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Propagation of microlocal solutions
near a hyperbolic fixed point

FALREREEE LN BEEY  (Setsuro Fujiié)
Joint work with Jean-Frangois Bony, Thierry Ramond
and Maher Zerzeri

1 Introduction

This is a partial report of the work in progress with Jean-Francois Bony,
Thierry Ramond and Maher Zerzeri about the quantum monodromy operator
associated to a homoclinic trajectory. A major part of the results here was
already reported by one of the collaborators in [3].

The notion of monodromy operator was introduced by J. Sjéstrand and
M. Zworski in [4] for a periodic trajectory. It consists in continuing microlocal
solutions of the semiclassical Schrédinger equaiton

~h*Au+ V(z)u = Eu (1)

along a Hamilton flow H, on p~!(E) of the corresponding classical mechanics:

d
_ dp 0 dp 0 | B .
Ho = ; (’a_é}bz - 37;55) , p(z,6) =€+ V(2). 2)

Recall briefly the notion of microlocal solution according to [4]. If dp # 0
at a point (2°,£°%) € p~!(E), there exists a local canonical transformation &
defined in a neighborhood of (2°,£°) with x(2°,£°%) = (0,0), and a semiclassi-
cal microlocal Fourier integral operator U associated to &, such that p = £*¢;
and UPU™! = hD,,. We can then define the space of microlocal solution at

(2°,€°) by
ker(,,o,fo)(P) = U‘l(ker(thl)), ker(th) = {u € D’(Rd) : thlu = 0}

43




44

Since ker(hD,,) is identified with D'(R1), so is ker(zo ¢0)(P). If (2!, €') =
exp TH,(z°,£°) is another point on this flow, we can naturally define the
propagator of microlocal solutions from ker,o ¢0)(P) to ker(z ¢1y(P) as oper-
ator on D'(R47?).

Here we study the case where exp t H,(z°, £°) tends to a hyperbolic fixed
point (0,0) as ¢ tends to +oco. To such a point associate the stable and
unstable Lagrangian manifolds A_ and A, on which Hamilton flows tend to
(0,0) as t tends to 400 and —oo respectively. Moreover, any point close to
A, comes from a point close to A_. We expect, therefore, that a microlocal
solution at a point on A, is determined by that on A_.

The purpose of this report is to study this correspondence of microlocal
solutions from A_ to A,. After preparing the geometrical setting in section 2,
we state a uniqueness theorem in section 3, which says that if a solution to (1)
is microlocally exponentially small on A_, it is also microlocally exponentially
small on A, for E away from a discrete subset I'(h). In section 4, based on
an idea in [2], we construct a solution with a given microlocal data at a
point (2%, £%) on A_, as superposition of time-dependent WKB solutions via
Fourier transform with respect to E, and formally calculate its microlocal
output at the corresponding point (2°,£3) on A,. Section 5 is an appendix
about the notion of expandible symbol, which is used repeatedly for the study
of the large time behavior of both classical and quantum objects.

2 Symplectic geometry

Let p(z,€) = €% + V(z) be the Hamitonian associated to the semiclassical
Schrodinger operator —h2A + V(z) in R?. Here, we use the following nota-
tions:

d 1 5
z=(21,...,24), €=(&,... &), 52:26327 Azzgﬁ

Suppose that the potential V(z) is real and analytic in a neighborhood
of r = 0, and that £ = 0 is a non-degenerate minimum of V(z), so that
(z,€) = (0,0) is a saddle point of the Hamiltonian p(z, ). After a change of
variables, we can assume that p(z,¢) is of the form

d_ )2
pa6) =€ =3 Lt 4 0(f), (2 -0),

i=1



where {/\j};’;] are positive numbers which we assume 0 < A; < Ay < --- < Ay
Let H, be the Hamilton vector field associated to p. In the (z,§) coordi-
nates, the linearized vector field F, of H, at (0,0) is simply

0 I
Fp = dooH, = ( Iz 0 ) ) 3)

where L is the d x d matrix defined as L = diag()y, ..., As). The eigenvalues
of F, are the A;’s and the —),’s.

Associated to the hyperbolic fixed point, we have thus a natural decompo-
sition of T, ("(‘)’O)Rd = R* in a direct sum of two linear subspaces AS and A%, of
dimension d, associated respectively to the positive and negative eigenvalues
of Fy,. These spaces A} are given by

D i=1,...,d}. (4)

The stable/unstable manifold theorem gives us the existence of two La-
grangian manifolds Ay and A_, defined in a vicinity Q of (0,0), which are
stable under the H, flow and whose tangent space at (0,0) are precisely A
and A%. In particular, we see that these manifolds can be written as

As = {(z,8); £ = Vi (2)}, (5)

for some smooth functions ¢, and ¢_, which can be chosen so that
i,
bul) = £ 30 a2 (o), (6)
=1

We shall say that A} is the outgoing Lagrangian manifold and A_ the in-
coming Lagrangian manifold associated to the hyperbolic fixed point. Indeed
A (resp. A_) can be charactarized as the set of points (z,£{) € (1 such that
exptH,(z,&) = (0,0) as t = —oo (resp. as t — +oc): Take a point z° € R?
near 0. Then there exist unique {3 € R? and ¢° € R? such that (z°,€2) € As.
Let v+(t) = exptH,(z% £3) be the Hamilton flow emanating from (z°,£3).
Then, we know from Proposition 10 in Appendix that y4(t) are expandible,
ie.

Fyi(t) ~ Z eiuktvi,k(t)a t— F oo, (7)
k=1
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where vy (¢) are vectors whose elements are polynomials in t (y4, is con-
stant) and 0 < g3 < pp < --- are the various non-vanishing linear combina-
tions over N of the A;’s. In particular, y; = A;. If we assume

(A1) A < )y,
then there exists a constant v; = 74;(z°) such that

ve(t) = 7t x H(1,0,...,0,£X;/2,0,...,0)+ O(e¥*?), (t = Foo). (8)
We see that v4 (1) is tangential to the (i, £ )-plane if ¢ # 0.

3 Uniqueness

We begin this section by introducing the notion of microsupport of solutions.
For u € L?(R"), the Bargman transform (or global FBI transform) is
defined by

Tua,€5h) = calh) [ e by )y

R4
Tu(z,; h) belongs to L*(R2%) and cy(h) is taken so that T be an isometry
from L%(R?) to L}(R*). It is seen that by this transform, the function u is
localized in z by a Gaussian up to O(+v/h) when h is small. Moreover, it is
localized also in € up to O(\/i_z) Indeed we have an identity

Tu(z,& k) = €= Ta(¢, —z; h),

where %4 is the semiclassical Fourier transform

4(€) = (2mh)~4? / e~=¢hy(z)dz. (9)
R4

A (h-dependent) function u € L? is said to be zero at a point (2°,£°) in
the phase space iff there exists a neighborhood U of (z°,£°) and a positive
number € such that

Tu(z, & k) = O(e™/)

as h — 0 uniformly in U. The complement of such points is called micro-
support of v and denoted by MS(u). Microsupport is a closed set. Two
functions u and v are identified near (2%, £°) if (2°,£€°) ¢ MS(u —v).

Microsupport has the following properties: Let u be a solution of Pu =
E(h)u in a domain © C R", where E(h) = O(h), and assume that ||u||12(q) <
1.



¢ The microsupport of u is included in the energy surface p~*(0).

e The microsupport of u propagates along a simple Hamilton flow in
-1
p~(0).

o The microsupport of a WKB solution u = %@/ b(z h), b(z,h) =
O(h™N) for some N € R as h tends to 0, is included in the Lagrangian
submanifold {(z,§); ¢ = 9,9 ()}

Now we come back to our problem near the hyperbolic fixed point. Let
['(h) be the discrete subset of C defined by

L'(h) = = —ih Z Mo+ 2); o= (ag,...,a4) € N} (10)

Notice that for E = E,, the functions

Aj
ot () 1 5:205).

where H,, is the Hermite polynomial, satisfy the equation
—h*Au, — Z ij?u(, = FE,u,.
i=1
These functions are of WKB form and, by the above third property, the
microsupport of u, is AJ.
Let us assume

(A2) |E(h)] < Ch in C with C > 0, and there exists § > 0 such that
d(E(h),T'(h)) > bh for all small A.

The following theorem says that the solution of (1) is uniquely determined
microlocally in a neighborhood of (0, 0), modulo microlocally small functions,
by its data on A_\(0,0) if E(h) is away from the exceptional set I'(h).

Theorem 1 Assume (A2). If an h-dependent function u € L*(R%) with
Hullge < 1 satisfies

MS((P — E(h))u) =0, MS(u)n{A_\(0,0)} =0,
in a neighborhood of (0,0), then (0,0) ¢ M.S(u).
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4 Integral representation of the solution

In order to study the correspondence of microlocal solutions from A_ to A4,
we fix a point (z%,£°) on A_ sufficiently close to the origin and consider
solutions of (1) whose microsupport on A_ is included in a neighborhood
of exptH,(z%¢%) (recall that the microsupport is invariant by the Hamil-
ton flow). Then, under the assumption (A2), the solution w is uniquely
determined in a full neighborhood of the origin, in particular on A, if a
microlocal data ug is given at (2°,£%). We study in this section the map Zs
which associates ug to the microlocal solution u at (z° £%), which we call
here propagator (it is called singular part of the monodromy operator in [3]).
The symbol p is of principal type at (2°,%) € A_ and the space of
microlocal solutions ker(,o ¢0)(P) is identified with D’'(R*~?). If we assume

(A3) n(z") #0,

where ;(2°) is defined in (8), a microlocal solution ug € ker(,0 (0 )(P) can be
considered as distribution on

Ho = {z € R% &, = al},

since (the projection of) the Hamilton flows are tangential to the z; axis at
the origin.

Let ug(z') € D'(R?!) be such that 4(n), the semiclassical Fourier trans-
form of ug (see (9)), is supported in a small neighborhood of &;'.

Following an idea of Helffer and Sjostrand [2], we write the solution u in
the form

1 too
h — 1¢(t1$»77)/h . y
u(z, h) _(QWh)d/2 /Rd—l/o e a(t,z,n, h)le(n)dtdn, (11)

with _
{%% + P(z,hD) — E(h)}(e*'*a) = O(h™).

If a and the energy E(h) have classical asymptotic expansions with respect
to h:

o0

a(t,z,n,h) ~ Zal(t,z,n)hl, E(h) ~ Z EpY
=0

=0




( recall here that E(h) is assumed to be of O(k) in (A2)) then ¢ and a should

satisfy the eikonal and transport equations respectively:
at¢+p(‘r>v:c¢) = Oa (12)
Orap + 2V,¢ - Vyag + (Ap — iEg)ag = 0, (13)

!
Biai +2Vo¢ - Voa + (Ad — iBo)ay = iAai_ 1+ Y Emaim (1 21). (14)
m=1

The phase function ¢ will be constructed as generating function of the
evolution A} = exptH,(A]) of a suitably chosen Lagrangian manifold A]
transverse to A_ at (z°,€°). Let us fix n sufficiently close to ¢°', and look
at the integral in (11) with respect to t. It will be shown that, for z close
to z°, there exsists a unique critical point ¢ = #(z,n). On the other hand,
the Lagrangian manifold A} tends to A, as ¢ = +o0o, which means that 0;¢

tends to ¢,. Thus we will have microlocally

+oo | e¥@Mb(z,n,h) near (z,€) = (2°,€2),
/ ew(t'xm)/ha(t) z,n, h)dt ~ { .
: 9 c(z, 7, h)  near (z,€) = (22, 0),
with p(z,n) = §(t(z, ), z,7) and 8(z, ) = ¢+ (z) + ¥(n) for some ¥.
We require that u is equal to ug on Hy microlocally near (z°,¢°), which

is satisfied if
¢($a 77) =z n, b(%’?,h) =1 on H0° (15)

We will see in the following that it is possible to construct ¢ and a so that
~and b satisfy the condition (15) and to calculate § and c¢. Then we will write
Zs as Fourier integral operator.

4.1 The phase function

Since v_ is a simple characteristic for the operator p, by the usual Hamilton-
Jacobi theory we have first the

Lemma 2 For all n € R%! close enough to ¢, there is a unique function
¥, = ¥(z,n), defined in a neighborhood wy of x4 such that

p(z, Vipy(z)) =0 in  wo,
Yp(z)=2'-n on HpNwp.
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We denote by A7, the corresponding Lagrangian manifold
Ay = {(z,€) € T'R?, & € wo, & = Vipy(2)}. (16)

Lemma 3 The Lagrangian manifolds A_ and A}, intersect along an intergral

curve 4" for H,, and the intersection is clean. In particular, 'yfol =_.

Let (2°(n),£%(n)) be the intersection of 47 and Hy x Rf. The curve 47
is parametrized as 7"(t) = exp tH,(z°(n), £°(n)), and it has the asymptotic
property like (8);

7'(t) ~ 1(n)e x H(1,0,...,0,=X1/2,0,...,0) (t = +o0),  (17)

with a non vanishing constant +, () for n close to £%'.
Let '] be the level set of ¥, passing by z°(n):

I3 = {(2,€) € A, vo(z) = o(2°(m))}. (18)

Lemma 4 For any n close enough to ¢%, one can find a Lagrangian manifold
AJ such that

1. Ag intersects cleanly with A, along I'g,

2. for any t > 0, the projection Il : A} = exp(tH,)(A]) — R? is a
diffeomorphism in a neighborhood of ¥"(t) € A].

The Lagrangian manifold A} = exp(tH,)(A]) is then represented by a
generating function ¢(¢,z,n):

Al ={(2,£);€ = Vuo(t,z,n)}. (19)

and (¢, z,n) satisfies the eikonal equation (12) for every 7.
Now we fix n and define

I7=A7NA], (=exp(tH,)I7). (20)

If (z,€) € T'7, then £ = V,¢(t,2,7) and p(z,€) = 0 (A}, C p'(0)). Together
with (12), we get that ¢ is a critical point for the function ¢ — ¢(t,z,n) if
and only if x € II,I'7. More precisely, we have



Proposition 5 For each z close enough to 4", there is a unique time t =
t(z,n) such that x € II.I']. Moreover, it is the only critical point for the
function t — ¢(t,z,n) and it is non-degenerate, d?¢(t(z,n), z,n) > 0.

As a consequence, we obtain

Vot () = Vu(e(t(z, 1), ), (21)
so that z — ¢,(z) and z — ¢(t(z), z) are equal up to constant. We choose

¢ so that
¢(t(z,n),z,n) = n(z). (22)

Finally we observe the asymptotic behavior of the phase function ¢(¢, z,n)
when ¢ tends to +oo.

Proposition 6 The phase function (¢t,z) — ¢(t,z,n) is expandible uni-
formly with respect to n:

$(t,2,n) = (5(2) + P(n) ~ D _ e7M';(t, 7). (23)

j21

Here 1) is a generating function of the d— 1 dimensional Lagrangian subman-

ifold A_ N (Ho x RE), ie.

{(¥',n) € T"R*Yyn = Vyo_(20,4)} = {(¥',n) € T"R*Yy/ = V,d(n)},
and so

4 1

=2

Moreover, the function ¢, does not depend on t, and

$1(z,n) = —2Xm(n)z1 + O(2?), (24)

where ~1(n) is defined in (17).
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4.2 Transport equations

We study the transport equations (13), (14), using the informations about
the phase function é(¢,z,7) obtained in the previous subsection. We want
to solve these equations under the condition

a(t(z,m), 2,1, ) 1, = €/ 0FG(t(z,m), 2,m), (25)

so that the right hand side of (11), after the stationary phase method applied
to the integration with respect to ¢ at the critical point ¢t = t(z,7), reduces
to ug on Hy. Notice that the initial condition (25) determines uniquely the
solutions of (13), (14) on the hypersurface {(t,z);t = t(z,7)}, since this
hypersurface is invariant under the flow of the vector field 9, + 2V;¢ - V..

As for the asymptotic behavior as t — +00, we recall that ¢ is expandible
and

LSV d 2N
j=1 J J=1

Then again by Proposition 10 applied to e5'a;, where

d

S=%ZA,~—1’E0,

J=1
we have the following asymptotic expansion.

Proposition 7 For each |, a(t,z,n) is ezpandible and has an asymptotic
expansion ast — 0o

(o]

a;(t,x, 77) ~ e—St Z al,k(ta zr, U)e_“kt, (26)

k=0

which is uniform with respect to n. Here po is defined to be 0, and aop is
independent of t.

4.3 Asymptotics of the propagator

Let us fix 5 close to £ and « close to 4,. Then there are two t's which
contribute in the semiclassical limit to the integration with respect to t of




the expression (11). One is ¢ = t(z,n), which is the unique critical point, and
the other is t = +00. They correspond to the Lagrangian manifolds A;'(xm)
and A, respectively.

Since the contribution from ¢ = t(z,n) reproduces the given data ug(z’)
on Hj after integration with respect to n, we will obtain the propagator Zs in
the form of Fourier integral operator after calculating the contribution from
t = +oo0.

Lemma 8 Suppose b€ R, A >0 and p > 0. Then as h — 0, we have

/00 exp{ibe~" /h — pt}dt — 1 (ﬂ) . r (ﬁ)
. P P 2\ D )

PN p/r-1 h\"*
~ — M —
P (7))

n=0
Let us compute the contribution from ¢ = oo of the integral

/ et=mibat 2 0, h)dt.

0

If we substitute ¢y (z) + (1) + e~ ¢y (z,7) to $(t,2,n) and ago(z,n)e” St
to a(t, z,n, h) according to (23), (26), we get

/ e’ tadt = ei(¢++‘z)/ha0,0/ exp{i e ' /h — St}dt

0 0

Applying Lemma 8 with 6 = ¢;, A = A\; and p = S, we get

/ e?/radt ~ ei(¢++i)/hao,o
0

1 (8 [k etr/hip )
X{xf(ﬂ &)+ a*o”‘)} (h=0)

The leading term of the left hand side changes according to the real part of
S / )\1! »

d
RES/)\1>1 & ImEy > (Al—ZA]'> /2

=2
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Theorem 9 The propagator s can be written in the form
1
d-1
V2rh Ré-t
microlocally near (z°,£9) with
‘9(37,71) = ¢+(:C) + 1/3(77)7
and if Im Ey < (A — 303 );)/2

1 S ih \™M
c(z,n,h) ~ —’—'——f———-zﬂh)\lr (x‘) (m) aoo(z,m),

ei&(wm)c(;r, 1, h)to(n)dn,

if ImEy > (M — 0 25)/2

1 : ih
z,nh) ~ ed1(@)/h apo(z,m),
lemh) ~ PYERLSR

and if Im Eo = (A — 320 A4)/2

1 S\ (_ih N e ib
““"”’“m(r('ﬁ) Cre) ) BV

where 1(n) and ¢;(z) are given in Proposition 6 and aoy is given in Propo-
sition 7.

5 Appendix - Expandible symbols

Here we recall from [2] the notion of expandible symbol.

We denote by (u;);>o0 the strictly growing sequence of linear combinations
over N of the A;’s. We have for example o = 0, u; = A; and p; = 2, or
Ha = Ay, whether 2X; < A; or not.

First we introduce a convenient notation for error terms. We shall write,
with p € Rt, M € N,

w(t,z) = O(e™*|z|M) (27)

if, for every € > 0, we have

w(t,z) = O(e”W=9|z|M). (28)




Definition 1 ([2], Definition 3.1) Let w be a neighborhood of 0 in R%. A
smooth function u : [0, +oo[xw — R is expandible if there exists a sequence
(ur) of smooth functions on [0, +oco[xw, which are polynomials in t, such
that for any n, N € N, a € N¢

070 (u(t, ) — Zuk(t,:c)e_““) = Qe #N+1) (29)

J=0
If (29) holds, we write simply
u(t, z) ~ Z ug(t, z)e™ . (30)

k>0

Proposition 10 ([2], Theorem 3.8) Let A(t,z) be a real smooth expandible

matrix with A(0,0) = diag(As,...,As). Then, if v(t,z) is expandible, the
solution u(t, z) to the problem

Owu+ A(t,z)z - Opu=w, t >0,z € w,

(31)

u|t=o = O?

is expandible.
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