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On the Singularities of Solutions of Nonlinear
Partial Dif ferential Equations

in the Complex Domain

Hidetoshi TAHARA (田原秀敏)
Department of Mathematics, Sophia University (上智大 ( $|$ 理工)

Let us consider the following nonlinear partial differential equation

(E) $\frac{\partial u}{\partial t}=F(t,$ $x$ , $u$ , $\frac{\partial u}{\partial x})$

in the complex domain $\mathbb{C}_{t}\mathrm{x}\mathbb{C}_{x}^{n}$ . The structure of holomorphic solutions of (E) can be
understood completely by the Cauchy-Kowalevsky theorem. But the structure of singualr
solutions (that is, solutions with some singularities) of (E) has not yet been studied well. In
this paper the author will consider the following problem:

Problem. Does (E) have a solution which possesses singularities only on the hypersurface
$\{t=0\}$ ?

Result. Under suitable conditions we can find such a negative real number $\sigma$ that the
following (1) and (2) are satisfied: (1) (E) has no solutions with singularities only on $\{t=0\}$

of the growth order $o(|t|^{\sigma})$ (as $tarrow 0$), but (2) (E) has a solution with singularities only on
$\{t=0\}$ of the growth order $O(|t|^{\sigma})$ (as $tarrow 0$).

The proof of (1) will be done by examining the possibility of analytic continuation of
solutions, and (2) by actually constructing solutions that possess singularities only on $\{t=0\}$

with growth order $O(|t|^{\sigma})$ (as $tarrow 0$).
In the case of equations of the general order, many parts of this paper are valid also for

$( \frac{\partial}{\partial t})^{m}u=F(t$ , $x$ , $\{(\frac{\partial}{\partial t})^{j}(\frac{\partial}{\partial x})^{\alpha}u\}_{j+|\alpha|\leq m,j<m})$ ;

but the study of this case has not been completed yet.

\S 1. Equation and problem
Let $(t, x)=(t, x_{1}, \ldots, x_{n})\in \mathbb{C}\cross \mathbb{C}^{n}$, $y\in \mathbb{C}$ , $z=$ (1) $\ldots$ , $4$ ) $\in \mathbb{C}^{n}$ , denote $\partial/\partial x=$

$(\partial/\partial x_{1}, \ldots, \partial/\partial x_{n})$ , and let $F(t,x, y, z)$ be a holomorphic function defined in a neighborhood
of the origin of $\mathbb{C}_{t}\mathrm{x}\mathbb{C}_{x}^{n}\mathrm{x}\mathbb{C}_{y}\cross \mathbb{C}_{z}^{n}$ .

In this paper we will consider the following nonlinear first order partial differential equa-
tion

(1.1) $\frac{\partial u}{\partial t}=F(t,$ $x$ , $u$ , $\frac{\partial u}{\partial x})$

where $u=u(t, x)$ is the unknown function.
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It is well-known by Cauchy-Kowalevsky theorem that for any holomorphic function $\varphi(x)$

in a neighborhood of $x=0$ the equation (1.1) has a unique holomorphic solution $u(t, x)$ in a
neighborhood of the origin $(0, 0)\in \mathbb{C}_{t}\mathrm{x}\mathbb{C}_{x}^{n}$ satisfying $u(0, x)=\varphi(x)$ . Thus, the holomorphic
solutions of (1.1) in a neighborhood of the origin $(0, 0)$ are completely characterized by the
initial data $\varphi(x)$ .

But if we include into consideration the singualr solutions (that is, the solutions with
some singularities) the structure of solutions of (1.1) will become much more interesting.

In this paper we will study the following problem:

Problem 1.1. Does (1.1) admit solutions which possess singularities only on the hyper-
surface {t $=0\}$ ?

One method of arguing the non-existence of such solutions is by means of analytic con-
tinuation. Let $\Omega$ be a neighborhood of the origin $(0, 0)\in \mathbb{C}_{t}\cross \mathbb{C}_{x}^{n}$ , and set $\Omega_{+}=\{(t, x)\in$

$\Omega;{\rm Re} t>0\}$ .
If the equation (1.1) is linear, then Zerner’s Theorem ([15], 1971) states that any solution

which is holomorphic in $\Omega_{+}$ can be analytically extended to some neighborhood of the origin
$(0, 0)$ . In other words, there does not exist a solution with singularities only on $\{t=0\}$ .

If the equation (1.1) is nonlinear, we have the following nonlinear analogue of Zerner’s
theorem due to Tsuno (1975).

Theorem 1.2 ([14]). If a holomorphic solution $u(t,x)$ of (1.1) in $\Omega_{+}$ satisfies $u(t, x)=$
$O(1)$ (as $tarrow 0$) uniformly in $x$ in some neighborhood of $x=0,$ then $u$ (t, $x$ ) can be analyti-
cally continued up to a neighborhood of the origin.

The assumption that $u$ (t, $x$ ) be bounded in some neighborhood of the origin seemed too
strong to other researchers at that time. Some might have believed that Zerner’s result can
be extended to the nonlinear case without any additional assumption. However, this is not
possible if the equation is nonlinear, as can be seen in the following example:

Example 1.3. Let $(t, x)\in \mathbb{C}^{2}$ . The equation

(1.2) $\frac{\partial u}{\partial t}=u(\frac{\partial u}{\partial x})^{m}$ with $m\in \mathrm{N}^{*}(=\{1,2, \ldots\})$

has a family of solutions $u(t, x)=(-1/m)^{1/m}(x+c)/t^{1/m}$ with an arbitrary constant $c\in$ C.
Clearly, this is holomorphic in $\Omega_{+}$ but has singularities on $\{t=0\}$ .

Thus, in the case of equation (1.2) we see the following: (1) singularities on $\{t=0\}$ of
order $u(t, x)=O(1)$ (as $tarrow 0$) do not appear in the solutions of (1.2), but (2) there really
appear singularities on $\{t=0\}$ of order $u(t, x)=O(|t|^{-1/m})$ (as $tarrow 0$) in the solutions of
(1.2).

Hence, for nonlinear equations, it seems better to reformulate our problem into the fol-
lowing form:

Problem 1.4. Let $\sigma$ be a real number. Does (1.1) admit solutions which possess
singularities on {t $=0\}$ with growth order $O(|t|^{\sigma})$ (as t $arrow 0$)?

If $\sigma$ is a non-negative real number, by Tsuno’s result we conclude that such singularities
do not appear in the solutions of (1.1). Therefore we may assume from now that $\sigma$ is a
negative real number. Then, in general the solution may tend to oo (as $tarrow 0$) and so we
need to suppose:

(A) $F(t, x, y, z)$ is a holomorphic function on $\Omega \mathrm{x}\mathbb{C}_{y}\mathrm{x}\mathbb{C}_{z}^{n}$ .
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52. Non-existence of singularities
Recently Kobayashi [7] gave a precise formulation on the non-existence part of the problem

1.4. In this section we will follow his argument and give its improved form.
Suppose the condition (A). We may expand the function $F$ (t, $x,$ $y,$ $z$ ) into the Taylor series

with respect to $(y, z)$ :

$F(t, x, y, z)= \sum_{(j,\alpha)\in \mathrm{N}\mathrm{x}\mathrm{N}^{n}}a_{j,\alpha}(t, x)y^{\mathrm{J}}z^{\alpha}$

where $\alpha=$ $(\alpha_{1}, \ldots, \alpha_{n})\in \mathrm{N}^{n}$ , $aj,\alpha(t, x)$ are holomorphic functions on 0, and $z^{\alpha}=z_{1^{\alpha_{1}}}\cdots$ $z_{n}^{\alpha_{n}}$ .
Let A $=\{(j, \alpha)\in \mathrm{N}\mathrm{x}\mathrm{N}^{n};a_{j,\alpha}(t, x)\not\equiv 0\}$ and $\Delta_{2}=$ { $(j,$ $\alpha)\in\Delta;j+|$cb $|\geq 2$ } (where

$|\alpha|=\alpha_{1}+\cdots$ $ $\alpha_{n}$ ). We remark that the equation (1.1) is linear if and only if $\Delta_{2}=\emptyset$ ; it is
nonlinear otherwise. Since we already have Zerner’s result for the linear case, we will assume
henceforth that (1.1) is nonlinear, that is, A2 is non-empty. In the following, we will write
the coefficients as

$a_{j,\alpha}(t, x)=t^{k_{j,\alpha}}b_{j,\alpha}(t, x)$ for $(j, \alpha)E$ $\Delta$

where $k_{j,\alpha}$ is a non-negative integer and $b_{j,\alpha}(0, x)\not\equiv 0.$ Using the above, the equation (1.1)
may now be written as

(2.1) $\frac{\partial u}{\partial t}=\sum_{(j,\alpha)\in\Delta}t^{k_{j,\alpha}}b$ ,a $(t, x)u^{j}( \frac{\partial u}{\partial x})^{\alpha}$

where $(\partial u/\partial x)^{\alpha}=(\partial u/\partial x_{1})^{\alpha_{1}}\cdots(\partial u/\partial x_{n})^{\alpha_{n}}$ .
Set

(2.2) $\sigma_{\mathrm{K}}=\sup_{\alpha(j,)\in\Delta_{2}}\frac{-k_{j,\alpha}-1}{j+|\alpha|-1}$ .

Note that $\mathrm{q}_{\mathrm{C}}$ is a non-positive real number and that it is calculated only by looking at the
form of the equation. For a neighborhood $\omega$ of $x=0\in \mathbb{C}_{x}^{n}$ and a function $f$ (t, $x$) we define
the norm $||f(t)$ $||,$ $= \sup_{x\in\omega}|\mathrm{F}(t, x)$ $|$ . The following result is originally due to Kobayashi [7]
and improved by Lope-Tahara [8]:

Theorem 2.1 ([7], [8]). Suppose the conditions (A) and $\Delta_{2}\neq\emptyset$ . If a holomorphic
solution $u(t, x)$ of (1.1) in $\Omega_{+}$ satisfies $||u(t)||_{\omega}=\mathit{0}(\mathrm{E}|")$ (as $tarrow 0$) $,$ then $u(t,x)$ ccnn be
extended analytically up to a neighborhood of the origin.

Hence we can get the following result on the non-existence of the singularities on $\{t=0\}$ .
Corollary 2.2. Suppose the conditions (A) and $\Delta_{2}\neq$ emptyset. Let $\mathrm{o}\mathrm{e}$ be the real

number given in (2.2). Then, there appear no singularities on $\{t=0\}$ with growth order
$o(|t|^{\sigma \mathrm{t}})$ (as $tarrow 0$) in the solutions of (1.1).

In the equation (1.2) the number $\mathrm{o}\mathrm{k}$ may be verified to be equal to $-1/\mathrm{r}\mathrm{a}$ . Hence, by the
above result we see that the singularities of order $o(|t|^{-1/m})$ do not appear in the solutions
of (1.2). Note further that the singularities of the solution $u(t, x)=(-1/m)^{1/m}(x+c)/t^{1/m}$

has growth order $O(|t|^{-1/m})$ (as $tarrow 0$). Thus in the case (1.2) the number $\mathrm{o}\mathrm{k}$
$=-1/\mathrm{r}\mathrm{n}$ is

just the critical value of the order of singularities.
Is this true in the general case? This is our next question.

Problem 2.3. Suppose $\Delta_{2}\neq\emptyset$ . Let oic be the one in (2.2). Then, does (1.1) admit
solutions which possess singularities on {t $=0\}$ with growth order $O(|t|^{\sigma\sigma})$ (as t $arrow 0$)?
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Set

(2.3) $\mathcal{M}=\{(j, \alpha)\in\Delta_{2}$ ; $\frac{-k_{j,\alpha}-1}{j+|\alpha|-1}=\sigma_{\mathrm{K}}\}$ .

If $\mathrm{V}$ $=\emptyset$ , we have the following result on the problem 2.3.

Theorem 2.4 ([8]). Suppose the conditions (A) and $\Delta_{2}$
$\mathrm{z}$

$\emptyset$ . If $\mathrm{M}$ $=\emptyset$ and if $a$

holomorphic solution $u(t, x)$ of (1.1) in $\Omega_{+}$ satisfies $|\mathrm{D}\mathrm{J}(t)$ $||,$ $=O(|t|^{\varpi \mathrm{t}})$ (as $tarrow 0$), then
$u(t, x)$ can be extended analytically up to a neighborhood of the origin.

This implies that in the case $\mathrm{y}$ $=\emptyset$ there appear no singularities on $\{t=0\}$ with growth
order $O(|t|^{\mathrm{o}\mathrm{e}})$ (as $tarrow 0$) in the solutions of (1.1).

The following equation gives an example with Ai $=\emptyset$ : let $(t, x)\in \mathbb{C}^{2}$ and consider the
first-0rder nonlinear equation $\mathrm{d}\mathrm{u}/\mathrm{d}\mathrm{t}=e^{u}(\partial u/\partial x)$ . In this case, it is easily checked that
$\mathrm{o}\mathrm{e}_{\mathrm{C}}=0$ and $\mathrm{U}$ $=\emptyset$ . Therefore by theorem 2.4 we see that this equation has no singular
solutions with growth order $0(1)$ (as $tarrow 0$), which is just the same result as in Tsuno’s
theorem.

\S 3, Existence of singularities
In this section we will show that the answer to the problem 2.3 is affirmative if $\Delta_{2}\mathrm{z}$

$\emptyset$

and $\mathcal{M}\neq\emptyset$ hold; the proof was given in Tahara [9] and [10]. Some parts were due to Ishii
[6] and Kobayashi [7].

Suppose $\Delta_{2}\neq\emptyset$ , $\mathcal{M}$ $\neq\emptyset$ and set

(3.1) $P$(x, $y,$ $z$ )
$= \sum_{(j,\alpha)\in\lambda 4}b_{j,\alpha}(0, x)y^{j}z^{\alpha}$

.

It is easy to see that $P(x,y, z)\not\equiv 0$ and that $P(x, y, z)$ is a holomorphic function on $\{x\in$

$\mathbb{C};(0,x)\in\Omega\}\mathrm{x}\mathbb{C}_{y}\cross \mathbb{C}_{z}^{n}$; moreover in (3.1) we have $j+-$ $|$ cv $|\geq 2.$ Since $\mathcal{M}\neq\emptyset$ , we have
$\sigma=(-k_{j,\alpha}-1)/(j+|\mathrm{C}\mathrm{b}|- 1)$ for any $(7, \alpha)\in \mathcal{M}$ : this implies that $\sigma$ is a negative rational
number.

We write

$\frac{\partial P}{\partial x}=(\frac{\partial P}{\partial x_{1}}$, $\ldots$ , $\frac{\partial P}{\partial x_{n}}$ ) and

$\frac{\partial P}{\partial z}=(\frac{\partial P}{\partial z_{1}}$ , .. . ’
$\frac{\partial P}{\partial z_{n}}$).

In this section, we will present four sufficient conditions for the existence of singularities of
the growth order $|t|$” only on $\{t=0\}$ . The four conditions correspond to the following four
cases:

Case (0) : $\frac{\partial P}{\partial x}(x, y,0)\equiv(0$ , $\ldots$ , 0$)$ and $\frac{\partial P}{\partial z}(x, y, 0)\equiv(0, \ldots, 0)$ ;

Case (1) : $\frac{\partial P}{\partial z}(x, y, z)\equiv(0$ , $\ldots$ , 0$)$ ;

Case (2) : $\frac{\partial P}{\partial z}(0, y, z)$ ” (0, $\ldots$ , 0) ;

Case (3) : $\frac{\partial P}{\partial z}(0, y, z)\equiv(0$, $\ldots$ , 0$)$ and $\frac{\partial P}{\partial z}(x, y, z)$
$\mathrm{I}$ $(0, \ldots , 0)$
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In the classification, the three cases $(1),(2)$ and (3) are enough to cover all the cases. But,
to compute examples, the case (0) is also very convenient: this is the reason why we add the
extra case (0).

Theorem 3.1 (Case (0)), Suppose $\mathrm{x}_{2}$ $\neq\emptyset$ , $\mathcal{M}\neq 4$
$\emptyset$ and the conditions in Case (0).

Set C’ $=\{y\in \mathbb{C} ’ \{0\}; P(0, y, 0)=\sigma_{\mathrm{K}}y\}$. Then, if $\Sigma^{*}\neq\emptyset$ the equatoin (1.1) has a solution
which possesses singularities only on $\{t=0\}$ with the growth order $|t|^{\mathrm{q}\sigma}$ .

Example (0). Let $(t, x)\in \mathbb{C}^{2}$ and let us consider

$\frac{\partial u}{\partial t}=u^{2}+b(x)(\frac{\partial u}{\partial x})^{2}+c(t, x)$ ,

where $b(x)$ and $c(t, x)$ are holomorphic functions. Then $\sigma_{\mathrm{K}}=-1$ , $P=y^{2}+b(x)z^{2}$ and
so the conditions in Case (0) are satisfied. Since $P(0, y, 0)=y^{2}$ we have C’ $=\{y\in \mathbb{C}\mathrm{s}$

$\{0\};P(0, y, \mathrm{O})=-y\}=\{-1\}\neq\emptyset$ . Thus we can apply Theorem 3.1 to this case and obtain
the following: this equation has a solution with singularities only on $\{t=0\}$ of order $|t|^{-1}$ .

Theorem 3.2 (Case (1)). Suppose $\Delta_{2}\mathrm{z}$
$\emptyset$ , $\mathcal{M}\neq\emptyset$ and the condition in Case (1). Set

C’ $=\{y\in \mathbb{C}\backslash \{0\};P(0, y, 0)=\sigma_{\mathrm{K}}y\}$ . Then, if

(3.2) C’ $\neq$ $\emptyset$ a$nd$ $\frac{\partial P}{\partial y}(0, y, 0)$ ’ $\Phi$ on $\Sigma$
’

the equatoin (1.1) has a solution which possesses singularities only on $\{t=0\}$ with the growth
order $|t|^{q\mathrm{c}}$ .

Example (1). Let $(t, x)\in \mathbb{C}^{2}$ and let us consider

$\frac{\partial u}{\partial t}=a(x)u^{2}+t(\frac{\partial u}{\partial x})^{2}+\mathrm{c}(t, x)$ ,

where $a(x)$ and $c(t, x)$ are holomorphic functions. Then $\sigma_{\mathrm{K}}=-1$ , $P=a(x)y^{2}$ and so
the condition in Case (1) is satisfied. Since $P(0, y, 0)=a(0)y^{2}$ we have C’ $=\{y\in \mathbb{C}\backslash$

$\{0\};a(0)y^{2}=-y\}$ ; if $a(0)\neq 0$ we have $\Sigma^{*}=\{-1/a(0)\}\neq\emptyset$ and $(\partial P/\partial y)(0, -1/a(0),$ $0)$

$=-2$ $\neq\sigma_{\mathrm{K}}$ . Thus, if $a(0)\neq 0$ we can apply Theorem 3.2 to this case and obtain the following:
this equation has a solution with singularities only on $\{t=0\}$ of order $|t|^{-1}$ .

Theorem 3.3 (Case (2)). Suppose $\Delta_{2}\neq\emptyset$ , $\mathcal{M}\neq l$) and the condition in Case (2). Set
$\Sigma=$ { $(y,$ $z)\in \mathbb{C}\cross \mathbb{C}^{n}$ ; $P(0,$ $y,$ $z)=$ oi<y}. Then, if

(3.2) $\frac{\partial P}{\partial z}(0, y, z)$ $\not\equiv(0, \ldots, 0)$ on $\Sigma$

the equatoin (1.1) has a solution which possesses singularities only on $\{t=0\}$ with the growth
order $|t|^{\mathrm{q}_{C}}$ .

Example (2). i) Let $(t,x)\in \mathbb{C}^{2}$ and let us consider

$\frac{\partial u}{\partial t}=u(\frac{\partial u}{\partial x})^{m}$ , $m\in \mathrm{N}^{*}$ .

Then $\sigma_{\mathrm{K}}=-1/m$, $P=yzm,$ $\partial P/\partial z=myz^{m-1}$ , and $\Sigma$ $=\{(y, z)\in \mathbb{C}\cross \mathbb{C};yz^{m}=(-1/m)y\}$ .
If we take $(1, (-1/m)^{1/m})\in\Sigma$ we have $(\partial P/\partial z)(0,1, (-1/m)^{1/m})=-(-\mathrm{r}m)^{1/m}\neq 0$. Thus,
we can apply Theorem 3.3 to this case and obtain the following: this equation has a solution
with singularities only on $\{t=0\}$ of order $|1^{-1/\mathrm{v}\mathrm{n}}$ . Compare this with Example 1.3.
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$\mathrm{i}\mathrm{i})$ Let us consider
$u$ $=a(x)u^{2}+b(x)( \frac{\partial u}{\partial x})^{2}+c(t, x)$ ,

where $a(x)$ , $b(x)$ and $c(t, x)$ are holomorphic functions. Then $\sigma_{\mathrm{K}}=-1$ , $P=a(x)y^{2}+b(x)z^{2}$

and so if $6(0)\neq 0$ the condition in Case (2) is satisfied. We have $\Sigma$ $=\{(y, z)\in \mathbb{C}\mathrm{x}\mathbb{C};a(0)y^{2}+$

$b(0)z^{2}=-y\}$ . If we take $\alpha$ so that $\alpha+a(0)\alpha^{2}\neq$ $0$ and define $\beta$ by $\beta^{2}=$ $-(\mathrm{c}\mathrm{z} +a(0)\alpha^{2})/b(0)$ ,
then we have $\mathrm{a}$ $\neq$ $0$ , $(\alpha, \beta)\in$ $\Sigma$ and $(\partial P/\partial z)(0, \alpha, \mathrm{d})$ $=$ $6(0)$ . Thus, if $b(0)\neq 0$ we can
apply Theorem 3.3 to this case and obtain the following: this equation has a solution with
singularities only on $\{t=0\}$ of order $|1^{-1}$ .

Lastly, let us consider the case (3). We will give a sufficient condition only in the case
$n=1;$ in the general case $n\geq 2$ we have no good results. Suppose $n=1$ and set

I $= \{y\in \mathbb{C};\frac{\partial P}{\partial x}(0,0, y)=\sigma_{\mathrm{K}}y\}$ ,

$\frac{\partial^{2}P}{\partial z\partial x}(0,0, \Sigma)=\{\frac{\partial^{2}P}{\partial z\partial x}(0,0, y)$ ; $y$ $\in\Sigma\}$ .

Theorem 3.4 (Case (3)). Suppose n $=1,$ $\Delta_{2}\neq\emptyset$ , $\mathcal{M}\neq I$) and the conditions in Case
(3). If

(3.4) $\frac{\partial^{2}P}{\partial z\partial x}(0,0, \Sigma)\not\subset[0, \infty)\cup\{\frac{o\mathrm{i}\mathrm{s}}{2}$ , $\frac{\sigma_{\mathrm{K}}}{3}$ , $\frac{o*}{4}$ , $\ldots\}$

in $\mathbb{C}$ , the $e$ quatoin (1.1) has a solution which possesses singularities only on $\{t=0\}$ with the
growth order $|1^{\mathrm{o}\mathrm{i}\mathrm{e}}$ .

Example (3). Let $(t, x)\in \mathbb{C}^{2}$ and let us consider

$\frac{\partial u}{\partial t}=a(x)u^{2}+x(\frac{\partial u}{\partial x})^{2}+c(t_{\}}x)$ ,,

where $a$ ($x>$ and $c(t, x)$ are holomorphic functions. Then $\sigma_{\mathrm{K}}=-1$ , $P=a(x)y^{2}+xz^{2}$ and so
the conditions in Case (3) are satisfied. We have $\Sigma$ $=$ {a $\in \mathbb{C};\alpha^{2}=-\alpha$} $=\{0, -1\}$ and
$(\partial^{2}P/\partial z\partial x)(0,0, \Sigma)=\{0, -2\}$ . Since -2\not\in $[0, \infty)$ LJ {-1/2, -1/3, $\ldots$ } we have the condition
(3.4). Thus, we can apply Theorem 3.4 to this case and obtain the following: this equation
has a solution with singularities only on $\{t=0\}$ of order $|t|^{-1}$ .

\S 4. Way of Constructing a singular solution
The prooffi of Theorems 3.1 .. 3.4 are given in Tahara [9] and [10]. In this section, we will

give only a sketch of the construction of a singular solution with the growth order $|t|^{\emptyset\sigma}$ .
Suppose $\Delta_{2}\neq$ $\emptyset$ , $\mathrm{y}$

$\mathrm{t}$
$\emptyset$ and let $P(x, y, z)$ be the one in (3.1). Let us construct a solution

of (1.1) of the form

(1.1) $u(t,x)=t^{a\kappa}(\varphi(x)+w(t, x))$

where $\varphi(x)$ is a holomorphic function in a neighborhood of $x=0$ with $\varphi(x)\not\equiv 0,$ and $w(t, x)$

is a function belonging in the class $\overline{O}_{+}$ which is defined by the following:

Definition 4.1. A function $w(t, x)$ is said to be in the class $\tilde{O}_{+}$ if it satisfies the conditions
$\mathrm{c}_{1})$ and $\mathrm{c}_{2}$ ) $:\mathrm{c}_{1}$ ) $w$ (t, $x$ ) is a holomorphic function in a domain { $(t, x)\in \mathcal{R}(\mathbb{C}_{t}\backslash \{0\})\cross \mathbb{C}_{x}^{\mathrm{n}}$ ; $0<$
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$|t|<\eta(\arg t)$ , $|x|<R\}$ for some positive-valued continuous function $\eta(s)$ on $\mathbb{R}_{s}$ and some
$R>0;\mathrm{c}_{2})$ there is an $a>0$ such that for any $\theta>0$ we have $\sup|x|<R|w(t, x)|=O(|t|^{a})$ (as
$tarrow 0$ under $|\arg t|<\theta$). Here $\mathcal{R}(\mathbb{C}_{t}s \{0\})$ denotes the universal covering space of $\mathbb{C}_{t}\mathrm{s}$ $\{0\}$ .

Since $\sigma_{\mathrm{K}}<0$ , $\varphi(x)\not\equiv 0$ and $w(t, x)arrow 0$ (as $tarrow 0$), we easily see that this function
(4.1) has really singularities of order $|t|^{\sigma_{\mathrm{K}}}$ on $\{t=0\}$ . Hence, if we can construct such a
solution as in (4.1), we can conclude that singula rities of order $|t|^{\sigma_{\mathrm{K}}}$ on $\{t=0\}$ appear in
the solutions of (1.1).

Substituting this (4.1) into (1.1), we get

$t^{\mathrm{o}\mathrm{e}-1}( \mathrm{q}_{0}\varphi+(t\frac{\partial}{\partial t}+\sigma_{\mathrm{K}})w)=\sum_{(j,\alpha)\in\Delta}t^{k_{j,\alpha}+\Pi((j+|\alpha|)}b_{j,\alpha}(t, x)(\varphi+w)^{j}(\frac{\partial\varphi}{\partial x}+\frac{\partial w}{\partial x})^{\alpha}$

and by cancelling the factor $\mu^{-1}$ we have

(4.2) $q_{\zeta} \varphi+(t\frac{\partial}{\partial t}+\mathrm{q})w=\sum_{(j,\alpha)\in\Delta}t^{k_{j,\alpha}+1+\alpha(j+|\alpha|-1)}b_{j,\alpha}$ (t, $x$ ) $( \varphi+w)^{j}(\frac{\partial\varphi}{\partial x}+\frac{\partial w}{\partial x})^{\alpha}$

Here we remark that

$k_{j,\alpha}+1+$ oi((j $+|$a$|-1$ ) $=0$ tf $(j, \alpha)\in \mathcal{M}$ ,
$k_{j,\alpha}+1+\propto$ ($j+|$a$|-$ $1$ ) $>0$ if $(\mathrm{j},\mathrm{a})\in$ A $\backslash$ M.

Therefore, by using the function $P(x, y, z)$ we can write the equation (4.2) in the following
form:

(4.3) $\mathrm{o}\mathrm{e}_{(}\varphi$

$+(t \frac{\partial}{\partial t}+\sigma_{\mathrm{K}})w$ $=P(x,$ $\varphi+w,$ $\frac{\partial\varphi}{\partial x}+\frac{\partial w}{\partial x}$)
$+t \sum_{(j,\alpha)\in\Lambda 4}c_{j,\alpha}(t, x)(\varphi f w)^{j}(\frac{\partial\varphi}{\partial x}+\frac{\partial w}{\partial x})^{\alpha}$

$+ \sum_{(j,\alpha)\in\Delta\backslash \mathcal{M}}t^{k_{j,\alpha}+1+\mathrm{q}_{\mathrm{t}}(j+|\alpha|-1)}b_{j,\alpha}(t, x)(\varphi+w)^{j}(\frac{\partial\varphi}{\partial x}\dagger\frac{\partial w}{\partial x}$ )’

where $c_{j,\alpha}(t,x)=$ (6jja(t, $\mathrm{a};)-b_{j,\alpha}(0,$ $x)$ ) $/t$ . Since we are now considering a $w(t, x)\in\tilde{O}_{+}$ , we
have $w(t, x)=o(1)$ (as $tarrow 0$) and so by letting $tarrow 0$ in the above equation we have

(4.4) $\sigma_{\mathrm{K}}\varphi=P(x,$
$\varphi$ , $\frac{\partial\varphi}{\partial x})$ .

Then by subtracting the equation (4.4) from (4.3) we obtain

(4.5) $(t \frac{\partial}{\partial t}+\sigma_{\mathrm{K}}$) $w$

$= \frac{\partial P}{\partial y}$ ($x$ , $\varphi,$

,

$\frac{\partial\varphi}{\partial x}$ ) $w+ \sum_{j=1}^{n}\frac{\partial P}{\partial z_{j}}(x,$ $j$ , $\frac{\partial\varphi}{\partial x})\frac{\partial w}{\partial x_{j}}+G_{2}(x$ , $j$ , $\frac{\partial\varphi}{\partial x},w$ , $\frac{\partial w}{\partial x})$

$+t \sum_{(\dot{g},\alpha)\in\lambda 4}c_{j,\alpha}(t, x)(\varphi+w)^{j}(\frac{\partial\varphi}{\partial x}+\frac{\partial w}{\partial x})^{\alpha}$

$+$ $\sum$ $t^{k_{j,\alpha}+1+\alpha_{(}(j+|\alpha|-1)}b_{j,\alpha}$(t, $x$) $( \varphi+w)^{j}(\frac{\partial\varphi}{\partial x}+\frac{\partial w}{\partial x})$

’

$(f,\alpha)\in\Delta\backslash \mathcal{M}$
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Here, $G_{2}$ is the remainder term of the Taylor expansion of $P$ with respect to $(w, \partial w/\partial x)$ . To
summarize our goal, we have the following proposition:

Proposition 4.2. If the equation (4.4) has a holomorphic solution $\varphi(x)$ which is not
identically zero and the equation (4.5) has a solution $w$ (t, $x$ ) $\in\tilde{\mathcal{O}}_{+}$ , then we have succeeded
in constructing a solution $u(t, x)$ of (1.1) with singularities of order $|t|^{q\mathrm{c}}$ on $\{t=0\}$ .

Thus, to prove the existence of singularities of order $|t|^{\Phi}$ on $\{t=0\}$ , it is sufficient to
study about when Proposition 4.2 is valid. For the concrete construction we need to use
results in [2], [12], [1], [11] and the Cauchy-kowalevsky theorem.

\S 5. On higher order case
Lastly let us give some comments on the following higher order case:

(1.1) $( \frac{\partial}{\partial t})^{m}u=F(t,x,$ $\{(\frac{\partial}{\partial t})^{j}(\frac{\partial}{\partial x})^{\alpha}u\}_{(j,\alpha)\in\Lambda})$ ,

Here, for convenience, we have denoted by A the set of multi-indices { $(j, \alpha)\in \mathrm{N}\cross \mathrm{N}^{n}$ ; $j+|\alpha|\leq$

$m$ , $j<m\}$ ; let $N$ be the cardinality of A. In describing the function $F$ , the variable $Z_{j,\alpha}$ will
correspond to $(\partial/\partial t)^{j}(\partial/\partial x)^{\alpha}u$ and the totality of the $Z_{j,\alpha}$ ’s will be denoted by $Z$ , that is,

$Z=\{Z_{j,\alpha}\}_{(j,\alpha)\in\Lambda}\in \mathbb{C}^{N}$ .

Let $\Omega$ be an open neighborhood of the origin $(0, 0)\in \mathbb{C}_{t}\cross \mathbb{C}_{x}^{n}$ . We suppose the following
condition: $F(t, x, Z)$ is a holomorphic function on $\Omega\cross \mathbb{C}^{N}$ .

Since the function $F$ (t, $x,$ $Z$) is holomorphic, we may expand it into the following conver-
gent power series in $Z$ :

$F(t, x, 2\mathrm{r})$
$= \sum_{\mu\in\Delta}$

aM $(\mathrm{t}, x)Z^{\mu}$

$= \sum_{\mu\in\Delta}t^{k_{\mu}}b_{\mu}(t, x)Z^{\mu}$
.

In the summation above, the set A has elements of the form $\mu=(\mu_{j,\alpha})_{\mathrm{t}t,\alpha)\in\Lambda}$ and is a subset
of $\mathrm{N}^{N}$ ; we have omitted from A those multi-indices $\mu$ for which $a_{\mu}(t, x)\equiv 0.$ The expression
$Z^{\mu}$ is

$Z^{\mu}= \prod_{(j,\alpha)\in\Lambda}(Z_{j,\alpha})^{\mu}$

i,a.

Moreover we have taken out the maximum power of $t$ from each coefficient aM $(\mathrm{t}, x)$ , so that
we have $b_{\mu}(0, x)\not\equiv 0$ for all $\mu\in$ A. Using this expansion, we can now write our partial
differential equation as

$( \frac{\partial}{\partial t})^{m}u=\sum t^{k_{\mu}}b_{\mu}(t, x)\prod_{(j,\alpha)\in\Lambda}[(\frac{\partial}{\partial t})^{j}(\frac{\partial}{\partial x})^{\alpha}u]^{\mu_{j,\alpha}}$

$\mathrm{p}\mathrm{E}\mathrm{b}$

Denote by $\gamma_{t}(\mu)$ the total number of derivatives with respect to $t$ on the right-hand side
of the equation above, i.e., let

$\gamma_{t}(\mu)=$ $E$ $j\mu_{j,\alpha}$ for $\mu=(\mu_{j,\alpha})_{(j,\alpha)\in\Lambda}\in \mathrm{N}^{N}$ .
$(j,\alpha)\in\Lambda$
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Since the highest order of differentiation with respect to $t$ appearing on the right-hand side is
$m-$ l, we have $\gamma_{t}(\mu)\leq(m-1)|\mu|$ . We set $\Delta_{2}=$ $\{\mu\in\Delta;|\mu|\geq 2\}$ . If $\Delta_{2}=\emptyset$ , (5.1) is linear
and we have Zerner’s result. In the case $\Delta_{2}\neq\emptyset$ we introduce the index $\sigma_{\mathrm{K}}$ due to Kobayashi:

(5.2) $\sigma_{\mathrm{K}}=\sup_{\mu\in\Delta_{2}}\frac{-k_{\mu}-m+\gamma_{t}(\mu)}{|\mu|-1}$

Using this index, we see:

(1) On the non-existence of singularities we have the same results as in section 2
also in higher order case.

(2) But, on the existence of singularities we have not yet completed to construct
singular solutions in all the cases which appear in the discussion.

See Chen-Tahara [1], G\’erard-Tahara [3],[4],[5], Kobayashi [7], Lope-Tahara [8], Tahara [11],
and Tahara-Yamazawa [13].
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