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Tamely ramified factors of zeta integrals for the
Standard L-function of U(2,1) *

Yoshi-hiro Ishikawa
Sz | 4£ i

In the past three decades, integral expressions of many automorphic L-functions have
been discovered and utilized for study of analytic properties of L-functions. But unfor-
tunately, not so much investigation on ramified factors of these integrals has been accu-
mulated, though it is indispensable to arithmetic study of L-functions. Recently there
seems to be a movement of renovation of zeta integral method toward deeper arithmetic
investigation beginning with low rank groups, say GSp(4), U(3).

It is reasonable to begin with the Standard L-function of U(3). So far we have four
different zeta integral expression for this L-function. That is a Rankin-Selberg integral
[Ge-PS], a Shimura type integral [Shi], [Ge-PS], Murase-Sugano’s integral by using their
Shintani functions [Mu-Su] and the doubling integral [PS-Ra], [Tak].

The archimedean factor of the first integral was calculated by Koseki and Oda [K-O],
where it is shown that the GCD of the integrals for all K-finite vectors turns out to be
a product of three I'c’s. Note that this type of zeta integral works only for generic cusp
forms. As for the third integral, Tsuzuki calculated the archimedean component in a
broader setting [Tsu].

In this note, we report some results on ramified factors of the first and second zeta
integrals, which are recalled in §1. In §2, we calculate the archimedean component of
Shimura type zeta integral. After normalization of Eisenstein series, we show that it is,
up to elementary factors, a product of three I'c’s for any discrete series 7, and satisfies
a symmetric functional equation. In §3, we proceed into study of tamely ramified finite
local factors. We begin with the case of Steinberg representation. By using Li’s explicit
formula [Li] of Whittaker function for Iwahori spherical vector, we compute the local
component of Rankin-Selberg integral of Gelbart- Piatetski-Shapiro.

Contents

1 Zeta integrals for the standard L-function 2
2 The archimedean factors 3
3 The case of Steinberg representation 8

*The main part of this work was done during author’s stay in The University of Maryland. He express
his gratitude to the Department of Mathematics in UMD for its hospitality.



113

1 Zeta integrals for the standard L-function

Note that we can obtain the same result without any loss of generality, even if we formulate
the problem over an arbitrary totally real algebraic number field. So we take Q for our
ground field.

Let E be an imaginary quadratic extension of Q and denote the non-trivial element of
its Galois group by ~. Put

1/k 1/k
G = {geGLB,E)|g 1 9= 1 }
-1/k -1/k

where « is an element of E such that Trg/qx = 0. This defines a quasi-split unitary group
of three variables over Q. We need a subgroup

H = Img(L:U(l,l)B(: :)»——» 1 EG)

as the Euler subgroup for a Rankin-Selberg integral.

<Zeta integrals>
For a cusp form ¢ belonging to a cuspidal automorphic representation 7 = ®,m, of
G(A) = U(3)a, Gelbart and Piatetski-Shapiro introduced the following zeta integral

aw@=/ ol (h) ESH (s; h)dh.
H(Q)\H(A)

Here E%¥ is an Eisenstein series on H(A) constructed by a Hecke character £.
We denote a Shimura type zeta integral, first investigated by Shintani [Shi], by

Z(5;9,6,€) := / ©(9)60(9)E*(s; 9)dg-
G@\G(A)

Here E¢ and 6 are an Eisenstein series and a theta series on G(A) respectively. And € is
a Hecke character of E.

<Unfolding and local integrals>
By using the multiplicity one result on Whittaker models and an unfolding procedure,
the Rankin-Selberg integral decomposes into a product of local integrals:

Z(s;0,6) = [] 2u(s: W, ®),

with

2,(5 W5, 0) 1= /Z . W 1, (h) @ ().
N,v v

Here Zy , is the center of the maximal nilpotent subgroup N, of G,, WJ,"’ is a Whittaker
vector for m, and q)és) is a special section of the principal series Ind% (u| - |*) of H induced
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up from its Borel subgroup ¢((* :)). Note that this integral vanishes unless ¢ is a generic
cusp form.

Similarly, by using the multiplicity one result on Fourier-Jacobi models (cf. [B-PS-R])
and an unfolding procedure, the Shimura type integral decomposes into a product of local
integrals:

Z(5:9,0,6) = [ Zols; W, W+ 8%

with

T WO (s)y ._ Oy Ty (s)
Z’U(sv WT? 7W(§77)" Qof) o /}; \G <W(§T,)* (gv) W'r; (gv)>nq)a§ (g‘v)dg'v

Here R, modulo the center is the stabilizer subgroup of Zy,, in a Borel subgroup B of G

for the adjoint action. And WX means a generalized Whittaker vector in Fourier-Jacobi

model for X (see §2) and @f,sg is a section of the principal series Ind$§(c¢| - |*) of G.
<Unramified components>

Over the places where everything is unramified, the local components Z,(s; W, @és)) and

Zy(s;Wr, WE .., ®'®)) of these zeta integrals were computed by Gelbart-Piatetski-Shapiro,
n3 7 () Tok

Shintani and Gelbart-Rogawski respectively.
Proposition 1 ([Ge-PS] §4)
Zv(S; W,:/’:’ (D?)) = Lv(3§ Ty @ gv)
Proof. Use Casselman-Shalika formula. m]

Proposition 2 ([Ge-Ro] §8, [Shi])
Lv(s + %57"‘!} ® gv)
LE,v(s + 1;§U)Lv(23 +1; (le’YE/Q)v)

Proof Use recursion relations, coming from the Hecke action, for unramified generalized
Whittaker vector in Fourier-Jacobi model for 7. O

) e (8)y _
Zy(s; Wy, Wenyer Bog) =

Note the local factor L,(s; m, ® &,) is given by
Lu(3§ Ty & Sv) = LE,v(3§§v)Lv(23§ E,,I/)L.,,(ZS; gv/’/)'

Here v is the unramified character to define the unramified principal series 7, (see §3).

2 The archimedean factors

In this section, we calculate the archimedean component Z.(s; Wy, W(?n)" @ﬂ?) of a
Shimura type integral to have a local functional equation and a nice expression, after
recalling a result of Koseki and Oda [K-O].

<Rankin-Selberg integral >
Koseki and Oda used their explicit formula for Whittaker functions on SU(2,1). Their
result looks quite complicated. But after rewriting the result by our coordinate, it turns
out that their GCD of archimedean integral Z$ (s; W, ®)’s can be written as follows.
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Proposition 3 ([K-O] Theorem 6.8) Let L(s; Df\u)) be the GCD of the family
{28 (s; W, <I>(s 3) | Wi K -finite Whittaker vector, ¢ € S(c*)}.

See §3 for @(3) Then the GCD L%(s; D VY is given as follows.
( ) WheTLA1+A3 > m>A2+A3,

( m when m > 0,0 > Az or
Lls+t—-As+73) when m < 0,m > Aj
s _m _ m ) T(s+t+ %) when m > Az > 0
27T (s+t+ Ay 2)F(5+t A2+2)< s+t 2) when 0> Ag > m
my whenm > 0,A3 >0or
\ Ps+t+As—73) whenm < 0,A3 > m

(2) When Ay + Az > m,

.
_ m when m > 0,0 > A or
T(s+t—As+2) when m < 0.m > Ay
- - A ) Ts+t+3) whenm > Ay >0
27T (s +t+ A= F)l(s+t = A — o) S D(s+¢— 2 om0 Ay m
>
T(s+t+A,— 2 whenm > 0,Ay > 0or

whenm < 0,Ag >m

(3) When m > Al + A3,

( whenm > 0,0 > A, or
— m = NBiV <
Pls+t—M+73) whenm < 0,m > Ay
—s _ m _ m, )} T(s+t+7) whenm > A; >0

whenm > 0,A; > 0or
whenm < 0,Ay >m

F(S+t+A1‘— %)
O

Note that in some cases the GCD in the above list may vanish by virtue of K-type
compatibility. A natural question arises here. Is it possible to regain the third missing
Harish-Chandra parameter A; and to obtain a local functional equation by normalizing
the Eisenstein series E$* on H? We will study this problem in the near future.

<generalized Whittaker vector>
Different from the GL; = U(1,1) case, the maximal nilpotent subgroup N, of our
G, = U(3) is not abelian, is isomorphic to the Heisenberg group. The unitary dual N}
consists not only of unitary characters 7 but also of infinite dimensional irreducible unitary
representations p. So considering Homy, (7|, , ©) seems to be natural. But this intertwin-
ing space is infinite dimensional. This is the reason why the bigger group R,U U(l) x N,
is introduced. Then we have the correct intertwining space Homg, (7rv, Ind RJ?) ie. the

Fourier-Jacobi model of m,. Multiplicity one result dim¢ Homg, (7, Ind vn) < 1 has last
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been published in [B-PS-R]. Here 7 := ¥ ® wp is an irreducible unitary representation of
R, induced from p. When v = 0o, 7 is parameterized by (i, €) € (32\z) x (zZ\{0}). We
give an explicit formula for the generalized Whittaker vectors coming from Fourier-Jacobi
model of 7o, when 7y, is a cohomological unitarizable representation of U(2, 1).

Proposition 4 The moderate growth generalized Whittaker vector belonging to the min-
imal Koo-type of T is given as follows by expanding by the Fock and theGel’fand-Zetlin
basis.

—-Ao

—A2, —A1
e ) )
Here jf is k+ A\ + Ao — i — (sgne)3.
i) When m is a discrete series representation DR'? with Blattner parameter A = [A1, Ag; Ag).
i-1) The case of large discrete series D)' i.e. contributes to HMD,
The generalized Whittaker model exists exactly when £ > 0 and Ay > p+ % , or when{ <0
and Ay < i — 1.

Wa'™ | a(a)

il
Q
=3
~~
Q
N’
VanmaN
—
¥
T
| I
®

c;c’(ay) = 'YISa’sgne()‘)'y_A2+’\1_1Wn,u(27T|e|y2)
with

= (Sgng)—k+2p,—~c Cu= —k+2X —¢ -
2 2
Here c™ = Al + Ag +)\0.
i-2) The case of holomorphic discrete series D;‘;’O i.e. contributes to H®9.

The generalized Whittaker model exists exactly when £ >0 and \y > i+ %

a) = AR -y PRk

i-3) The case of anti-holomorphic discrete series DY* which contributes to H©?.

The generalized Whittaker model ezists exactly when £ < 0 and Ay < 1 — %

o - méy?
dlay) = M) -y Pothem™,

ii) When m is a cohomological unitarizable representation Aq()\) which contributes to H'.
For these representations the indices ji, of Fock basis are always zero.

ii-1) The case of lowest weight module, i.e. contributes to H(1.0),
The generalized Whittaker model exists ezactly when £ > 0.

) = AT -y e

ii-2) The case of highest weight module, i.e. contributes to H®V,
The generalized Whittaker model exists exactly when £ < 0.

- _ 2
ci(ay) = WHQ) - y~HretEem

For normalizing constants vi()), see [I].
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<Shimura type integral >

Theta functions on U(3) is, by definition, automorphic forms obtained by restriction of
theta functions on g})/ﬁ, That is Kazhdan lift [Kaz] attached to the dual reductive pair
(U(1),U(3)) in Spe. It is known that Kazhdan lift is everywhere non-tempered. So the
archimedean component O, of automorphic representation generated by Kazhdan lift is
isomorphic to A4(A\) with g # b. There are two possibility for choice of archimedean
splitting on U(2,1) in S’E(R), ie. a(y) = 0orl. Here we record odd splitting case
only. For a(y) = 0 case, see [Is]. By using our explicit formula (Proposition 5) for the
generalized Whittaker vectors, we can calculate the archimedean component of Shimura
type integral.

Proposition 5 Assume the archimedean component 7o, of cuspidal representation gen-
erated by ¢ is discrete series representation DR? with Harish-Chandra parameter A =
(A1, A2, A3). The archimedean zeta integral vanishes unless

N <B4 (sgné)% <A

When a(y) = 1, the archimedean zeta integral is given as follows, if it does not vanish.
1) When 7 is a holomorphic discrete series D3° and the parameter £ of n = X® (wypy)

18 positive,

(=1)F*+3=%(dim Ty, — 1)! 1t m

gps+i+i+iizha Pels + 2 + 2 As + 5)

Z (3 W‘n’ en)t, )

2) When w is an anti-holomorphic discrete series D?\'z and 1 has the negative parameter
£ <0,
(—1)ﬁ—%~*1(dim 7 — 1) 1

T © (s)y _ t m
Zoo(s, W”) , W(E"l)" q)UE) = 2( )s+ + LA A FC(S + ‘5 + 5 + A3 +1+ -5-)

3) When m is a large discrete series Dy, there are two subcases.
3+) If the parameter £ of n is positive,

—1)#* 3= (dim 7y, — 1)! 1t

1t
— Z—Ay—1
ps+i+i+ -1 e+ Prls—g+g)le(st5+57As +2)

Zoo(s; W, Wy, 8)) = (

3—) If the parameter £ of n is negative,

a—L1_x .
PN (1) 1(dlm'r,\—l) 1 1.t m
Here Py are polynomials in s and cy are constants, see [Is]. O

<Normalization and Local functional equation >
In order to have a local functional equatlon in a symmetric form, we normalize the inter-

twining operator A (s) and a section @), The intertwining operator is defined by

(Au(s).29)(g) := / 8 (w™Ing)dn.

Ny
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where w is the longest Weyl element. Normalize this A,(s) as

Lo(1 - s;€) Ly(1 — 25;€lo7)
Ay(8) = g4(s; §¢)W Lv(2s;€lm(§

then A,(—s)A,(s) =1Id, i.e. self-adjoint.

Lemma 6 Assume u=m <0 and ay) = 1, then we have

£0(25;€lem, ) Ay(s),

Acols)-[dls + £)88)] = e x [d(=5 -

for the section 3% belonging to the corner K -type. Here

iy = (1M = (-1

o]

and

t
d(s + ) = 2%ilc(s + = 5 th= —)I‘c(s+ 5t lrgl)

Moreover if we normalize as
2o W Wy, O)) 1= Zoo(s; W, W, e, d(5)B),

where 8’ = s + & %, then we have a clean functional equation and a nice expression of the
archimedean zeta integral.

Theorem 7 Assume = m < 0 and a(y) = 1. The archimedean component of normal-
ized zeta integral satisfies a local functional equation

Zw (=5 Wy, WE?I . -AOO(S)'(I)E:)) = €uy- 200(3; Wi, W(ET))*’ d s))

and 1s, up to simple factors appearing in Proposition 5, of the following form.
1) When 7 is a holomorphic discrete series Di’o and the parameter £ is positive,

1t
I‘(s+2+——A3+ )I’C(s+ +A1——)FC(+2+7).

2) When 7 is an anti-holomorphic discrete series DA’ and the negative parameter £ < 0,

1t m t m t |ml
r —+ = 1+ —)C —+A—1—-— -+ —).
C(s+2+2+A3+ +2)c(s+2+ 2 2)Fc(s+2+ 2)
3) When w is a large discrete series Dkl, there are two subcases.
3+) If the parameter £ of n is positive,
1t m t m t  |m|

Fc(8+§+—2-*A2-1+'2—)Fc(3+§+1\1——2—)FC(S+§+ 5 ).

3—) If the parameter £ of n is negative,

1 ¢ t m
Fc(s+§+§+1\1 2)Fc(s+ +Az—1——)FC( +2+L§I—).
Here (t,m) € C X Z 1is the parameter of €. O
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The Langlands parameterization of irreducible admissible representations of real re-
ductive group says the archimedean factor should be R

3
t kd
Loo(3;7roo ®£oo) = EFC<3 + 5 + Ai + *2“)’
with the Harish-Chandra parameter (A;, Ay, Az) for me = DR
So the ratio Zu(s; W/, W(?n)*’ <I>f,?) /Loo(8; oo ® €oo) is rational function, sometimes
polynomial, in s. Here is a question. Is it possible to find an appropriate K -finite
generalized Whittaker vector by which the zeta integral Z(s; W, W(?n)., @f,sg) expresses

local factor Lo (S; Moo ® €o) itself?

3 The case of Steinberg representation

In this section, we calculate the local component of Rankin-Selberg integral for the Iwahori
spherical Whittaker vector in the Steinberg representation. From now on we denote p
for a fixed finite place v and p for the place of E which lies over p. Assume E;/Q,
is unramified extension. Let G, denote the Q,-valued points G(Q,) of G and J the
Iwahori subgroup of the hyperspecial maximal compact subgroup K, := G(Z,), defined
as J mod p = B(Z,/pZ,), i.e.

0, O, O,
J = p op OP
p » O

<Iwahori spherical vectors>
We recall Borel’s characterization of Iwahori spherical representations.

Proposition 8 ([Bo]) For an irreducible admissible representation m, of Gp, the follow-
ings are equivalent.

(i) 7, has a non-zero Iwahori spherical vector, i.e. 7, # {0}.

(i) m, is a subquotient of unramified principal series I,(s).
Here I,(s) := Indg;u! -|* (V' o det) with unramified characters v, V'. a

The reducing points of I,,(s) is known for our group Gj.

Proposition 9 The principal series representation I,(s) is reducible exactly when s =
+1,+1,0. 0
b 2’

Especially when s = +1, we have
0 — St(V) - L(+1) — V' odet — 0.

The representation St(v’) is the Steinberg representation.
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Lemma 10 The Steinberg representation St(v') has unique Iwahori spherical vector up
to constant multiple, i.e. dime St(v')? = 1. Moreover the vector is given by ®5 :=
—p®, + B, i.e. St(V')) =C @5'. Here ®, denote the characteristic function of JsJ with

SOOI
Proof. Just trace the argument of Casselman in [Cas]. O

<Whittaker vectors>
Let
A, L(s)—C

be the Whittaker functional with respect to a non-degenerate character ¥ of Ny, i.e.

Ay(R(n).¢) = ¥n(n)A,(¢)

for Vn € N, and for V¢ € I,(s). Here R(*) means the left regular representation.
Fortunately, it can be easily checked that the Whittaker vector coming from the Iwa-
hori spherical vector &5t coincides with Jian-Shu Li’s w? up to constant, i.e.

A, (R(g)-®%) = (const.)W(g).

Li obtained an explicit formula for four J-spherical Whittaker vectors w (i=1,...,4)
on arbitrary quasi-split reductive group G,. wit is K,-spherical and his explicit formula

is Casselman-Shalika formula. We need W2 for our purpose, and write down Li’s formula
in the case of G, = U(3).

Proposition 11 ([Li]) We denote #(E,/O,) by qg. Fork € Z>,

w( ( p 1 . ) ) = {(1 - qf_;ll/(p)) (1 +p_11/(p)> y(p)F+!
p
kl?

+Hag = o) (77 +v0) 0™} B

O

<Zeta integral >
Now we compute the local factor Z.(s; W, @é")) of Rankin-Selberg integral for the Stein-
berg representation St(v') by a standard procedure.

Theorem 12 When m, = St(v') and W, is the Iwahori spherical Whittaker vector w2
N Tp,
Z,(s; Wy, <I>és)) expresses L p(s; &) Lp(28;€v).
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Proof. By the Iwasawa decomposition H, = Zy,A,Ky with Ky := K, N Hp, the local
integral is

a

s 8 8 sda
Z,(s; W5, &) = / ( WA )k) @Y (k)dk ) (a)af? Pk

Ap -1

a

For the inner integral, use the decomposition

Kn=1(To@)U ] (1 :1”) (_1 l)Po(aa))

zmodp

For the outer integral, insert Li’s explicit formula (Proposition 11) and section of the
form,

(s} ._ ; séf
o= [ e}
with ¢ € S(E, () ® E, (3)) Choose @ suitably. O

<Problems>
Several problems are remained. First, there are other tamely ramified m,, i.e. sub-
quotient of I,(+3) and 1,(0). Is it possible to calculate local Rankin-Selberg integral

Zo(s; Wy, CPES))? There is a related result of Watanabe [Wat]. Second, it is also interest-

ing to study ramified local factors Z,(s; Wy, W(?n)*’ @f,?) of Shimura type integral.
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