSL(2,\mathbf{Z})} \simeq M^{\tau} \oplus M^{\sigma}.$$

Proposition 6.1. For any $PSL(2, \mathbb{Z})$ -module M,

$$H^2(PSL(2, \mathbf{Z}), M) \simeq \left(M^{\tau} / (1 + \tau)M\right) \oplus \left(M^{\sigma} / (1 + \sigma + \sigma^2)M\right).$$

7. The group
$$SL(2, \mathbf{Z})$$

Let $SL(2, \mathbb{Z})$ be the special linear group over \mathbb{Z} . The group $SL(2, \mathbb{Z})$ has a finite presentation

$$SL(2, \mathbf{Z}) = \langle \sigma, \tau | \sigma^3 = \tau^2, \tau^4 = 1 \rangle.$$

The elements σ and τ correspond to

$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

respectively. Let F be the free group on $\{\sigma,\tau\}$ and R the normal closure of $\{\sigma^3\tau^{-2},\tau^4\}$ in F. To calculate a Schreier transversal for R, we prepare the following notations. For $m\geq 1,\,e_i\in\{1,2\}$ $(1\leq i\leq m)$ and k $(0\leq k\leq 3)$, put

$$\alpha_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \sigma^{e_2} \tau \cdots \tau \sigma^{e_m}$$
$$\beta_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \sigma^{e_2} \tau \cdots \tau \sigma^{e_m} \tau$$
$$\gamma_k = \tau^k.$$

Lemma 7.1. Let

$$T = \bigcup_{k \in \mathbb{Z}} \left\{ \alpha_k(e_1, \ldots, e_m), \, \beta_k(e_1, \ldots, e_m), \, \gamma_k \middle| m \geq 1, \, e_i = 1, 2 \right\}.$$

Then T is a Schreier transversal for R in F.

For
$$m \geq 1$$
, $e_i \in \{1,2\}$ $(1 \leq i \leq m)$ and k $(0 \leq k \leq 3)$, put
$$v = \tau^4,$$

$$w_0 = \sigma^3 \tau^{-2},$$

$$w_1 = \tau \sigma^3 \tau^{-3},$$

$$w_2 = \tau^2 \sigma^3,$$

$$w_3 = \tau^3 \sigma^3 \tau^{-1},$$

$$x_0(e_1, \dots, e_m) = \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau^2 \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-2},$$

$$x_1(e_1, \dots, e_m) = \tau \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau^2 \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-3},$$

$$x_2(e_1, \dots, e_m) = \tau^2 \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau^2 \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1},$$

$$x_3(e_1, \dots, e_m) = \tau^3 \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau^2 \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-1},$$

$$y_0(e_1, \dots, e_m) = \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau^3 \tau^{-1} \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-2},$$

$$y_1(e_1, \dots, e_m) = \tau \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau \sigma^3 \tau^{-1} \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-3},$$

$$y_2(e_1, \dots, e_m) = \tau^2 \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau \sigma^3 \tau^{-1} \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1},$$

$$y_3(e_1, \dots, e_m) = \tau^3 \sigma^{e_1} \tau \cdots \tau \sigma^{e_m} \tau \sigma^3 \tau^{-1} \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-1}.$$

Lemma 7.2. The group R is a free group with basis

$$\bigcup_{0 < k < 3} \Big\{ v, \ x_k(e_1, \dots, e_m), \ y_k(e_1, \dots, e_m), \ z_k \Big| m \ge 1, \ e_i = 1, 2 \Big\}.$$

Lemma 7.3. Let M be any $SL(2, \mathbb{Z})$ -module. Then

$$H^1(R,M)^{SL(2,\mathbf{Z})} \simeq N$$

where

$$N \simeq \left\{ (a,d) \in M^{\tau} \oplus M \,\middle|\, (1-\sigma)a = -(1-\sigma)(1+\sigma^3)d \right\}.$$

Proposition 7.1. For any $SL(2, \mathbb{Z})$ -module M, we have

$$H^2(SL(2, \mathbf{Z}), M) \simeq N/L,$$

where

$$L = \left\{ \left((1 + \tau + \tau^2 + \tau^3)t, (1 + \sigma + \sigma^2)s - (1 + \tau)t \right) \, \middle| \, s, t \in M \right\}.$$

8. The braid group B_3 of index three

Let B_3 be the braid group of index three. B_3 has a finite presentation

$$B_3 = \langle \sigma, \tau | \sigma^3 = \tau^2 \rangle.$$

Let F be the free group on $\{\sigma, \tau\}$ and R the normal closure of $\{\sigma^3 \tau^{-2}\}$ in F. To calculate a Schreier transversal for R, we prepare the following notations.

For
$$m \geq 1$$
, $e_i \in \{1, 2\}$ $(1 \leq i \leq m)$ and $k \in \mathbf{Z}$, put
$$\alpha_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \sigma^{e_2} \tau \cdots \tau \sigma^{e_m}$$
$$\beta_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \sigma^{e_2} \tau \cdots \tau \sigma^{e_m} \tau$$
$$\gamma_k = \tau^k.$$

Lemma 8.1. Let

$$T = \bigcup_{k \in \mathbf{Z}} \left\{ \alpha_k(e_1, \ldots, e_m), \, \beta_k(e_1, \ldots, e_m), \, \gamma_k \middle| m \geq 1, \, e_i = 1, 2 \right\}.$$

Then T is a Schreier transversal for R in F.

For
$$m \geq 1$$
, $e_i \in \{1, 2\}$ $(1 \leq i \leq m)$ and $k \in \mathbb{Z}$, put $x_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \cdots \tau^{e_m} \tau^2 \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-(k+2)},$ $y_k(e_1, \dots, e_m) = \tau^k \sigma^{e_1} \tau \cdots \tau^{e_m} \tau^3 \tau^{-1} \sigma^{-e_m} \tau^{-1} \cdots \tau^{-1} \sigma^{-e_1} \tau^{-(k+2)},$ $z_k = \tau^k \sigma^3 \tau^{-(k+2)}.$

Lemma 8.2. The group R is a free group with basis

$$\bigcup_{k\in\mathbb{Z}} \Big\{ x_k(e_1,\ldots,e_m), \ y_k(e_1,\ldots,e_m), \ z_k \ \Big| \ m\geq 1, \ e_i=1,2 \Big\}.$$

Lemma 8.3. Let M be any B_3 -module. Then

$$H^1(R,M)^{B_3}\simeq M.$$

Proposition 8.1. For any B_3 -module M, we have

$$H^2(B_3,M)\simeq M/(1+\sigma+\sigma^2)M+(1+\tau)M.$$

9. ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to Professor Nariya Kawazumi and Professor Shigeyuki Morita for several discussions and warm encouragements.

REFERENCES

- [1] J. S. Birman; Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, Princeton, 1974.
- [2] K. S. Brown; Cohomology of groups, Graduate Texts in Math. 129 Springer Verlag, 1982.
- [3] D. L. Johnson; Presentations of Groups, London Math. Soc. Student text 15, Cambridge university press.
- [4] R. C. Lyndon and P. E. Schupp; Combinatorial Group Theory, Springer Verlag, 1977.
- [5] W. Magnus; A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience Publ., New York, 1966.
- [6] T. Satoh; Twisted second cohomology group of a finitely presented group, master's thesis, University of Tokyo, 2004.

Takao Satoh

Graduate School of
Mathematical Sciences,
The University of Tokyo,
3-8-1 Komaba, Meguro-ku,
Tokyo, 153-8914, Japan

E-email: takao@ms.u-tokyo.ac.jp

u,

o.ac.jp