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Arithmeticity of modular forms over an
algebraic number field of finite degree

Atsuo YAMAUCHI

0 The case of symplectic group

In this lecture we will consider arithmeticities of modular forms over algebraic
number fields which are finite extensions of Q. First let us review the case of
symplectic group, which was mainly researched by Shimura in 1970’s. (See,
2], 3], [4] and [5].

For a totally real algebraic number field F' of finite degree, define

t 0 1[ _ 0 1[
(58)= (58

As is well known, we have det(y) = 1 for any v € Sp(l, F'). Set

Sp(l, F) = {’y € GL(2L, F)

957 = {2 = (2)vea € (C)*|*2y = 2, Im(2,) > 0 foreachvea},

where > 0 means positive definite and a denotes the set of all archimedean
primes of F. Then Sp(l, F) acts on 52 as a((2y)vea) = ((av2y + by)(Co20 + do) ™) yca

with o = ( (é b ) € Sp(l, F) and a,b,c,d € F}. The automorphic factor is

_ d
defined by
Mg)(a’ (zv)vea) = CyZy + dy

for each v € a. For any k = (ky)yca € Z* and any congruence subgroup I' of
Sp(l, F), we denote by MUP(T) the space of holomorphic functions f on H}
which satisfy (f|zy) = f for any v € ' (and are holomorphic at every cusp
if ] =1 and F = Q). Here f|iy denotes the holomorphic function on $7
defined by (fl7)(2) = £(7(2)) [Tyea det (s (7, 2)) . Let M} denote the

union of Mg) (T) for all congruence subgroups I of Sp(l, F').
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We also need to recall the Galois action on modular forms for symplectic
groups. As is well known, any f € Mg) has a Fourier expansion as

F((zo)oea) = 3 olf, 1) exp (zm/:I Ztr(h.,zv)) . 01

hel vEa

where L is a certain lattice in the space of symmetric matrices of degree !
with coefficients in F. Note that c(f, h) # 0 only if the real symmetric matrix
h, is semi-positive definite for each v € a. For f € Mg) as (0.1) and any
o € Aut(C), there exists f7 € Mfg whose Fourier expansion is

£ ((20)vea) = Y _ c(f, h)” exp (zm/—T > tr(h,,z,,)) . (0.2)

heL vEa

This fact is stated in §25 of [5], or essentially in [2], [3] and [4].
Then this Galois action has a relation with Hecke operators as follows.

For any o € Gal(Q/Q), take x(0) € [T, % C @} by [x(0)™, Q] = olo,,.
Then the following proposition is proved in §26.10 of [5), or essentially in [2],

[3] and [4).
Proposition 0.1. For any f € Mg) and any o € Aut(C), we have
fole@ = (fle@)’

for any a,& € Sp(l, F) such that

aEC-(t‘ x?a))d(g x?o))-l’

where C is an open subgroup of Sp(l, F4) which fizes f .

We can naturally define the arithmeticity of modular forms using their
Fourier coefficients. For any subfield 2 of C, put

MO ={fe MY c(f,h) € Q for any h}
feMP|fo=fforanyo eAut(C/Q)}.

In [4], the following was stated.




Proposition 0.2. For any f € Mg), the field Q({c(f, h)},) is finitely gen-
erated over Q.

This implies that any f € Mg) (Q) is contained in Mg) () for some
algebraic number field §2 of finite degree.

Using Proposition 0.1, we can easily verify that this Galois action is com-
patible with Hecke operators. If (an adelized modular form) f is a Hecke
common eigenform of eigenvalues {\(a)},, then f7 is also a Hecke common
eigenform of eigenvalues {\(a)?},. This implies that the eigenvalues of Hecke
common eigen cusp forms are contained in some CM-fields. We naturally
have the following conjecture.

Conjecture. Let f, g, and h be non-zero Hecke common eigen cusp
forms of weight k with respect to a same congruence subgroup having same
eigenvalues. For any o € Aut(C), we have

<gr?,h’ > (<gh>\°
<f,f>) "’

< froo fo >

where <,> means the Peterson inner product and p denotes the complex
conjugation.

This conjecture was proved by Shimura in [4], in case of Hilbert modular
form of weight k € 2Z2 or k — (1,1,...,1) € 2Z®* except for the case k =
(1,1,...,1). The case of general Sp(l, F) (I > 1) was proved by Garrett in
(1] when k = (k, &, ... ,k) with K > 2] + 1.

1 The case of unitary group

Now we can consider the analogues for unitary case using the Galois action
constructed in [6]. Let the notations be in [7]. Then we have the following
relation between the Galois action and the action of unitary group.

Proposition 1.1. Take any f € My(T,¥) and (0;T,%;a) € C,9)(C).
Then we have

(flea) @Y = fleT¥a)|, G
for any a € U(T,¥), & € U(T, Vo) satisfying the following relation (*).

(%) | om € Ch - B(0; T, ¥; a)dnB(0; T, ¥;0) 7,
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where oy, and dy denote the non-archimedean components of a and &, and
Ch is some open compact subgroup of U(T,¥)y so that flgy = f for any
Y€ U(T) ‘I’) N (U(Ta \I’)a X Ch)

This can be easily verified from the definition of the Galois action by
(0;T,¥;a).

We can naturally define the arithmeticity on the space of modular forms
by

(flxe)leo(T, ¥) € MP (@) }

Mi(T, 9)(@Q) = {f € My(T, %) for any o € U(T, ¥)

Then we easily obtain the following lemma. (See, [6).)
Lemma 1.2. Mk(T, \If) = Mk(T, \I’) (@) ®@ C.

Using this Galois action, we can define the arithmeticity of modular forms
over an algebraic number field of finite degree. Let K (T,9) be the composite
field of Ky and all K (T, (1 < j < m—2q), where ¥(T, j) is the CM-type of
K asin [7] and Ky is its reflex field. Clearly the field K{r, g, is a CM-field

since Ky and Ky 7 are so. We denote by H K} gy the Hilbert class field of
K} (T.a) which is ﬁmte degree over QQ, but not generally a CM-field. Set

€[, Oy
[C_l’ KE‘T,'I’)] = a'(KZT‘w))ab .

= {(a, c) € Gal(Q/" K(r.u)) X (K{rw) 4

Then G is a compact group and can be embedded in C(z,4)(C) by (o,¢c) —
(o; T, ¥; Ni1,w)(c)), where

Ny 0 Ny 5,/53(¢)

N’ (o] NK* K* (C)
N(T:‘I’) (c) = \I,(T,l) (T)‘[’)/ ¥(T,1)

!
N‘I’(T,m—%) Nk; 9 K¥(z,m-20) (C)

Then the image of f € M (T, ¥)(Q) by an element of G is also contained in
M (T, ¥)(Q). We can obtain the following proposition.

Proposition 1.3. For any f € My(T, ¥)(Q), the stabilizer of f in G is an
open subgroup.



This means that the set f9 is finite. Hence we can define the arithmeticity
of modular forms over an algebraic number field of finite degree.

Next let us consider Hecke operators. Using Proposition 1.1, we can
prove that this action of (0; T, ¥;a) € Cr,4)(C) is compatible with Hecke
operators, that is,

(£|Z(a))eT¥50) = fleiT¥i0)|F(q),

where f is an adelized modular form for U(T, ¥) and ¥(a) is a Hecke operator.
Note that T(a) in the left hand side is a Hecke operator for U(T, ¥), while
%(a) in the right hand side is the one for U(T, ¥o). Let f be a cusp form
for U(T, ¥) and a common eigenform of ¥(a) for all integral ideals a with
eigenvalues {\(a)},. Then f®T¥i¢) is a common eigenform with eigenvalues
{A\(a)°},. Since A(a?) = A(a) holds, we have (A(a))” = A(a)e for any o €
Aut(C). This implies A(a) is contained in a CM-field.
We naturally have the following conjecture.

Conjecture Let 0 #f,g and gs be cusp forms for U(T, ¥) and common
eigenforms of {T(a)}, with respect to a same congruence subgroup, having
the same eigenvalue for each a. For any (0;T,¥;a) € C(r,9)(C), we have

< g O\0(0; T, ¥;0), 8570 > _ [<g1,82>)°
< f(pap;T,w;g)lc(a; T, ¥;a), f(o;T\¥ia) > <f,f> 3

where C(0;T, ¥;a) = B(pop; T, ¥;a°) ' B(0; T, ¥;0) € U(T, ¥o)s.
Note that f(rorT:¥:89)|C(g; T, ¥; a) and £(*T¥8) are modular forms with re-
spect to a same congruence subgroup.

This conjecture is the first step to more precise research of special values
of L-functions. If this conjecture is proved, we will be able to show that
special values belong to a specified algebraic number field of finite degree.
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