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COMPACTIFICATION OF THE ISOSPECTRAL VARIETIES OF
NILPOTENT TODA LATTICES

LUTS CASTAN AND YUIJT KODAMA

ARSTRACT. The paper concerns a compactification of the isospectral varieties
of nilpotent Toda lattices for real split simple Lie algebras. The compact-
ification is obtained by taking the closure of unipotent group orbits in the
flag manifolds. The unipotent group orbits are called the Peterson varieties
and can be used in the complex case to describe the quantum cohomology
of Grassmannian manifolds. We construct a chain camplex based on a cell
decomposition consisting of the subsystems of Toda lattices. Fxplicit formu-
lae for the incidence numbers of the chain complex are found, and encoded
in a graph containing an edge whenever an incidence number is non-zero. We
then compute rational cohomology, and show that there are just three different
patterns in the calculation of Betti numbers.

Although these compactified varieties are singular, they resemble certain
smooth Schubert varieties e.g. they both have a cell decomposition consiting
of unipotent group orbits of the same dimensions. Tn particular, for the case
of a Lie algebra of type A the rational homalogy /cohomology obtained from
the compactified isospectral variety of the nilpotent Toda lattice equals that
of the corresponding Schubert variety.

1. INTRODUCTION

Let g denote a real split semisimple Lie algebra of rank I. We fix a split Cartan
subalgebra i with root system A = A(g,h) = At U A, real root vectors €q,
associated with simple roots IT = {a; | i = 1,.-.,1}. We also denote {hn,, exn,}
the Cartan-Chevalley basis of the algebra g which satisfies the relations,

[hat,;, hrxJ'] = 0: [hrr.'s e:haj] = ic-’,ieiaj 3 [er}:“ s—ﬂj] = Si‘thj,

where (Cj ;) is the I x I Cartan matrix of the Lie algebra g and C; ; = a( haj). The
Lie algebra g admits the decomposition,

g:;V_&Bb@N+:N‘$B+:B"EBN+,

where /% are nilpotent subalgebras defined as Nt = Y aca+ Re, with root vectors
€q, and BY = N'* @ § are Borel subalgebras of g

1.1. The genéra]ized Toda lattices. The Toda lattice equation related to the

Lie algebra g is defined by the Lax equation, [3, 13],
dL

(1.1) i [L,A]
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where L is a Jacobi element of g, and A is the A'~-projection of L, denoted by
- L,

i 1
L{#t) = D bi(Dha, + Y (aslt)e—n; + €as)
(1.2) i=1 . i=1
A(t) = HN— L= Zai(t)e-m'
i=1

The Lax equation (1.1) then gives the equations of the functions {(a;(t), b:(t)) |i =
1,---, l}, :

db; “

a ~ '
(1.3) : da; !

7t = — z C";,jbj a;

j=1
The integrability of the system can be shown by the existence of the Chevalley
invariants, {I4(L) : k = 1,--.,l}, which are given by the homogeneous polynomial
of {(a;,b;) : i =1,-..,1}. Those invariant polynomials also define the commutative
equations of the Toda equation (1.1),
(1.4) g_t_é = [L,Ty-VI(L)] for k=1,---,1,
k

where V is the gradient with respect to the Killing form, i.e. for any z € g,
dI,(L)(z) = K(VIk(L),z). For example, in the case of g = sl(l 4+ 1,RR), the
invariants I (L) and the gradients VI (L) are given by

1
I;,(L):mtr(L’”") and VIg(L) = L*.

The set of commutative equations is called the Toda lattice hierarchy.
In this paper we are concerned with the real isospectral manifold defined by

Z(?)R: {(ah"' )al)bh"':bl)emzl : Ik(L):7k€R: k:]-)"'yl}-

The manifold Z(v)g can be compactified by adding the set of points corresponding
to the blow-ups of the solution {(a;, b:)}. The set of blow-ups has been shown to be
characterized by the intersections with the Bruhat cells of the flag manifold G/B*,
which are referred to as the Painlevé divisors, and the compactification is described
in the flag manifold [9]. In order to explain some details of this fact, we first define

the set F,,

f’i = {L€6++B— I Ik(L) =Yk, kzl’ ,l},
where e, = Z: _1 €a; € N*. Then there exists a unique element ng € N, the
unipotent subgroup with Lie(N~) = M~ such that L € F, can be conjugated to

the normal form Cy, L = noCyny' [12]. In the case of g = sl(l + 1,R), Cy has a
representation as the companion matrix given by

0 1 0 0

0 0 1 0
C“I: )

0 0 1




NILPOTENT TODA LATTICES

where the Chevalley invariants are given by the elementary symmetric polynomials
of the eigenvalues of L. In this paper, we are particularly interested in the case
where all 45 = 0, which implies L is a (regular) nilpotent element, and we denote
Cy as a representation of the element ey . In order to discuss a compactification of

the isospectral manifold, Z(%)g, let us recall:

Definition 1.1. [9]: The companion embedding of F., is defined as the map,

F, — G/B*
L — n61 modB*

Cy :

where L = ngC'.,.ng1 with ng e N—.

The isospectral manifold Z(v)r can be considered as a subset of ¥, with the
element L in the form of (1.2). Then a compactification of Z(y)g can be obtained
by the closure of the image of the companion embedding ¢, in the flag manifold

G/B*,

Z('Y)IB = ¢y(Z(7)R) - A
One can also define the Toda flow on F., as follows: First we make a factorization
of et € G,
(1.5) exp(tL%) = n(t)b(t), with n(t)e N~, b(t) € Bt.
where L° is the initial element of L(t), i.e. L(0) = L° and B™ is the Borel subgroup
with Lie(B*) = B¥. Then the solution L(t) can be expressed as
(1.6) L(t) = n(t)™" Ln(t) = b(t)LOB(t) """
Here one should note that the factorization is not always possible, and the general
form is given by the Bruhat decomposition, that is, for some ¢ =t,,

exp(t.L%) € N"wB" for some we W,

where W is the Weyl group of reflections on A(g,%). We will discuss this in more
detail in the following section (see also [9, 1]). Then one can show:

Proposition 1.1. [9] With the embedding cy, the Toda flow maps to the flag man-
ifold as
0 = ny ' mod Bt

Ad(n(t)'l)l l
ng 'n(t) mod BT

L(t) —1— = n51e“r’0 mod Bt
= ¢'“vny' mod BF

where L° = noCyng', and n(t) € N~ is given by the factorization (1.5).
The commuting flows (1.4) can be also embedded in the same way, and taking the
closure of the Toda orbit generated by all the flows, we can obtain the compactified

manifold Z(y)g in terms of the Toda orbit. Then the compact manifold Z(7)r
for a generic ¥ € R’ is described by a union of 2! convex polytopes I'c with ¢ =
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(€1, -+, €), € = sign(a;), and each ' is expressed as the closure of the orbit of a

Cartan subgroup with the connected component of the identity G%:

Proposition 1.2. {Theorem 8.9 in [7])

Ziyr= |J T

ec{t}!
with

!
I'e={gn:' mod B+ |geG% }, G = {exp (ZthIk(Cy)) | tk €R },
k=1

where ne € N~ is a generic element given by L, = 71563‘771;1 for each set of the

signs € = (e1,- - -, &) with & = sgn(a;).

Here note that GC~ is the connected component including the identity element.
Thus in an ad-diagonalizable case with distinct eigenvalues, the compact manifold
Z(~)r is a toric variety, i.e. GSv-orbit defines (R*)*-action, and the convexity of T,
is a consequence of the Atiyah’s convexity theorem in [2]. The smooth compact-
ification is done uniquely by gluing the boundaries of the polytopes according to
the action of the Weyl group on the signs (e, ..., ) (Theorem 8.14 in [7]). The

W -action is defined as follows:

Definition 1.2. (Proposition 3.16 in [7]) : For any set of signs (€1, -+, €) € {1},

a simple reflection s; := 84, € W acts on the sign ¢; by
8; 1 €5 —F €€ C“.

The sign change is defined on the group character x., with ¢; = sign(xa,) (recall

s; - = a; — Cj ;). We also identify the sign ¢; as that of a;, since the condition

X, = 0 corresponds to the subsystem defined by a; = 0.

Note that each polytope I is identifiable with a connected component of a
Cartan subgroup, and the construction of the compact manifold Z(¥)r given in
[7] is an extension of the work of Kostant [13] where the signs of the off diagonal
elements a;’s in L are assumed to be positive, i.e. only considered the polytope

Py
The compact manifold Z (Y)r can be also considered as the real part of the

complex variety Z(y)¢ (Theorem 3.3 in [9]),
5 C
Z(v)e := Gg"w. B¢ / B¢,

where w, is the longest element of the Weyl group. Since w. Bé /B¢ = w,Bt/B%,
the real point w,B* /BT is considered as the center of the manifold which cor-
responds to the blow-up point (see Section 3 for more detail). In particular, the

polytope T'¢ with ¢ = (—...—) can be identified as the GC~-orbit of the point
w, Bt /Bt,
r.. . =G%uw,B+/B+.

In the generic case of v € R, the GC~-orbit defines a toric variety, and then
following the paper [7], we have:
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Proposition 1.3. The polytope I', has a cell decomposition using the Weyl group
action on the polytope,
(1.7) e = || || wlesw o).

JCH [wlew/w
Here WY is the Weyl subgroup defined by W7 := Wip\y = (Sa;]ai € TI\ J), and
or(e) =cgler,..., &) = (o1,...,0,) is defined as

sl 0 if  aed,
k= (3 if akéJ.

The unique I-cell (B; [e]; ¢) = GCvw,B*/B* labels the top cell of I'.. Each cell
(J;[w]; os(w™" - €)) has the dimension [ — |J|, and the number of those cells are
given by |W|/[W7|. Each cell (J;[w];os(w™" - €)) can be also associated to the
subsystem of the Toda lattice having the signs and zeros,

sign(a;(t)) = (a:,v(w"1 -e))j for t<«O0.
One can also define the orientation of each cell by the length of the Weyl group

element, that is, we denote
(1.8) o((J; [wh oy (w™ - €))) = (1)),
where (w) is the length of w.

Example 1.3. si(2,R): The compact maifold Z (7v)r is a union of two line seg-

ments,

Z(’;’)R:I‘—-UP+:

with the decompositions,

To = Bl (-huU{arl;e0)U{ar}; s1;(0)),
Ty = @;lel; () U {ar};e(0)) U {as}; s15(0)),

Thus the compact manifold Z(vy)g is diffeomorphic to the circle.

Example 1.4. s{(3,R): The polytope T is given by a hexagon having the de-
composition with the following cells: For example in the case of € = (——), we
have
e 2-cell: this is the top cell (§;[e]; (——))
e l-cell: there are six l-cells having either J = {1} or J = {a2};
({ar b [el; (0-)), ({an }; [s1]; (04)), ({an}; [s251]; (0-))
({a2};[e]; (=0)), ({a2}; [s2]; (00, ({az}; [s152]; (-0))
o 0-cell: there are six 0-cells, (II; w; (00)) for each w € W.

(See also Figure 1, from which one can easily label the boundaries of the hexagons.)

In the case of the nilpotent Toda lattice (v = 0), the compactified isospectral
variety 1s given by

Z(0)g = GCow,B+/B+,
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that is, the variety is the compactification of unipotent group orbit of a regular
nilpotent element Co € Nt in the flag G/ B+. One should note that the G®-orbit
defines an Rl-action and it can be obtained by a nilpotent limit of the polytope
I _ with several identification of the boundaries. The compactified variety Z (0)r
is singular, which will be also discussed in the paper. The study of the topological
structure of this variety Z(0)g is the main purpose of the present paper.

Remark 1.5. The GCo-orbit has been studied in the context of the quantum co-
homology of the Grassmann manifold (see e.g. [16]), and it is called the Peterson
variety [14]. Then Peterson’s theorem identifies the quantum cohomology ring of
the Grassmaniann Gr(k,l+ 1) in ¢+ denoted as QH*(Gr(k,! + 1)) ® C with the
coordinate ring of a particular variety V41 (Definition 3.1 in [16]) which is the
Painlevé divisor D{*} defined in Section“3 of the present paper. The varieties
plee} play a crucial rule in the compactification of the G°-orbit in this paper. We
also discuss singular structure of the Painlevé divisors.

Tt is also known that the solution {a;(t), b;(t)} of the Toda lattice equation (1.3)
can be expressed in terms of the 7-functions [13],

1
(19) () = a8 [L ()3, () = Zinmsle),
k=1

where the 7-functions, 7;(t), are defined by (Definition 2.1 in 9D

(1.10) ~5(t) = <e”’° vwf,UWi> .

Here v is the highest weight vector in a fundamental representation of G, and
(,-) is a pairing on the representation space. Note from (1.9) that the 7-functions
satisfy the bilinear equation,

(1.11) myr — ()2 = & [ (re(e)) =%
k#i

In the next section, we consider the case of g = s{({ + 1,R) in the matrix repre-
sentation, and give explicit formulae of the r-functions.

1.2. Toda lattice of type A;. Here we consider a matrix (adjoint} representation
of sI(l + 1,R) on R**'. With the factorization (1.5), one can construct an explicit
solution {aj, b;} in the matrix form of L(t) which is given by a tridiagonal matrix,

by 1 0 0
ar ba—by 1 0
(1.12) La=|": ;
0 e by — by 1
0 a —b

In order to construct the explicit solution, we start with the following obvious

Lemma which can be also applied to other Lie algebras.
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Lemma 1.1. The diagonal element b; ; of the upper trianguler matriz b(t) € B+
in the factorization exp(tL°) = n(t)b(t) is expressed by
D; lexp(tL°)]
bjg(t) = —70
D;j_1[exp(tLO)]
where D;[exp(tLP)] is the determinant of the j-th principal minor of exp(tL°), that
is, with a pairing {-,-) on the exterior product space A\’ R'*,

(1.13) Dj[exp(tLo)] = <etLDeg Ao Aej_q, egA--- A ej_1> .
Here {e;} is the standard basis of R,
Here the pairing (-, ) on A’ R™" is defined by
(vi Ao Awj, wr A Awj) = det [((Om ), Wn))1<man<s]

where (v, w,) is the standard inner product of v, w, € R,

The group G = SL(I+1,R) has | fundamental representations; these are defined
on the j-fold exterior product of R**" for j = 1,---,l. Then the heighest weight
vector on the representation space A’ R'*! is given by

‘ij :60/\81 /\"-/\Ej_1 .
We then obtain the following Proposition which gives the solution formula (1.9) in

the case of g = sl(l + 1,R):

Proposition 1.4. The solution {a;(t),b:(t)} in the matriz L(t) in (1.12) can be
given by

Diy1 D d :
ai(t) = a?*—-"—l;Ti, bi(t) = B—t-lnD,‘ ,

that 1s, 7;(t) = D;[exp(tL°)] of (1.13).
Proof. From L = bL°b~" in (1.6), we have

b ,
C— A0 41,541
aJ__aj_____.,

bj.j
Then using Lemma 1.1 for the diagonal element b; ; of ¥ € B*, and (1.3) for the
equation of b;, we obtain the above formulae. a

Note that the solution for the Toda lattice hierarchy containing all the commut-
ing flows (1.4) can be expressed by the same formula with the 7-functions,

Tty - ) =(g(t, - t) cea A A1, 0 A Aegja)
where g(t1,---,4) € SL(l + 1,R) is given by

l
g = exp (Z tk(Lo)") )

(Recall that VI; = L7 for sl(l + 1,R).) The Toda orbit g-ep A---Aej_1 on the
representation space A’ R*t' plays an essential role for the study of the topology
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of compactified isospectral manifold Z{v)g (see Proposition 1.2). The Toda orbit
of the generic element is given by
ik € R} .

i
+G% g Ao A €i—j+1, Wwith GCr = { exp (Ztkc’};)
k=1

Here the highest weight vector v; = eg A+ -Aej_1 is mapped by the longest element
w, to the lowest weight vector w,v; = (=179 ~D/2¢ A Ae_jqa.
In the case of (regular) nilpotent L, G®° has a representation,

1 po p2 -+ m
. 0 1 p1 - Py
(1.14) G = exp (Ztkcg) =1t 1 . Cc Nt+.
k=1 0. 0 -.- 1 P :
0o 0 --- 0 1

Namely this is an N*+-orbit given by the stabilizer of the regular nilpotent element
Co € N*t. Here {pi(t) | k = 1,---,1} are the Schur polynomials of (ti,--- )

defined as
i fo's)
exp (Z tk)\k) =) p(tAF,
k=1 k=0

where pg = 1. Those Schur polynomials p () are complete homogeneous symmetric
functions in terms of {zx |k = 1,---,1} defined by #; = (Zi-:., z¥)/k, and they are
expressed by
t?ltga .. .tha
ty,---,t = e S
pk(h ) k] Z k]'kgrkn‘

_ ki+2ka+ +nkn=k
(1.15)
th t 2ty
ko (k—2)!
The 7-functions corresponding to the generic orbit are then given by
(1.18) Ti(ty, - t) = {(gW. €0 A-oAej, eoAN---Aej), g€ G

In terms of the Schur polynomials, those are given by the Hankel determinants,

+ +- gty Hig

b D1 Pi-2
y T3 = |PI-1 pPi-2 Pi-3
Pi-2 P1-3 Pi-4

y % P
Pi—-1  Pi-2

=D, T2:|

(Note 8%p,/8t¥ = pi_k, and see the next section for the representation of those
Wronskian determinants using the Young diagrams.) Then the corresponding nilpo-
tent matrix L(t) evaluated at t = (1,0,...,0) is given by

{ 1 0 e 0
-l 1—-2 1 e 0
L(l,O,...,O): 0 —2(!—1) l—4 ... 0
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The 7-functions are also computed as

k(k—1) (k — _})I Ik
Tk(11,0,...,0) = (=1)"= Hml—)’t?( +1)
J=1 :

Here note the multiplicity of the zero at ¢y = 0 (this will be discussed more details
in Section 3). Also note that = # 0 if t; # 0, and the corresponding functions
a; = Tjp7i—1/7} are all negative.

Example 1.6. s[(2,R): The Lax matrix L and the companion matrix C are given

by
b 1 6 1 .
L:(a *b)’ 07:(_7L0) with y=—a—b.

For the semisimple case, i.e. ¥ # 0, the C., with ¥ = —A? can be diagonalized as,

A0 1 . 1 1
= & th V= .
A

Then the 7-function is given by

71 (t) = (! w.eq, €0) = :\l—sinh()\t) .

The correspondng solution (a(t), b(t)) is given by

a(t) = —A%csh?(At), b(f) = Acoth(At),
which blows up at ¢ = 0, and as ¢ — +oo the solution approaches to the fixed points
(a = 0,b = £A). This describes the I'_ polytope in Example 1.3. The nilpotent
case (v = 0) can be also obtained by the limit A — 0, that is, we have

Tty =t.
The ', polytope is obtained by the GC~-orbit of the point eB* /B¥,
() = (e*“7eq, €0) = cosh(At) .

The solution (a(t), b(t)) is given by

a(t) = Msech?(Mt), b(t) = Atanh(At).
Notice that in the nilpotent limit A — 0, the r-function takes 7 = 1, and the
corresponding orbit is just the unique fixed point (a = 0,b = 0). Thus the polytope
T, is squeezed into the O-cell. This is true for the general case, that is, the polytope
I'. having at least one positive sign in € is squeezed into a lower dimensional cell
in the nilpotent limit. Then the compact variety A (O)g can be obtained by glueing
the boundaries of the I'___ polytope in the nilpotent limit. This is a key idea for

the compactification of the unipotent orbit G , and will be explained more deails

through the present paper.



48

LTUIS CASIAN AND YUJI KODAMA

2. FLAG MANIFOLD G/B7T AND 1HE BRUHAT DECOMPOSITION

In this section, we summarize the basics of the flag manifold G/B¥ and the
Bruhat decomposition for G = SL(l + 1,R). The purpose of this section is to fix
the notation and to make the present paper accessible to the reader who is not
familiar with Lie theory and algebraic geometry. Those subjects can be found in

the standard books, for example [10].

2.1. Grassmannian and cell decomposition. Let Gr(k + 1,1 + 1) be a real
Grassmannian of the set of (k + 1)-dimensional subspaces of R'*'. A point £ of the
Grassmannian is expressed by the (k + 1)-frame of vectors,

i
£= 6061, &l with & =) &je e R,
=0

where {e; | i = 0,1,---,1} is the standard basis of R**', and (£;;) defines a (I +
1) x (k + 1) matrix. Then the Grassmannian Gr(k + 1,/ + 1) can be embedded
to the projectivization of the exterior space AT R, which is called the Pliicker
embedding,

Grik+1,1+1) < PATTRHY
E=1[6o, &kl — LA A&

Here the element on P( /\k‘H R") is expressed as

Eo N AN, = Z E(io, - ,ix) Cio N7 AEiy
0<io< <ix <t

where the coefficients £, ... i,) give the Pliicker coordinates defined by the deter-
minant,

€ig0 0 ik
§tio,ix) = l€i0,0, - s &inyoll ==
Ciok - Gink

1t is also well known that the Grassmannian can have the cellular decomposition
[10],

_ k+1
(21) Gr(k + ]-:l + 1) - I__l W(i'o,---,ik)
0<io<-+<ip &l
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where the cells are defined by

( 00 0 -\ )
0 0 O k41
10 0 - ~

Wil .y = Jg: + 0 0 € R*' x...x RH"

01 O
0 0 1
* %k

\ \ P . -

= { the set of (I + 1) x (k + 1) matrices in the echelon form
whose pivot ones are at (i, - - - , i) positions }

Namely an element & = [£o, -~ ,&] € WiiT ! ;,) 15 described by

k41 (1) ﬁ(, S k) ?é 0.
(€ W(io:-“ﬂk) A { (ii) f(j:’...,jk) = 0if j, < i, for some n € {0,--- ,k}.

Each cell W};:?.-,ik) is labeled by the Young diagram Y = (ip, -+ ,ix) where the
nummber of boxes are given by £; = i;~j for j = 0,-- -, k (counted from the bottom),
which expresses a partition (£, %_1,- - -, %) of the number |Y] := Zf:o £;, the size
of Y. We then denote it as Wgi!! ., = Wy,,,. The codimension of Wit ) I8
then given by the size of Y,

codim WVk+1 = 'Yk+1 I,

and the dimension is given by the number of free variables in the echelon form.
Note that the top cell of Gr(k+1,1+1) is labeled by Y = (0,1,---,k),ie. [Y|=0,
and

dim Wg1,... k) = dim Gr(k+ 1,1 +1) = (k+ 1)(I — k).
2.2. The Bruhat decomposition of G/B*. We now consider a diagonal embed-
ding of the flag manifold G/B* into the product of the Grassmannians Gr(k,!+1),

(2.2) G/B* < Gr(lL,l+1) x Gr(2,0+1) x --- x Grl,l+1)
’ xr — (W1, W’z’ ] Wl)
where the subspaces {W7|j = 1,---,l} define a complete flag,
{ocw'cw?c...cWw cR*,

This defines the Bruhat decomposition of the flag manifold G/B*,

G/B*= || wn,---,Y], with WX, - Yi]:=Wy,, -, W),

Y1 <-<Y]

where the order < is defined by
Y < 1Y},-.H ¢d'—9£> WYI, - WYk+1~

In terms of Yk = (io, i1 y T )ik—l) and Yk+1 = (jo,j1 st ,jk), the order Yk -~ Yk+1
implies the inclusion between the non-ordered sets,

{iD)iT)"' )ik—1} C {jﬂsj1:"' )jk}'
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The Bruhat cell WYy, -- ,Y)] is also expressed as
WIY:,.- Y]] = N"wB*/B*,

where the corresponding Weyl element w can be found by the W-action on the
Young diagrams which is defined as follows: Let sx := sa, € W be a simple
reflection. Then the W-action is defined by

Sk ¢ [{]U}: ,{jO,“' sjk~1}:{j03"' tjk—hj{v]”"":‘{jof" ,jl—1}]
= HJO}) ;{jﬂ:" . :jk—Eajk}){]Oa"' an—h.?k}) :{jO»' 0 :j1—1 }]

where we have expressed the Young diagram Y41 = (io, - - ,ix) as the non-ordered
set {jo, -+, Jx} = {io, -~ ,ik}. Thus the sg-action gives the exchange, jk—1 < Jk-
"Thus the Wey] element w associated with the Bruhat cell W[Ys,- - - , Y1) is expressed

by the permutation, (0 ! ;l), that is, jx = w(k),

Jjo N
:
w=Y Ekj,
k=0

where Ej; is the (I + 1) x (I + 1) matrix with 1 at (4,j) entry (& needed for
det(w) = 1). Also the codimension of the Bruhat cell W[Y1,--- ,¥i]= N ~wBt/B*

is given by
codim W[Y;, - Y] = £(w) = |[Y1U---UYi|.

Example 2.1. The top cell is given by
*V_B+/B+ = W[(0)> (0) 1)! (0: 1a2): Tty (0; L2 :l - 1)] )

where all the Young diagrams have no boxes, i.e. Y; =@ for k=1,---,l. Then for

example it is obvious to get the following cells,

N~51B+/B+ = W[(l),(o,l),(0,1,2),“',(0,1,'-',1—1)],
N—5251B+/B+ = W[(l),(l,?),((],l,?),--',(0,1,"',1—-1)],
N—STSQSTB+/B+ = W[(2))(1)2)’(0a1:2))""1(0,17"')1_1)]7

The unique 0-cell is corresponding to the longest element w, € W with L(wy) =
%l(! + 1),i.e.
JV—w*B+/B+ = w*B+/B+ = W[(l)a (l - 151)1 e )(152: T :l)] )

where each Young diagram Yy = ({ —k+1,---,1 — 1,1) has a rectangular shape
with k stack of (I — k 4+ 1) number of boxes in the horizontal direction.

3. TODA ORBIT AND THE T-FUNCTIONS

Here we consider the Toda orbit given by a GC°-orbit on the flag manifold
G/Bt, and give explicit representations of the r-functions for G = SL(Il + 1,R).
The discussions in this section can be also applied to the generic case of v with some
trivial modifications. The main purpose in this section is to give an elementary proof
of Theorem 3.3 in [9] (Theorem 3.1 below), which provides an explicit description
of the Painlevé divisors (the sets of zeros of r-functions) as the sets in the flag

manifold G/B*.
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3.1. Generic orbit and the 7-functions. Through the diagonal embedding (2.2),
we consider the orbit of the highest weight vector on the representation space
AT RI+T whose projectivization defines an orbit on the Grassmannian Gr(k +

1,0+ 1), ie.
Jws €gANey N Aep =& AE A€, for gEGCO,

where £x 1= gw. -€x. In terms of the 7-function, 7 := (€0, e0) = p1 (see (1.16)), the

orbit & on R is given by

LT onr (2)
& = Zﬂ('ﬂ- )6_7', with T,(n> - _——&1" = pl_n(t),
=0 1

and gw, has the form,

(0 I
La) LR Tx( ) P P 1
(3.1) L ST p-i p-2 o 0
. guws = . . . ) = . . . .1,
. 1 0 -0

which is the Wronskian of { T,(k) | k=0,1,---,1}. Then we have

EoN--- A& = E f(io,'--,ik')eio/\"'/\eik-

. 0<io<  <ip <t
Here the Plucker coordinate {(,,... i,) is given by
X fir
(3.2) 5(50'_“‘“) o “,7.1(10), L. ’7.1\11=)H )
Here “T1(i°), e ,1'1("")“ becomes the Wronskian of {’rfij) [j=0,1,---,k}. In par-
ticular, note that (1.16) becomes
0 (k)
mar = 7, = el

where py are the Schur polynomials in (1.15). Thus the 7 4¢-function is given by
the Schur polynomial associated with the rectangular Young diagram having & 41
stack of { — k horizontal boxes, i.e.

(3.3) Tegr (b1, 1) = (—l)k i Stk i—k41.ntr, ),

The Schur polynomial Sy (%;,---,%) associated with the Young diagram Y =
(0,21, -+, 1) is defined by
Siois,ew i) 7= 1Pios Piy - 1 Pil) -

Note here that the Young diagram of the Schur polynomial p;, = Si;,) is the 4
horizontal boxes. With the duality between the Grassmannians Gr(k + 1,1 + 1)
and Gr(l — k,1 + 1), i.e. A*T'RPT = A'TF R one can express 7441 in terms
of S(1,,...5y = £n (instead of 71): Let us denote the Schur polynomial with ¥ =
(1,-- -, k) as py;, which is related to the elementary symmetric function whose Young

diagram has k vertical boxes, i.e.
PE = 5(1,2,.--,k) = |lp1,p2, Pl -
Define the dual 7-functions, denoted as 7T y1, by

(3.4) Trar = |lpr oo - PRl
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Then we have
Tht1 = EThit -

This can be shown by using the duality given in [15] where the Schur polynomial has
a dual expression associated with the conjugate Young diagrams, Y = (o, ,dm)
where (jg,j1—1- -+, jm — m) represent the numbers of boxes in the Young diagram

in the vertical direction, that is,

S(io,il,"',ix) = ”pin)piu e ypihn
= 5(%)’.7.—1"'1%—) = “ jU’ jl’ e ,p.?;;“ :

For examples, py = S(1,2,.. 1) and pr = S{T,Z...,T)- One should note that the dual
7-functions are defined by the fundamental (lowest weight) representation,

(3.5) Trp1 = 2(Jws -t A Neig, egn-Ne—g),
where § = (g=')7 € N~ and gw, is given by
0o - 0 +1
g—w* e . . . -
0 - Fpmy Frm
1 - Fo=m *mr

3.2. The Painlevé divisors. Now we consider how the GO-orbit intersects with
the Bruhat cells. We first collect the information on the zeros of 7-functions and

their multiplicities.
For each J = {o441, -~ , @ip, } C II, we define T as the set of zeros of 7-functions

given by
| ﬂ::{t:(t1,-.-,t,)em’ rj(t):OifajeJ}.
Then we have:
Lemma 3.1. For each simple root aj € J, 7j(t) has the following form near its
zerot =t; € Ty withty = (tsr,...,tn),
(3.6) Tigk(tr, )= (1 —tn)™ +---, with mp=k(s+1—k), 1<k <s.

Proof. Substituting (3.6) into (1.11), and using 7i(ts) # 0, we have m; =
k(mi + 1 — k). Then Tiy,41(ty) # 0 implies my = s. a
We then have the following Proposition on the cell, with which the Painlevé

divisor intersects:

Proposition 3.1. For allt € Ty with J € II, the orbit g(t)w, Bt /B* stays on the
cell W[Y3, - -, Yi] where the Young diagrams Y; are given by

Yk = 0, fOI' k=1,,z

}Ii+k (s_k+l)"',s) fOI' k:1,~--’s
Yigorh = 0, for k=1,--- - (i+5)

i
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Proof. Let us first consider the case with ¢ = 0, ie. J = {a, -, a,}. Since
71 (t) = 0 has the multiplicity s (Lemma 3.1}, 'r](s) # 0. This implies
€o=guws-eo=71e, 17 e, 4kt € Wiy,

where g € G% and W(Ts) is a cell of Gr(1,l + 1) in (2.1). From the Pliicker
coordinates (3.2) of the GC°-orbit, one can see that the first nonzero coordinate
including the Yy = (s) is given by

§(s—1,6) = ”7'1(8—1)77'1(")” = _(7'1(3))2 #0.
This implies

So A& = Z §ugyeiNej € I'V(gs--1,.s) :
s—1<icj<I

Note here that the multiplicity of 72(t) = 0is 2(s—1), and the term €(s—1,s) APPeATS

in the derivative 72(2("_1)) # 0. Now following the above argument, we can see

s— s— s k(k—1) s k
vé(s—k+1,“',3-1,8) = “7-1( k+1), . ’7_1( 1)),,.1( )“ =(-1)"3 (7-1( )) 20,

and

60/\-'-/\&:: E f(jo,...,jk)ejol\---/\ejk.
s—k+1<jo< - <Ju <l

This implies
§oA-- Ak € W(]:_.A-+1,.--,s—1,s) :
In the general case with i # O,V from 7 # 0 for k = 1,--- 4, we first have
EoN--NE € W(’;,j"”_,k) for k=0,1,---,i—1.
Note here that all of the Young diagrams Yx41 = (0,1,..-,k) represent Vi1 =
@. Since 7;41(t) = 0 has the multiplicity s, we have 7;(:_)1 # 0. This leads to
HT1(O), e ,71(i—1), 7'1(”")H # 0, which implies
Soh- A& € WL
Then using the multiplicity of 7;42, which is 2(s — 1), we have

e ) i+2
foA- N1 € W(O,--~,i—1,z'+s-—1,i+.s)'

Now it is straightforward to conclude the assertion of this Proposition. 0
Note here that we have represented Yi4x = (0,1, --,i—1,i+s—k+1,---,i+5)
as (s —k-+1,---,s) which both give the same rectangular diagram having k stack

of (s — k+ 1) boxes (see Example 2.1), and the multiplicity of the zero for 714 is
given by the total number of boxes in Y; 1k, i-e. |Yigx| = k(s — k + 1). Proposition
3.1 leads to the following Corollary:

Corollary 3.1. The cell given in Proposition 3.1 is identified as
WY, -, =N"wy;B¥/BY, with wp=1id,

where wy is the longest element of the Weyl subgroup Wy := (s; | a; € J).
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Proof. We consider the case with i =0, 1.e. J = {1, -+, as}. The other cases
are obvious by making the shift ax — ax4s. The Young diagrams [Y7,---,¥]]
corresponding to this J are given by

[(5) ( _15) ...’(]_’.,. ) (01... ) ...,(0)1,...,[__1)],

Then it is easy to see that the Young diagrams [V, -+, Y;"] with Yk+1 =(0,---,k)
is transformed to the above [Y3,---,Y!] by the Iongest element wjy given by

Wy = 8§15 -5:58183 - 85-18182 - 8s-2" 518287 .

Corollary 3.1 then proves the following theorem found in [1, 9:

Theorem 3.1. (Theorem 3.3 in [9]) The compactified isospectral mamfold’ Z(y)r
has a decomposition in terms of the Bruhat cells, -
Zivm= || Ds, with Dy=Z(ya[ (N wsB*/B).
Jcu
Here Dy is called the Painlevé divisor associated with J which can be redefined
as

(3.7) lim cy(L(t) € Dy &L n(ts) =0, iff ke J.

tts
We also define the set © as a disjoint union of Dy,

= U Dy with dim©y =1-|J]|.
JIDJ

Then we have a stratification of Z(¥)x,

Zir=0W o0t >5...00@ with e* =[] e,
|Jl=t~k
Note here that the 0-cell 09 = Dy = w, Bt /B describes a center of the manifold
Z(v)r, and it is included in the T _ polytope where all the Painlevé divisors meet
at this point.

Example 3.2. s[(3,R): This case is illustrated in Figure 1, in which there are four
hexagons I'c which are glued into the compact manifold Z(¥)g. The compactifica-
tion can be done uniquely by identifying the boundaries given by the subsystems
(J; [w]; 65(w™"-€)) (see Example 1.4). One example of ({a1}; [s1]; (0+)) is shown in
the Figure, and those two subsystems should be identified. One can also compute
the boundary of the manifold Z(v)r by taking account of the orientations of the

subsystems (see (1.8)),i.e
0Z(r = 2{ei};lsi); (0-)) — 2({ez}; [s2); (-0))
—2{{en}; [s1]; (0H)) + 2{{exz}; [s2]; (+0)) -
The manifold Z () is non-orientable, and it was shown in Theorem 8.14 of [7] (also

see [11]) that the manifold is smooth and topologically equivalent to a connected

sum of two Klein bottles.
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818281 r

S2 St

$182

({ou};[s1];(0+)) ~—»
S1

|

S18281 S1S28

S1S82

S
—{u}i[s11:(0+))
S18:2

S281

515261

Ficure 1. The hexagons T'e and the Painlevé divisors for 51(3, R)
Toda lattice. The Painlevé divisors are indicated with a solid curve
for D{1} and with a dashed curve for D(s3. The double circle at the
center of the I'__ polytope is Dy;. The arrows in the boundaries

of I'.’s show the flow direction of the Toda orbit.

Notice that each signed hexagon except I'yy further breaks into regions whose
boundaries are given by the Painlevé divisors. These regions have also signs given
by the pair of ¢; = sign(a;), ¢ = 1,2. The second set of signs attached to a region
with signs (1 €2) is simply the W-orbit, W - (e;€2). The W-actions label the vertices
in terms of the elements. The I'__ hexagon is important for the nilpotent cases
which. will be discussed in some detail below.

In the case of nilpotent L, i.e. v = 0, since the GCo-orbit is an N+t-orbit,
the Painlevé divisor Py is determined by the intersection between the “opposite”
Bruhat cells, that is, N~- and N*-orbits. This observation will be a key point in
the next section where we discuss the cell decomposition based on the subsystems
which consist of smaller Toda equations associated with the subalgebras of the
original g. Then each 1-dimensional Painlevé divisor © with |J| = { — 1 intersects
with the corresponding subsystem marked by the compliment of J, i.e. J*=1II\J.
The intersection occurs at one point which corresponds to the longest element of
the Weyl subgroup Wj., that is, the center of the subsystem.

4, CELL DECOMPOSITION WITH THE SUBSYSTEMS

In this section, we define the subsystems of Toda lattice and a chain complex
based on the subsystems.

4.1. Subsystems. The subsystems of the Toda lattice is defined as
Definition 4.1. Let J C II. The subsystem associated with J is defined by
SJZZ{LEJ:.YCQ | aj:()iﬁ' Oz]‘EJ}.
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Since the condition a; = 0 is invariant under the Toda flow (see (1.9), i.e. af =
0 implies a;(t) = 0, Vt € R), Sy defines invariant subvarieties of Z(y)gr which
correspond to the Toda lattice defined on the Lie algebra associated with the Dynkin
(sub)diagram (% - - -*0 - - -x0%- - %) where “07 is located at the jth place for oj € J,
and indicates the elimination of j-th dot in the original diagram. Let denote the
(sub)algebra associated to the Dynkin diagram of 85 by

gD - Dgm C g

where m is the number of connected diagramsin J* := I\ J =1 U- - -Ull,,, and gk
is the simple algebra whose Dynkin diagram is the connected diagram associated to
0. Then the subsystem Sy can be expressed as a product of smaller Toda lattices,

o 0
S;=2m X X2,
where %m is the Toda lattice associated to gx with a; # 0, Vo; € 1. We
then add the Painlevé divisors (blow-ups) to Sy by the companion embedding
¢y : Fy = G/B* (Definition 1.1. A connected set in the image cy(Sy) then
corresponds to a cell (J; [w]; o (w™" -¢)) in the decomposition (1.7), which we also

refer as a subsystem.
We now express each subsystem as a group orbit: Let P; be a parabolic subgroup

associated with the simple root system J° containing B*. Then each subsystem
(J; [w];os(w™" -€)) can be expressed by a group orbit of the parabolic subgroup of
the normal form C3 (w) € Lie(Py),

(J; [l osfw™" - )) = G In3  BY/BY,

where ny € N~ (1 Py is a generic element defined by L° = n sCJ(w)n3', and the
connected subgroup GC () ig given by the stabilizer of the element C’.‘{ (w),

GC.f(w) = { g€ Py I Adg(c;/f(w)) = C&I('w) }0 !

where the suffix “0” indicates the connected component. For example, in the case
of sl(l + 1,R), the element C’;{(w) with J = {a@n,41} is given by the matrix,

/ 0 1 e 0 0 o - 0 \
0 o . 0 o :
: : w1 : : 0
J _ £n1 £n1—1 tet &0 1 0 0
& (w) = 0 1 0 ’
0 0 0
: : -1
\ Mna Tina—=1 ~°° 10 )
where {&]k = 0,1,...,n} and {n;]j = 0,1,... ,na} are the symmetric polyno-
mials of the eigenvalues {)\, )k = 0,1,...,n:} and {Dwu-pli = 0,1,... ,Na},

respectively.
We now consider a nilpotent limit of those subsystems: First recall that the top

cell of the T'_ __ polytope, {B;[e]; (— . ..—)), is diffeomorphic to the top cell of the
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Z(0)g, which we denote (f), i.e. we have in the limit y — 0,

(B;[e]; (= ... =) = (8).

For the subsystems (J; [w]; o (w=" - (—...=))) of T'_.._, one can show:
Proposition 4.1. For each J C Il and € = (—...—), the following nilpotent limit
is a diffeomorphism,

(J;[w);o5(w™" - €)) = G%w/BY/BY | if (os(w™'-€))j=—, Va; ¢ J,

where [w) € W/W7 and w’ is the longest element in WY.

Proof. In the nilpotent limit (y — 0), the normal form C(w) for any J and
[w] € W/WY converges to the unique element Co. Also note that only the cells
(J;[w];o0(w™" - €)) having (o7{w™" -€)); = —, Vo ¢ J have the intersection with
the Painlevé divisor P7 (the proof is similar to the case of the top cell). Since
(J;[w];o5(w™" - €)) is the product of the top cells for smaller Toda lattices, it is
obvious that each top cell in the subsystem is diffeomorphic to the corresponding
nilpotent cell in G°°w’ B*/B*. 0

One should remark here that the number of subsystems (J;[w];o (w™" - €))
having the same limit can be obtained by counting the number of the Weyl elements
satisfying the condition in Proposition 4.1. In particular, we have an explicit result
for J = {ax} k = 1,2 (or k = 1 — 1,1) in the case of sl(l + 1,R) (Lemma 4.2
below). Other cases of simple Lie algebras will be discussed in the next section.
This number is important for studying a chain complex of the variety Z (0)g and
its singular structure as will be explained below.

We also remark that the number of such subsystems of codimension one is related
to the number of the real irreducible components in one dimensional divisor plax},
This can be seen by noting that each subsystem ({ax}; [w]; (—---— 8 —.--—)) has
a unique intersection with the real part D]éa"} of the divisor Pi*+}. Also each
irreducible component in D{”*} has the intersection with the subsystems at the
boundaries of I'____, i.e. two subsystems intersect with each component of plos},
Since there is no intersection between the subsystems with different [w], the total

number of subsystems is twice of the number of irreducible components in 'Dé"*} .
Now we can state the number of such subsystems. First let us define the following

subset of the quotient W/W",
(4.1) W5y = { [w)e w/w’ , (os(w™ (==)), = -, Vo; €T } .
In particular, as we mentioned above, the number of the elements in W[(—u] is related

to the number of real irreducible components in D{**} as -|W[;k]| = 2|Dé””‘} |. Also
the following Lemma is useful for finding the elements in W[;]:

Lemma 4.1. There exists a duality between two elements in W3,
z e VV[’J':{ iff wozw! € Wi -
Proof. The duality “ € W/WY iff w,zw’! € W/W’” is obvious (note that

&(zsg) > L(z) and £(zw’s,) < £(z) iff ax ¢ J). This is a Poincaré duality of
the Wey! element (consider a convex polytope whose vertices are the orbit of the
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Wey] action, which is also a Morse complex (e.g. see [6]}). Then it is easy to show

that wy - (—...—) = (—...=) and oy(w’ - (~...=)) = oy(—...—). This can be
understood as the invariance of the Toda lattice in time ¢ — —¢. This symmentry
corresponds to the duality between the top and the bottom cells. 0

Then one can show te following in the case of s{{! + 1,R):

Lemma 4.2. Let W = Siy1, the symmetry group of order I+ 1. Let J = {oy} for
k=1,2 (ork=1-1,1). Then we have
e For J ={on} (or {au}),
il =2,
o For J = {aa} (or {ai-1}),
l+1

Wia| =2 [ 7 J ’
where |z| is the marimum integer of z.
Proof. For J = {o}, the following two Wey!l elements are obviously in W[';l],
w=¢g, 8181.-1°--8281.

Note the duality s;8;_1 - - - 5281 = wyew!™) (see Lemma 4.1). Since the subgystems
({en};[w]; (0— ... =)) intersect with the divisor D1*:}, one can show by counting
the number of irreducible components in the divisor that those are only the elements
in W, ;+ First recall that the divisor D{*1} is given by the condition,

m(ti,..., 1) =0, for k=2,3,...,1.
For sufficiently small v, this is equivalent to the conditions on the Schur polynomi-
als,

pg(th...,‘tk)zo, for k=2,,l

This implies that the divisor has just one connected component parametrized by
1
plat = { (t1,...,%) eﬂe’,tk :Etﬁ‘ fork=2,...,1 } :

Then those two subsystems intersect with the divisor D11} in the limits ¢, — o0,
which shows that there is no other element in W ,. The case for J = {a;} is

obvious.
For J = {@3}, one can easily find that the following elements are in Wi_ ;:

e For ! = even, we find ! elements,
22
W =¢€, 5182, 82838183, ..., m .
Here the first half elements are dual to the second half, e.g. s;_15;---85152 =

wyewl®}, Also note £(w,wi™}) = 21— 2.
e For | = odd, we find ! + 1 elements with the same ! elements as above plus

one other element,
W= 8;8_1°°-8.

This element is self-dual, i.e. w = w,wwi®} (note &(w) =1-1).
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Then from Lemma 4.3 below, the number of real components (loops) in D{*2} is
given by [({ + 1)/2|. This implies that all the elements in W],,,] are given by those

we already found. a
The following Lemma gives the number of real irreducible components in the

Painlevé divisor D13} for the case of s{({ + 1,R).

Lemma 4.3. Al the irreducible components of D173} are real, and the total number

of the components is given by
_li+1
==

Proof. First note that the divisor D{?2} is given by the condition,

‘D{dz}

75 (t1,...,4). =0, Vk except k=2,

Then using (3.4) for the formulae of 7, one can see that this condition is equivalent
topr=0fork=3,4,...,1 and 71 = 0 which is the ! x [ determinant,

0 - 0 pg pr
0 -+ pz pr 1
(4.2) : .11 0|=0.
Py : Do
pr L+ -+ 0 O

Now we show that this equation has | (! + 1)/2] real roots:

For | =even, say ! = 2n, first note that py(= p1) = 0 is not a solution of
(4.2). Then setting p; = zp?, the determinant becomes a palynomial of z of degree
n = |({ +1)/2]. Thus n is the maximum number of real roots, that is, the number
of irreducible components in P{1?2}. On the other hand, in the proof of Lemma 4.2
we found that the number of the subsystems having the intersection with D{*3} ig
at least | = 2n. This shows that n must be the number of real roots, that is, all
the roots are real.

For I =odd, say | = 2n — 1, first note that p; = 0 is a simple solution of (4.2).
For other solutions, we set pz = zp?. Then {4.2) gives a polynomial of z of degree
n—1=[1/2]. Thus the maximum number of real roots for (4.2) is n = [(I+1)/2].
Again from the proof of Lemma 4.2, the number of the subsystems is at least
{+ 1 = 2n. This then implies that n must be the number of real roots. a

Remark 4.2. A. Nemethi informed us that the number of irreducible components
in D1} is given by the number of equivalent k-gons formed from the k vertices of
a regular (I + 1)-gon in which the equivalence is given by the rotation. The number
of real components is then given by the number of k-gons having the reflective

symmetry with respect to a line. The details will be reported elsewhere.

Example 4.3. For si(3,R), we have

I/V[;x] ={e, sa61}, I'V[;;,] = {e, s152}.
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This indicates that each divisor D{®*} has one component intersecting with the
subsystems marked by the elements in W'[;d. Those subsystems have the same

orientation (i.e. the lengths £(w) are all even).
" For s((4,R), we have

Wiy = {6 sssas}, Wi, = {e, 5182, 5382, s2838 52},

Wi = {e, s18383}.

Notice that there are two components in Do} intersecting with the subsystems

having the same orientation.

We now denote the subsystem in the nilpotent limit as (J) for each J C II, and
then we have a cell decomposition of the compactified variety Z(0)g,

ZOg=| | (), with (J):=G%w'B*/B*.
JCII
The compactification of {J) is obtained in the similar way as in the case of the
Painlevé divisor O, i.e.
@y=| ] ¢®w’Bt/B.
JDJ

Then we have a stratification of the variety Z(0)g,

ZOp=x0(y) >¢-N>...o0z0@, with=® .= (] ).
[Jl=l—k

The number of components in each L) is given by

ol ()

For a convenience, let us denote each subsystem (J) as

(Jy=(%-+%0-- %0k -- %),

n

where 0’s are assigned at the vertices a; € J. For example, ({an41}) = (%% 0 %

..x). Thus each component can be uniquely labeled by J C II which gives the
arrangement of the “0”s in the diagram (compare with the case of generic -y in the
Introduction (see also [7])).

Example 4.4. s[(3,R): In Figure 2, the left hexagon is the polytope I'_ _ in Figure
1, which collapses to a square in the right as a limit of nilpotent case. In the limit,
the subsystems ({@1};[s1];(04)) and ({az};[s2]; (+0)) are squeezed to the point
(ITY = (00), the O-cell. The subsystems ({a1};[e]; (0-)) and {{a1};[s281]; (0—))
have the same limit to ({c1}) = (0«). This implies that the two sides of the square
corresponding to the limit of those subsystems should be identified. The other two
subgystems corresponding to J = {3} with the sign (—0) have also the same limit
to {{as}) = (*0), which are also identified. This process of identification provides
the compactification of the G€0-orbit.
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$152S1

(x 0) (0 *)

S$182 S281
F— ) C

Ficure 2. The si(3,R) Toda lattice in the nilpotent limit. The
Painlevé divisors Dy} and Dy2} are shown as the solid and the
dashed curves, respectively. In the limit, the left two sides of the
square are identified, so are the right two sides. The compact

variety is then homologous to the Klein bottle K.

R
2~

Since those two subsytems for each J = {ax} have the same orientation (i.e. both
€(w) = even), the subsystem ({ax}) contributes as the boundary of Z(0)g, that is,
the compact variety Z(0)g is nonorientable. The variety Z(0)g is homologous to
the Klein bottle K.

Remark 4.5. As mentioned in [9], the compact variety Z(0)g for s{(3,R) has the
As-type singularity at the 0-cell (IT). This can be seen as follows: Let L be the Lax

matrix,
by 1 0
L= a bz - b] 1
0 (¢3] -—bg

Then the Chevalley invariants J; (L) are
11 = b1b2 - b12 - bg — a1 — QGg, Iz = b1b2(b1 - bz) +a1bg - 0261 .
In the nilpotent case (I; = 0 and I, = 0), we have
22 +yz =0, with z=1b, y=ay, z=by+b,.

In the general case of sI(I+1, k), one can show that the two dimensional Painlevé
divisor D7 with J = {1, a3} (or J = {a;_1,x}) gives an Arnold slice with the
Aq-type surface singularity at the 0-cell. (see Proposition 4.2 in [8]). The details
will be discussed in a future communication. ' '

4.2. The subsystems of codimension one. Here we consider the case of sl(l +
1,R) Toda lattice, and give a detailed description of the subsystems of codimension
one, ({on,41}) for ny = 0,1,...,! — 1 as boundaries of the top cell (§) = (- -*).

First recall that each cell ({an,11}) is the orbit, ({an,11}) = GCwl*m+n1l B+ /B,
Here the longest element w’ takes the form,

B |0
J _ 1
w~<0 Rz)’
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with the (n; 4+ 1) x (n; + 1) matrices,

0 - #1
Rj:=1|: .. for 7=1,2.
1 .- 0

Thus with the element g € G° in (1.14), we have for J = {n, 41}

Pn, Pni-1 " :tpo \
Pn,—-1 Pni—-2 "7 0
. . . . *
0 ... 0
4.3 w’ = P
(43) Pra  Pna—1 -+ EPo ’
0 Prng—1" Pno-2 " 0
\ po 0 - 0 )

Tt is then obvious that the 7-functions (1.16) generated by (4.3) provide the solutions
of the subsystem consisting of two smaller Toda systems associated with Iy =
{oajli=1,---,ni} and Oy = {tn, 414517 = 1, ,na}: Note here that 7,41 = 1
which implies an,41 = 0 as requested (recall a; = db;/dt = d*In7; /dt?). One
should also note that gw” can be decomposed into actions on the Grassmannians

Gr(k,n + 1) and Gr(j,na + 1) as

(4_4) ‘ g1 X ga (/k\mnl-f-l) ® (/J\mnﬁ-l) ’

where g; is given by

Pr; Pnj—-1 - £po
Prn;-1 Pn;—-2 - 0
9i == : : . :

Example 4.6. The cell decomposition for sl(3,R) Toda lattice: The g € GCo is

given by
P P2 1
g=10 1 p{|, P1=t1,P2=12+§i$.
0 0 1

Then the cells in the decomposition of Z (0)g are given by
e 2-cell: this is the top cell (§) = (x%),

P2 P Pz
@=<1ml|, |1 of}cVvi®,12)]:=NrsssB/B*,

1 0 1
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e l-cell: there are two 1-cells, i.e. ({a;}) = (0%) and ({aa}) = (x0),

1 10\

{orhy=<10], [0 p C VI(0), (02)] := N*s, B /BT,
0 0 1
D1 1 90

({e2}) = 1,0 1 C V[(1),(01)] := N*s, Bt /Bt
0 0 0

e O-cell: the cell is the unique fixed point (@) = (00},

1 10
m=<Jol, |0 1 c V[(0),(01)] :=eB*/Bt.
0 0 0

Note here that each Bruhat cell V[(io), (i0i1)] = N+tw’B*+/Bt is complementary
to the opposit cell W[(40), (4041)] = N~w’ Bt /Bt introduced in Section 3.

n1 73
Now we express the subsystem (% ---% 0 %---x) as a limit of the GP°-orbit in the
top cell GC°w, Bt /B+: We first recall that the center of the subsystem ({o,41})
is given by wi*m+1} B+/B+ which is the intersection point with the 1-dimensional
Panlevé divisor D{?»1+1}. This implies that the 1-dimensional divisor DAy 41}
connects the center of the variety, w,B¥/B* with the center of the subsystem.
Since the divisor intersects transversally with the subsystem, one can introduce a
local coordinate system near the center of the subsystem. Let us recall

plomtl = {4 = (t,,... ) € R} | m(t) = O Vk except k=n, +1} .

With (3.3), i.e. 7 = £Su—k41,... 1), the zero conditions for the r-functions are also
written as

Prati+k =0 for 1<k<ny,
(4.5) .
s = 0 for 1<j< ng.

Notice that on the divisor D{?»1+1} we have pp,41 # 0 a.nc.i Pras7 # 0. Then alocal
coordinates, denoted as (¢1,...,8n,,71,--- » Tna), for a neiborhood of the center of
the subsystem ({an,+1}) can be given by the following homogeneous functions,

% = Pratith  go 1<k<n,
Prg+1

re = 2 for 1< 5 < ng,

I Z 111+1

The variables g5 and rf both have the weight &, and {r;|j = 0,1,---,n2} are
defined in the same way as in the case of px defined from py, i.e.

(4.6)

re = |lrr, ol

Then we have
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Proposition 4.2. Consider the limits py — oo (or p; — o) so that the new
variables (gx, ;) remain finite, and they give a coordinate system for the subsystem.
Then the following limit is a diffeomorphism for the group element g € G® in (3.1),

~ q r
GWs —> g1 X g2,

where g7 and g} are given by

qﬂl qﬂ].—1 T :tqo Tﬂg Tng——‘l I}:rﬂ
q -1 qny-2 0 » Prg—1 Tnge—2 = °° 0
g‘l = . 3 _(]2 = )
do - 0 e 0 ro 0 BN 0

where go = vy = 1.

Proof. Taking the limits with the change of variables (4.6), the r-functions
become
et = ot Piosll = (Prak ¥ lgnss - @mamill + O ((Prstr)?)

Tk = op ol = g e o i=ll + O (o))

where 0 < j < ny —1and 0 < k < ny — 1. Note here that 7,, 11 = &7, has the
weight (nq + 1)(nz + 1) and becomes a constant in the limit p; — Zoo. Define the
following homogeneous functions,

k41

7 i Ti+1 _ 7 .
T, = lm ———s7r = » for 0<i<n —1
I pilmroo (Paggr i H llgnyy -+ s gna=sll, <j<

. Ti—k
ﬁ:—k:: lim -——m:”rﬁ?,,m”’ for OSkSng—l_

lpsl =00 (D)

In particular, the 7, _, functions can be equivalently written by
Thpr = Pnas " s Png—kl|, for 0<k<ny—1.
Those 77 and 7 define the 7-functions for the two smaller Toda systems associated

with s{(n; +1,R) and sl(ng+1,R), which are separated by the condition a,,41 =0
in the limit. This implies that gw. takes the desired form in the limit, which

provides those 7-functions. 0

Example 4.7. We consider the case of s((3,R) for a detailed discussion of the
limits, (xx) — (%0) and (**) — (0x}. In this case, the T-functions are given by
1

Ti(t,t2) = paftita) = iz+§lt$,
To(ti,ta) = paltita) = t2-§t12

For the limit, (**) — (x0), from (4.6) we use
1
P2 =q¢1p1, ©Or tz= —-§t12 + g1ty

In terms of the r-functions, the limit gives
il = lim 1:91, and 7§ = lLim %:_1,
{pil—e0 p1 lp1l—e0 P9
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which implies

Ty 1 -7

Al = — = —— and ag = -— 0
2 3 2 7]
T1 i‘ Tz“

Thus the limit is the solution for (x0) of s[(2,R). Also for the limit, (¥#) — (0%),

we use
12
Ps=Tp, oOr tg:§t1+r1t1.

Then in terms of the r-functions, we have

Ty ()

. 2 _ .
7i= Im ==r;, and 7= lim =1,
[paf—00 Py [p1]—+00 P3
which implies
T C—m 1
01:—2—)0, 02:'—2—'——)—'—2—.
T ‘°w 7

The limit is the solution for (0%) of s(2,R). Here the top cell (*x) is described as
{(t:1,12) € R?}, and the Painlevé divisors are given by 011 = {t2+1}/2 = 0} and
O(a3 = {ta —t}/2 = 0} (see Figure 2, where the Painlevé divisors are shown as the
graphs in the (t1,13)-coordinates). The new variables ¢; and r; are the parameters
for the subsystems (x0) and (0). -

5. THE CHAIN COMPLEX BASED ON 'T'HE SUBSYSIT'EMS

The Z-modules of the set {(J) | J C IT} defines a chain complex (Cx, 84,

(5.1) 0—c e 29 .. e B0 g
with ‘
G:= B z@).
|J|=l-k

The boundary map 0k acts on (J) € Cx, (|J]| =1 — k) as follows:

W)= [J; JU{a}](JU{a)),

agl

where [J; J'] with J’ = JU{e} is the incidence number. In terms of the notation -

(J) = (%--+0---0 ---#), the operator 8; adds one more “0” at the place with
a ¢ J. To compute the incidence number, it is sufficient to consider only the
boundary map on the top cell {(#) for each case of simple Lie algebra, and the
general case can be computed inductively. We thus consider

i

8(8) =Y [0; {a}] (Han).

k=1
The key ingredient for computing the incidence number [0; {ox}] is to count the
k
number of subsystems ({ay}; [w];(~---—0—--- —)) with different [w] € W/W{ax}
which have the same limit to ({ax}). Then taking account of the orientation of
each subsystem which is given by the length £(w) (see (1.8)), we have
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Definition 5.1. The incidence numbers are defined by

05 {aab] = (1| 30—,

‘UJEVVEQIE]

where W™ W/wix} is defined in (4.1). In the general case, for a) ¢ J the
incidence number [J; J'] with J' = J U {ax} is given by
[7; 7' = (=)L 7],
where v(J; J') is given by
w70 fea)) = |{ay € T 1 <5 <k}

Here the number |[J; J']| is given by i[ﬁ, {ax}]| for the smaller system corresponding
to the connected Dynkin subdiagram inchfding Q-

Note here that the sign (—1)(/+/") is necessary to satisfy the chain complex
condition, 82 = 0: Applying 82 to a cell {J;), we have

(1) = ([Jr; J2llJ2; Ja] + [J1; Ja) U35 Ja]) (Ja) + - -,
where Jy = J; U {0y}, Ja= 1 U {Olj} with oy, 0 ¢Ji (i # J), and Jy = Jg U Js.
Then §* = 0 implies
(5.2) [J1; Jol[Ja; Ja] + [Jv; Js][Ja; Ja] = 0,
that is, the functions v(J,,; Jin) have to satisfy the condition,
v(J1; J2) + v(J2; Ja) + v(h; J3) + v(J3; J4) = odd.

Assuming ¢ < j, one can easily show that v

v{Ji;JiU{ai}) = v(J1 U} da), v(Ji3 01 U{ag}) = v(Ji U{ai}; Jg) +1,
which give the above condition. ‘

In Proposition 5.1 below, we give the explicit form of the incidence numbers for

the case sl(l + 1, R). Other cases will be discussed in the next sections. The key of
computing the incidence numbers is to find all the elements in W, | as shown in

the case of sl(l + 1, R).
Now we state the following Proposition on the incidence numbers for the case of

sl(l + 1,R):

Proposition 5.1. The incidence numbers [0; {ax}] are given by

((4)“‘4)3(%1, [gJ) for !=odd,

l |k
2(—1) 3(2,[2J) for 1 =even

where B(n, m) is the binomial coefficient (:1)

[0; {ou}] =

Proof. We use the mathematical induction. The case of I = 1 is trivial. The
cases of [ = 2, 3 can be shown directly from Example 4.3. Then we assume that the
formulae are correct up to the rank / — 1.
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2, (*0)
A2: (_**)< (00)
2 (0%)

-2
(**0) = (*00)

2
—4
A3 (raa) == (0% (0%0) (000)

(0*%) ;——2_.> ©0%

Fieure 3. The weighted graphs G4, for [ = 2, 3.

For the case ! = odd, we first recall from Lemma 4.2 and its proof that W,[ai]
contains two elements with length 0 and [, and W, contains !+ 1 elements whose
length are all even. This implies [0; {a1}] = 0 and [@; {a@2}] = —(! + 1) which agree
with the above formula. Now from the chain complex condition (5.2) for J; =
0, Jo = {a1}, J3 = {ox} and Jg = {a1, 04}, we see [B; {oxH[{ar}; {1, ax}] = 0.
Then for k£ = odd, the subsystem ({c}) is the product of two smaller systems with
rank k — 1 and { — k. Since [{a)}; {ai,ax}] # 0 (k— 1 is even), [#; {ax}] = 0 for all
k. This agrees with the formula.

Now we consider the condition (5.2) for Ji = 0, Jo = {as}, Js = {ox} and
Js = {a3,a;}. Then if k = even, we have [{ax}; {2, ax}] = —k (using the result
for the rank k — 1) and [{a2}; {az,ax}] = 23(“71, *%2) (using the result for the
rank ! — 2 and the sign (—1)*~2 = 1). Writing ! = 2n —1 and k = 2m, the condition
(5.2) gives

2(2n)B(n — 1,m — 1)+ 2m[B; {ax}] =0,

which implies the formula for even k.

For the case of | = even, first note from Lemma 4.2 that [#;{a1}] = 2 and
[@; {e2}] = —I. Then following the above argument, we can confirm the formula. O

Proposition 3.1 provides a sufficient information to compute the integral homol-
ogy for the chain complex C.. To summarize the results in this section, we give
Examples for the Lie algebras of type A4, (sl(!{+1,R)) for I = 2,3 which we present
in a weighted graph.

Definition 5.2. The weighted graph G of the chain complex (C., &) consists of
the vertices given by the cells (J) for J C II and weighted edges “25” with m € Z*
between the cells (J) and {J’) with |J’| = |J| 4+ 1. The oriented edge is defined as

(JY = (J') implies m=[J;J']#0,
and if [J; J'] = 0, then there is no edge between (J) and (J').

Example 5.3. From the graphs, we can find the integral homology H. (Z(0)r, Z):
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For the case of A,, we have
Ho=Z, Hi=Z&®Zs Hy=0.
For the case of A3, we have
Hy=Z, Hi=Z®2Zy, Hy=7%4 H3z3=0.
The following is direct from Proposition 5.1,
Corollary 5.1. The compactified isospectral variety Z(0)g for si(l + 1,R) Toda

lattice is nonorientable in the sense, Hi(Z(0)g,Z) = 0, and in particular we have:

e for the case of type A; withl = even,

Hi1(Z(0)w, Z) = Zo.
e for the case of type Asp_1 with p = prime,
ng_g(Z(O)m, Z) = Loy -

6. OrHER EXAMPLES

Here we give a basic information on the generalized Toda lattices for-the Lie
algebras B;, C; and Gz. In particular, we provide the explicit structure of the
compact varieties Z(0)g for those of rank two cases.

6.1. Toda lattice of type C;. This algebra is referred to as the real split algebra
5p(2[,R). The Lax matrix is then given by the (2{) x (2{) matrix,

(1,1 1 0\

a; by — b BN ce e 0
Lec=1|0 aj—1 by — b4 1 0
0 0 a; b+l - 0

\0 Ve . 0 e a1 _61/

Following the same way as in the case of A;, we obtain:
Proposition 6.1. The solution {ax(t), bx(t)} is given by

Diet1 Dy~ d
ak:a,‘;——"—tl‘-)f—l, be(t)= - InDyp for 1<k<,

with the following constraints among the determinants {Dy},
(6.1) Doy =Dy for 1 < k < I,

which impliesty, =0 forn=1,-.-,l—1. The determinants are also related to the

T-functions as

1
Dy, exp(ztziA(Loc)Ziq) = mk(t1,ta,... ,tu_q), for 1<k<L

i=1
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Proof. The expressions of aj and by are easily obtained in the same way as in
the case of A. The constraints (6.1) is a consequence of the structure of L¢, which
gives az_x = ax for k = 1,...,]. We then show that constraints (6.1) imply t2, = 0:

Recall the determinant Dy = ||pas, - - - , pars1-k]|, which is the Schur polynomial
with the rectangular Young diagram Y = (20 +1—k,---, 2]). Then the constraints
(6.1) imply that the determinant Dy = Sy is equal to the Schur polynomial with
the conjugate diagram (rectangular), denoted by Y’, i.e. Sy = Sy, which leads to

the conditions ty, =0 forn=1,---,.. 0

Example 6.1. C3: The 7-functions are given by

: . ' t3
T (t11t3) = p3(t1)0)t3) = '61— + 13,

t3
m(ti,t3) = |Ips, p2ll(81,0,83) = ¢ (—1—12“443)‘

The Painlevé divisor Dyay has two irreducible components, i.e. #; = 0 and t3 —
t2/12 = 0. This implies that there are four subsystems which have the intersection
with Dygy. _

As shown in [8], the I'__ polytope for the semisiple case of Cy type is given
by an octagon whose vertices are marked by the Weyl elemnts. In Figlfl;e 4, we
describe the nilpotent limit of the I'__ octagon. Four subsystems (boundaries)
of the octagon intersecting with the Painlevé divisor Dyy; (the dashed curve) are
identified as the subsystem ({c1}) = (0%) in the limit. Two subsystems intersecting
with D13 (the solid curve) are also identified as ({a}) = (*0) in the limit. Two
other subsystems having no intersection with the Painlevé divisors are squeezed
into the 0-cell (IT). In Figure 4, note that the Painlevé divisors are described by
the solid and dashed curves in the (¢;,#3)-coordinates.

Because of the identification of four boundaries corresponding to the subsystem
{({a1}) = (0%), the compact variety Z(0)g has a singularity along this subsystem.
This can be also seen from the Chevalley invariants Iy (Lc), k£ = 1,2, i.e. det(A] —
Leg) =X — [A? + I with

I =2a1 +as + 26? —2b1bg + bg, I, = (12612 + (a1 — bbby + 612) .
Eliminating a5 from those equations, we have an equation of the surface,
2 =zt4 2%y with z=0b, y=>bs, z=a; —bibs.

which has the singularity along the y-axis, i.e. a; = 0. Notice that there are four
different directions to the y-axis except y = 0, which are the four segments of the
divisor Dy} near the subsystem ({a1}), i.e. a1 = 0.

6.2. Toda lattice of type B,. This algebra is referred to as the orthogonal algebra
so(l,1 4+ 1). The Lax matrix Lp in (1.2) for the Toda lattice of type B; is given by
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e S2 (0 *)
$1 S$281 (*0) 0%

T-- ® = ®
$152 528182 R (* 0)

t3
$18281 $1S251S2 ——}—‘tl 0=

Ficure 4. The Cy Toda lattice in the nilpotent limit. The
Painlevé divisors Dy1} and Dyg} are shown as the solid and the
dashed curves, respectively. Four boundaries marked by (0#) inter-
secting with Dy in the right hexagon should be identified with the
orientation given by the direction of the low. Two other bound-
aries marked by (*0) are also identified. Then the compact variety
Z(0)gis orientable and singular.

the (21 + 1) x (21 + 1) matrix,

(},1 1 0\
ai b?"'b'l Ve e e e e 0
L _ 0 aj_1 261——51_1 1 0 0
B=1lo ... 0 2a, 0 1 cee 0
0 0 0 2qp =26, +bi_y --- 0
0 a _51/

As in the case of Cy, we obtain:

Proposition 6.2. The solution {ax(t),bx(t)} is given by

0 Dk+1 D}c—1

d
ag = ay, D,% , InDy, for 1<k <,

by = —
k=@t

with the following constraints among the determinants {Dy | k = 1,---,2[} of
(1.13) with Dy [exp(S2L, ti(L%)i)] ,,
(6.2) D2[+1_k =D, for 1<k<]

which implies to; = 0 for i = 1,...,l. The determinants are also related to the

7-functions as

Dy [exp (Tics i1 (L$)¥7)] = multists, o tucr), for1<k<i=1,

D [eXP (22:1 tzz’—1(L%)2i_1)] = —[nt,ts,- -, ta)]?
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Example 6.2. Bgy: The determinants Dy, k = 1,2, are expressed as
. t]
D] = P4(t1;0;t3,0) = ‘41" +t'lt3;
8 3y,
| 4, pa l(t:, 0,23, 0) ~mat g B
Then the r-functions are given by

£}
& (t1rt3) = 1 (_4"‘ +t3) )

Dy

{

m(t,t3) = 13— 7
Now the Painlevé divisor D has two irreducible component, i.e. 1 = 0 and t3 +
t3/4! = 0. The topological structure of the compact variety Z(0)g is the same as
the case of Cs.

6.3. Toda lattice of type Ga. For the exceptional groups, we just give the case
of G, The Lax matrix in this case can be given by the 7 x 7 matrix,

(b 1 0 0\
ar bp—by 1 0 . 0
0 as 26y — by 1 0 . 0
Lg=1] 0 0 2a, 0 1 0 0
0 . 0 2a7 —2by + by 1 0
0 . . 0 as —bg + b4 1
\ 0 - - . 0 aq —b1 )

Similarly, we have:

Proposition 6.3. The solution {bk(2)} is given by

Dijoy1 Dy d s
ak:ag—fiég"_l, b= —InDy, fork=12

with the following constraints among the determinants { Dy},
Dr_r=Dy, 4<k<T7 and Dz=-D?
The determinants are also related to the tau-functions as

Dylexp(tLL)] = (1), k=12,
Dslexp(tLE)] = —[m()]%

Then the r-functions are given by

71 (t1,3) = ps(t1,0,t3,0,25(21,23),0) )
Tg(‘t1 )t3) = HPG) p5”(t1 ) 0)t3) Osts(tT 7t3): O) = Psp4 — pé .

Here t;5 is given by the condition D3 = —D? i.e.
P& + popapa + 2pspaps — peph — pipz — 3 =0,

which is the second degree polynomial for ¢5. In [8] (Proposition 5.3), we have
shown that there are two connected components in each Painlevé divisor, and this
implies that we have two real roots of the polynomial. In Figure 5, we illustrate
the nilpotent limit of the 12-gon of I'__. In the limit, four of the subsystems are
squeezed to the 0-cell (II}. Taking account of the orientations of the subsystems,

(A
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e S2

0%

(
> (x0) “ (*0)
©0%) (* 0)
0%

$18281528182

Ficukk 5. The G, Toda lattice in the nilpotent limit. The
Painlevé divisors D{q} and D3} are shown as the solid and the

dashed curves, respectively.

we conclude that the compact variety Z(0)g is orientable and has singularity along
both subsystems ({ax}) for k= 1,2.

7. HOMOLOGY AND COHOMOLOGY OF THE CHAIN COMPLEX FOR TYPE A

In this section we express the chain complex (C.,8) (see (5.1)) and its.counter-
part (C*,d) in abstract form. We then compute the corresponding homology or
cohomology over the rational number Q in the case of a Lie algebra of type A.

7.1. The graphs G4, and G ﬁl . For the purpose of finding the rational cohomology
(or homology), we just need an oriented graph without specific weights. We then

define the graph G4, based on Proposition 4.2:

Definition 7.1. An oriented graph G4, consists of the vertices (J) for J C II and
the oriented edges => between the cells (J) and (J’) with [J'| = |J|+ 1. The
oriented edges are defined as follows: Given J and J' = J U {a;}; ai & J, we write
(JY=(---0[%---%---%]0---) so that (J) = (---O[¢---*0x---x]0---). Here one
interval T = [* - ?*] in {J) indicating a connected Dynkin subdiagram containing
o; has been placed in the parenthesis for emphasis. Let us denote the interval I in

ny g
(J'yas [x---x0x- %] = [%---¥ 0 %---¥]. Then there is an edge (J) = (J*) if and

only if ny or ny is odd (i.e. the incidence number [J; J'] # 0).

This definition is extended to all real split semisimple Lie algebras in Proposition
8.1. Some of the orbit closures of G° acting on the flag manifold are smooth
Schubert varieties which are then circle bundles. The variety Z(0)g is not one of
these orbit closures but its homology and cohomology over @ formally behaves as if
a circle bundle structure were present. When one has a circle bundle, homology or
cohomology with local coefficients become relevant in the computation of homology
ore cohomology in terms of the Serre spectral sequence associated to the fiber
bundle. We will proceed to abstractly construct a chain complex that formally
plays the role of a chain complex for homology (respectively cohomology) with
local coefficients. We then define below the graph G and we are using the symbol
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£ here only as a label which reminds of this formal analogy with homology or
cohomology with local coefficients.

Definition 7.2. A graph gji consists of the vertices (J) and the oriented edges
i

£, where the edges are defined as follows: Let denote (J)y = ("--%--), and define
!

(J)1 :=("--%-- ), 1.e. add one more * on the right and all the rest of *’s and 0’s
remain in the same positions. Then
(J) == (') ifandonly if (J) = (J')1.
ny g na
With (J) = (---0[%---* X +%] 0--.), we have from Definition 7.1:
(A) If n3 = 0 (i.e. the interval [ - - -] includes * in the last simple root a;), then
(J) = (J U {a;}), if and only if n, is odd or n, is even.
(B) If ng # 0, then (J) N (JU{a;}), if and only if ny is odd or n, is odd.

Example 7.3. We have (¥x*) £ (x0), because in Az we have (x * ¥) = (x0x) as
in Definition 7.1. We also have (0%) £ (00), and these are the only arrows in the

graph gﬁg.
For a given graph, we now define a square relation among the cells (J;) for
i=1,...,4 as the boundaries of {(J,).

Definition 7.4. A quadruple ({J1), {J3), {Js), (J4)) is called a square, if J5, J3 D J;
with J2 # J3, Jy = Jo U J3 and |J2] = |Js| = |J1]|+ 1 (note IJ4| = |J1|+2). We will

represent this situation with the diagram:

(J1)
v Ny
(J2) (Js)
N
(Ja)

If each — in this diagram can be replaced with =, then we call this a square relative

to =.

Example 7.5. The following quadruple is a square which is also a square relative

to =, (see Proposition 5.1):

(3 * )

(* * *0) (%0 * %)

(x0 % 0)

13
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(rox) )i (0%*)
*()* «
(*0%) 0o |
A A Ou
S A A
(**0) < (0%0)
(+00) o (000

Ficurs 6. Double chain complex structure in C* for Az. Top of
the cube corresponds to C*(£) for A, and the bottom to a chain

complex C* for Aj.

7.9. Two subcomplexes and a double chain complex structure. We will
work now with chain complex C* which computes cohomology. The case of the
homology chain complex C. follows easily by reversing arrows in some of the argu-

ments.
We start by pointing out two subgraphs of G4, that will play an important

role and the associated subcomplexes of C*. First there is a subgraph cohsisting

of all vertices (J) such that oy € J, i.e. the cells ending to zero, denoted by
-1

{(J)o = (7 -%---0). This is indicated as the bottom face in the cube of Figure

6 and give rise to a chain subcomplex associated to a Lie algebra of type Aj_1.

This subgraph is the same as G4,_,. Then there is another subgraph consisting of

all (J) such that a; ¢ J. These correspond to the cells ending in *, denoted by
1-1

{J)1 := (7% - #), which is indicated as the top face in the cube of Figure 6. This

subgraph gives G5 . We denote those subcomplexes as K7 and K b,

K% := € z(J)o, K=z,

7=+ W=
which also define a filteration,

¢ =K'>K' >0, with K= &P K.
p20,q27

Then we have a short exact sequence,
0— K' - K" L K°/K' — 0,

which provides a long exact sequence for the cohomology and induces a spectral
sequence for the double chain complexes (see below). Note here that the graph
G5, is associated to K'and G4, , to K°/K'. Figure 7 illustrates the case of A3,
and in which the direction of the arrows &;; is indicated in the case of cohomology.
Also, the differentials §7; in the case of cohomology run opposite to the direction
of the =.

We now note that C* has a double chain complex structure (see for example [4]).
Let &; be the differential of any of the two subcomplexes of C* described above.
These are the arrows along the horizontal faces of our cube in Figure 6 and let &;r
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(0 * %) — (00 %)

(k* %) ==————> (*x0%) (0*0) ©00)

- - - . - - o o D WD WD I - - - - " - e e - -

(xx*¥) ——> (*0%) (* *0) = (*00)

©00)
(0**) == (00%) (0*0)

A -

Ficure 7. The graph G4, and its decomposition into two sub-
graphs giving rise to the double chain complex structure. One in
the bottom right is a graph G4, for {(J) = (-- 0}}. The bottom
left is a graph G4, for {(J) = (- *)}.

mm - ————-——

=4

be given by dr7(J) = [J\ {eu}; JUJ \ {a}) if (J\ {cu}) = (J) and 0 otherwise.
Now we decompose the differential § as § = (=1)%6r + &7;. Since 62 = 0] 6%, =
and 62 = 0, we note 87877 = 67707.

The cohomology of (C*,d) is then what is called the hypercohomology of the
double chain complex, and we have a spectral sequence, Ep’? for k = 1,2,

By = H}(CY), E7=H(C" (L)
ER7 = HY (HJ(C)) .

Then we compute the cohomology with H*(C*) = Z E57. Here the subindex
+a=k

I and I indicates which differential was used in pcomputing cohomology. This
spectral sequence replaces the Serre spectral sequence of a circle bundle which is
not available in our case. The HY(C*) plays the role of the cohomology of the base
and Hr plays the role of the cohomology along the fiber of a circle bundle.

The chain complex C*(£) for A; has a similar double complex structure. This
time C*(L) consists of two subcomplexes; each associated to a subgraph. Both
subgraphs will be seen below to agree with the graph G4, , obtained in the case of

T
Aj_1. One subgraph consists of elements of the form (---0 % - -- * ) and the other

with elements of the form (- - 6 x---0%). Let I/ =1 — r Now all the maps é;; are
given by multiplication by ¥ if I’ is even and multiplication by I 4 1 if I/ is oddb.

First we note that the subgraph consisting of all J with a; € Jisjust G4,_,. Then
we show that the second subgraph consisting of vertices ending in * (i.e. oy ¢ J)
is also G4, ,. We refer to these two subgraphs as bottom and top subgraphs in
reference to the cube in Figure 6.

Lemma 7.1. The two oriented subgraphs bottom and top of _C;'_ﬁl are 1somorphic.

15
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£
* —_
em 09 T2 00
(rxx) —Es xx0) Zog  (00%) ===>(000)

N O =f— 0*0)

- > "— - - . " o = " = - e WSt = e e e an

e -
.....

T 00%) < (000)

%% £ £ x0) &« &
On

FiGuRre 8. The graph G4, and its decomposition into two identical
subgraphs giving rise to the double chain complex structure. The
direction of the arrows drs is as in Figure 7.

Proof. Just note that the bottom and top subgraphs consist of the vertices of
1-1 I-1

the forms (7% --- #x) and (*-- .- 0x), respectively. Then by Definition 7.2, it
is obvious that the parts (*%) and (0#) do not affect the edges in those graphs, that
is, they are identical. 0

We also note that the isomorphism between the two oriented graphs is provided
by the edges corresponding to 877 and consisting of the edges in the cube of Figure
6 joining the bottom and top faces. Indeed, by Definition 7.2 we always have the

-1 -1 ! ¢
edgein (T % - k%) => (T ox-0x) whichimplies(---*---*)_—f> (+-ox---0).
From here one obtains that every time there is a —£5 in one of the two subgraphs,
say the bottom subgraph, a square is produced with at least three = (if we add
an additional % on the right as in Definition 7.2). This leads to the fourth => and
therefore to an oriented edge along the top subgraph.

In Figure 8, we illustrate the graph G%_, which is a subgraph of Ga,, and its
decomposition into two identical subgraphs of G, (referred to as bottom and top).
Note that some of the arrows in the diagram which are labeled with a drs correspond
to a ==> in the top diagram and other (indicated with dashed arrows) do not
correspond to an edge in the graph. For those (dashed arrows) the dyr in the
double chain complex is given by 0.

Now we have:

Theorem 7.6. For the case of type A, the cohomology of C* with rational coeffi-

cients satisfies:

Q@ for k=090,1

kiox. —
H(C’Q)*{o for k#0,1.
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Proof. We will prove this by induction on the rank ! and rely on Lemma 7.2
below. If we compute cohomology relative to dr, using Lemma 7.2 and the induction
hypothesis what results is E'7 as indicated by

0 - 0 (q = l)
o . .
BT = 4 0 —- 0 (g =2)
Q —- 0 (g=1)
[ Q@ - 0 (¢=0) |
Now §r7 is necessarily trivial and we obtain a collapsed spectral sequence in
which EF"? = EP*?. From here the statement of our theorem will follow. o

Lemma 7.2. Assume that H*(C*) is known for the case of Aj_1 and all k. Then
HAC*(£);Q)=0 for all k =0,1,---.

Proof. This follows from the spectral sequence of the double chain complex. By
our assumption we know the cohomology of the two subchain complexes that arise
for Lie algebras of type A;_;. Therefore we know, by assumption the cohomology
relative to §;. We obtain E?'? by now computing cchomology relative to d;r.
This is shown in the array below in which all the horizontal arrows are given by
multiplication by a non-zero scalar:

(0 = 0 (=1
B7200 = 0 (=2
Q - Q (g=1)
(@ —» Q (¢=0)
From here E5'7 = 0. o

Similarly we get for homology the following

Theorem 7.7. The rational homology of C. in the case of type A; satisfies:

) @ for k=0,1
Hk(ChQ)—{ 0 for k#0,1.

Proof. This can be obtained using a spectral sequence argument associated to the
double chain complex structure of C.. It also follows from the Universal Coefficients

Theorem. ad

Proposition 7.1. The homology of C, with Zq coefficients satisfies:
l
Hy(Co;Zg) = (k) Zy

Proof. This follows easily from the fact that all the incidence numbers are even.
a

17
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8. GRAPHS FOR ARBITRARY REAL SPLIT SIMPLE Li1E ALGEBRAS.

In this section, we determine the graphs for arbitrary R-split simple Lie algebra
which provide sufficient information for computing the (co)homology of the compact
variety Z(0)g.

Let us first recall that inductively it suffices to compute all the edges = from the
top cell () = (x---*). The results in this section will first show that one single edge
from the top cell suffices to determine all the others uniquely in the case of type A.
Hence a nonorientability condition (having at least one edge from the top) allows
one to derive the graph G completely. For other Lie algebras the nonorientability
condition fails but there is still information to proceed. For example in types B and
C there are no = arising from the top cell. Thus we will have instead orientability.
In type D; orientability depends on the parity of /.

8.1. Nonorientability and extremal simple roots. We now define orientability
and nonorientability for the compactified manifols Z(0)g. Recall that we have a cell
decomposition for Z(0)g with cells corresponding to subsystems labeled by subsets
J C II. From this it follows that there are only two possibilities for H "Z(0)r,Z).
Either it is Z or it is zero. Although Z(0)g is not smooth we will refer to the first

situation as orientable and to the second as nonorientable.
When Z(0)g is nonorientable the graph G is such that there is at least one

oriented edge = from the top (#).

Definition 8.1. A simple root o; is eztremal, if there is exactly one simple root
a; such that a; and «; are joined in the Dynkin diagram. In addition we assume
that o; and o are joined by exactly one line. A vertex ({e;}) is called eztremal, if
«; is the simple root connecting to an extremal root. The labeling for the simple
roots are defined in the Appendix A.

Example 8.2. In the case of type A;, the only extremal simple roots are those
labeled by 1 and [, and the cells ({ox}) with k& = 2,1 — 1 are the extremal vertices.
From Proposition 4.2, we also have the edge from the top () to the extremal

vertices ({ay}) for k =2,/ - 1.

8.2. Determination of the graphs G. We now introduce the condition of com-
patibility. It is now assumed that all the arrows from the top cell are known. Com-
patibility is the precise condition which allows one to assemble the whole graph G of
a semisimple Lie algebra inductively using the corresponding graphs for semisimple
Lie algebras of smaller rank.

Definition 8.3. We say that G, is compatible if we have Gy NGy = Ggngr = Gy
for any Lie subalgebra g’ of g. In addition, as part of the compatibility condition,
we assume that for the case of Az subdiagrams of the Dynkin diagram one obtains
the graph already described in Figure 3. Any other subdiagrams associated to rank
2 semisimple Lie algebras (i.e. Bz, C; or G3) are found to have no edges => (see

Section 6).

We now review a condition on squares of the graph G that is implied by 82 = 0
(the chain complex condition). First we have the following obvious Lemma.:
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Lemma 8.1. Let ((J1),{J2), (J3),{J4)) be a square relative to —. Then we have
the followings to satisfy the condition % = 0;

a) If three of the — are =, then the fourth — in the square is also =.
b} If two arrows — along the left side of the square or along the right side of the
square are both =>, then all four must be =.

In the case of a Lie algebra of type A, we will be looking for graphs associated
to Dynkin diagrams of real split semisimple Lie algebras which satisfy the following
three conditions:

C1: Nonorientability: Jo; € II such that there is an edge in (@) = ({a;})

C2: Compatibility: Gy NGy = G4 for any Lie subalgebra g’ C g

C3: Chain complex condition: % =0

Using these three conditions we will determine all a; such that (§) = ({a;}) in
the case of a Lie algebra of type A. The nonorientability condition will be obtained
from [0, {a3}] # 0. With the exception of D; for { odd, and Eg all other real split
semisimple Lie algebras satisfy orientability.

Example 8.4. Type A3: In this example, we illustrate the main arguments used
in this section to compute the graph G.

The compatibility condition C2 implies that the graph for Az includes the cases
of type A, and A,. Then we have the following edges in the subgraphs corre-
sponding to the case of Ay: (¥ * 0) = (x00), (% x 0) = (0 % 0), (0% *) = (0% 0),
(0 * *) = (004). Now from Proposition 4.2, that is, the nonorientability C1, we
have the extremal edge from the top, (* **) = (*0%). Now using the chain complex
condition C3, we can see that there is no additional edge, and we obtain the unique

graph for Az as shown in Figure 3.

Our main result concerning the graphs G for arbitrary real split semisimple Lie
algebras is Proposition 8.1 below which gives a complete list of the oriented edges

= from the top.
We label the simple roots as in see Appendix A so that and {J) can be denoted

as alist of stars and zeros as in the case of type A.

Proposition 8.1. In the graph G, we have the following result on the edge from
T g

the top (% ---%) to the vertezx (% ---% 0 % ---%):

For type A, there is an edge, iff n1 or ng is odd.

For type B, C, there are no edges (orientable case).

For type Dy, there are no edges for | even, and for | odd, there is an edge iff
n = 0.

For type Eg, there are only two edges for ny = 0 and ny = 4.

For type E7, Eg, there are no edges (orientable case).

e For type F,, there are no edges (orientable case).

[ ]

L

We will give a proof of Proposition 8.1 in the case of a Lie algebra of type A
by using the three conditions C1, C2 and C3. For other Lie algebras we need

£
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to replace the nonorientability condition. Lemma 8.3 is useful in showing that
incidence numbers are zero and ultimately leads to a proof of Proposition 8.1 in

combination with C2 and C3.

8:3. Proof of Proposition 8.1. We first state a Lemma leading to the proof of
Proposition 8.1 for those types.

Lemma 8.2. Assume that Proposition 8.1 is true for the Lie algebras of type A
of rank smaller than |. Then for any real split simple Lie algebra of rank | and of

type A, we have: (- -#) = (%% 0% %) withmy = ny (mod 2), if and only

1 n3
P ,-—/\‘
(*...* *...*)'

if (x---%) = 0

Proof. Suppose ny < my with ny = my (mod 2). Hence m1 = ni + ny + 1 with
n}, an odd number and na = m2 + 1 + nj and nz = my (mod 2).

We now have the following square in which the two bottom arrows are =, since
n} is odd. Using the chain complex condition C3 (Proposition 8.1), we have that
one of the arrows from the top cannot be a = without the other also being =:

(*...*...*...*)
4 Y
ma mao

—— ——
(*... *) (*...*0*...*)

* 0 %
v v

n: "; mig
(*...*0*...*0*...*)

This completes the proof. Note here that one single edge (* -- %) => (%0x-- - %) (i.e.

ny ng
an extremal edge) determines all the edges in (- -*) = (fA'?O ﬁ) with
ny = my (mod 2). 0
Now we can prove Proposition 8.1 in the cases of A:
Proof. First we use Lemma 8.2 to make m; smaller if necessary and then assume

that m; = 1 or m; = 2. We have then the following square diagram,

(d- e e o)

' N

ma : ma+1
(%%0%---x) (%0 %---%)
V" V4
ma
(%00 % - - - )
Now from Proposition 4.2, the top right arrow should be an edge, i.e. extremal
edge, so that from Lemma 8.2 we have always the edge for the case with m, is odd.
Also we have the edge on the bottom left by the A, case. Then from the condition
C3 (Proposition 8.1), we have the edge on the left side from the top if and only if
we have the edge in the bottom right. However for type A in a smaller rank (ma+1
in this case), the edge appears if only if ms is odd. Hence it tollows that at least
one of my, my must be odd. a
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We now consider other cases of Lie algebras. Let us first state the following
Lemma on an information for the incidence number [#; {c;}] in terms of the length

of the longest elements w, and wiod,

Lemma 8.3. For J = {o;}, if the length £{w,w’) is odd, then the incidence num-
ber [0; J] = 0.

Proof. Let 2 € W7 Then wezw’ € W (Lemma 4.1). Since Lw,zw’) =
Lw,) — L(w’) — £(z), if L(wew’) = &(w,) — £(w) is odd, then z and w,zw” have
different parity. Then from Definition 5.1, [#; J] = 0. 0

We also have:

Lemma 8.4. Assume that ,
a) T\ {a,} is a Dynkin diagram with simple components of type A
b) {{a,}) is a extremal vertez for a component of I\ {ay}.

Then [, {ar}] = 0 implies [B, {ar}] = 0.

Proof. Assume that v = 2 (by relabeling if necessary). We consider the square:

(-
4 p
(*0*...*...*) (*...*0*...*)
N e
(*0*---*6»-4]

By Proposition 4.2 and the compatibility condition of Definition 8.3, the bottom
right-hand side — corresponds to a =>. Therefore if the top right-hand side — cor-
responds to a => 82 # 0 because the two — in the left hand-side do not correspond
to =. Therefore there is no arrow = between (#) and ({a,}). 0

Then we obtain the orientability for the cases of type B and C:

Proposition 8.2. For type B or C, we have [0;{a;}] = 0 for any i. Therefore
Z(0)g is orientable, i.e. H; = 0.

Proof. First we note £(w.) = I2. For J = {oq}, we have £(w’) = (I — 1)%
Therefore £(w,) — £(w’) = {2 — (I — 1)? is odd. By Lemma 8.3 there is no arrow
from (@) to ({@1}). In the case of J = {a3}, we have £(w.)—£(w') = 12— (1-2)?—1.
This is again an odd number and there is no arrow from the top (#) to ({a2}). We
now show that no other = are possible from the top cell. For 2 < k <! we apply
Lemma 8.4 to conclude [#; {cx}] = 0. Therefore there is no arrow from the top {#).
a

The case of type D is given by the following Proposition:

Proposition 8.3. For type D;, we have [@;{c;}] # 0 if and only if I ts odd and
i=1. In this case [B; {a1}] = 4. Therefore Z(0)r is orientable if and only if | is
even. ' :

Proof. Note that for J = {a;} we have f{w,) =I(I = 1), £(w’) = (I = 1)({ - 2),
so £{w,w’) is even. We obtain the following elements in W[;i]: e, 58;_281_3 81,
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S[_181_28]-3 " ' 81, w,wi®}, This gives a total of four. In the case of { even, [ —1
is odd and there are two elements of even length and two of odd length. In the case
when ! is odd we have four elements of even length and [§; J] = 4.

We now show that for any other J , [0;J] = 0: In the case of i = 2, we have
) =1+ (-2 -3)ifl>6, £(w’)=T7,ifl = 5 and £(w’) = 3 for [ = 4.
In any case f(w,w’) = I(l — 1) — ¢(w’) is odd and [#; J] = 0. For the cases i > 2,
using Lemma 8.4, we get the result. 0

The following Proposition is for the case of type Fy:

Proposition 8.4. In the case of Fy , [§;{a;}] = 0 for all i = 1,2,3,4. Therefore
Z(0)g is orientable.

Proof We first note that £(w,) = 24 and £(w{*}) = 9, so that £(w,wl™}) is

odd. Therefore [@; {c1}] = 0. Similarly [#; {as}] = 0.
We now consider the case of J = {a3}. We have the following square:

( % *ox)
e pN
(%0 * %) (% * *0)
e
(%0 * 0)
The two arrows on the right-hand side are not =>. Hence [§; {az}] = 0 follows
from the 6% = 0 condition. Similarly [#; {e3}] = 0. u]

Proposition 8.5. For type Es we have [@ {a;}] = 0 if and only if i = 1,5. More-
over [B; {a;}] =6 ifi=1,5.

Proof. For all i # 1,5, £(w,w{*3) is odd. We compute all the elements in W,
for J = {a;}. The symmetrical case of ¢ = 5 will then follow. We obtain the
following list: e, se535951, 848386S554538251, $152535654835251, Wy (6535281 Yw’,
wew’. Therefore since all have even lengths, [§; {a1}] = 6. D

Proposition 8.6. For type E; or Eg we have [§,{e;}] = 0 for all i. Therefore
Z(0)g s orientable.

Proof. For E; and all i # 3,7, #(w.wl®}) is odd. For i = 3,7 we can apply
Lemma 8.4 because the subdxagrams that result by deleting as or ay are of type A
and [0, {as}] = 0. We conclude [B, {a;}] = 0 for all i for the case of E7.

In the case of Eg i # 4,5,6,7, £(w,w{®3) is odd. For i = 4,3,6 we can use

Lemma 8.4. For i = 8 we use the square:

(% % % % s K kk)

4 pY

(0 % s 4 % %k) (% % 5 % 4 % Ox)

vd
(0 % % % * % 0x)

The top left hand side is not a = and the bottom right hand side is a = (by the
Dy case where | is odd). Hence the top right hand side cannot correspond to a =
(8% = 0 would be violated). 0
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8.4. Rational cohomology (Betti numbers) for other Lie simple algebras.
We first note that in the case of type A the cohomology of the compact variety Z(0)g
is closely related to that of certain Schubert variety. In particular we consider the
Schubert varieties V; := N+ts;---5.B+/B+. For example, if we fix a coordinate
flag, V) c --- ¢ V{ ¢ RH! with dimV{§f = k, i.e. a flag corresponding to the 0
dimensional Schubert variety V(e), then in type A we consider all complete flags,

Vicvic...cV'c R, with VicVi, i=1,--.0-1.
Then we have:

Proposition 8.7. The cohomology H*(Vi,Z) of the Schubert variety V; for type A
1s given as follows:

v/ E=0,1

k —
H (Vl,Z)—{ (1) Zs k#0,1

Proof. This follows from the main results in [5]. It can also be proved using the
Serre spectral sequence associated to a circle bundle. B a

We now recall that the compactified isospectral space Z(0)g is a clogure of a
GCo-orbit of a generic element in the flag manifold. Among the GCo-orbits of
different elements, there are some that form Schubert varieties , closures of an N*-
orbit. For example in type A the smooth manifolds V, have a transitive action of
GO on their top cell and the remaining cells in the boundary are all G€°-orbits
and are parametrized in the same way as the subsystems in the isospectral variety.
The Schubert varieties can then be viewed as alternative compactifications of the
1sospectral variety of the nilpotent Toda lattice. .

The space Z(0)g and the corresponding Schubert variety then have the same
number of cells given by GCe-orbits although there is an important difference:
while Z(0)g is singular the corresponding Schubert variety is a smooth manifold.
Still, in the case of rank 2 the Schubert variety V3 is just Klein bottle and it is is
homeomorphic to the corresponding compactified isospectral variety.

We now describe the connection between the nilpotent Toda Lattice and the

Schubert varieties V}:

Theorem 8.5. For type A, if all the incidence numbers along the edges = in the
graphs G4, are replaced with +2 then the chain compler that results computes the
. integral cohomology of the Schubert variety V.

The proof is almost identical to the proof of Theorem 7.6 and is therefore omitted.

We now proceed to compute the rational homology and cohomology of Z(0)g.
The computation depends only on the graph G and not on the actual incidence
numbers associated to the =. In particular the rational cohomology is independent
of the chosen sign function for the incidence number.

There are exactly three patterns which the rational cohomology obeys, one for

the nonorientable cases and two for the orientable cases:
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Theorem 8.6. For type A;, Dy with | odd and Eg, which give the nonorientable
cases, we have

k(5 PR I ¥ for k=01
HY(Z(0O)g; Q)= H (‘/1,@)—{ 0 for k£01.

For the orientable cases, we have:

e For type Dy with ! even, E; and Eg,

i Q for k=0,1,1—1,1
Hk . -
(2(0)8; Q) { 0 for l<k<i—1.

e For type By, C;, Go and Fy,

5 ' _ Q for k:O)l
H (Z(O)m,@)—{ 20 for O<k<lI.

Remark 8.7. In the case of a Lie algebra of type A, several examples suggest that
the connection given in Theorem 8.6 between Z(0)g and Schubert varieties through
their cohomology extends to integral coefficients with some modifications. For
example, although H*(Z(0)g;Z) and H*(Vi;Z) are not isomorphic, they still have
the same rank as Z-modules. In fact one observes from examples that th€ graphs
obtained in this paper using the nilpotent Toda Lattice can be transformed into
the graphs of [3] for Schubert varieties by making a change in the generators in the
chain complex. The simplest example of this is the case of A;. Here we must replace
{{ea}) with {{a1}) + ({@2}). In some sense this change of generators relates the
structure of principal series representations for SL(n,R) as encoded in the graphs
of [5] with the nilpotent Toda lattice.

We will now prove Theorems 8.6 in several steps given by Propositions for the
various types of Lie algebras. The proofs in the cases of a Lie algebra of type E

are very similar to those for type D and details are omitted. The case of Fy is also
easy and is also omitted. The main ideas in all the proofs are already contained in

the calculation of the cohomology for a Lie algebra of type A.

Definition 8.8. A graph G% for X = A, B,C, D, E, F consists of the vertices (J)

and the oriented edges £, where the edges in the same way as in Definition 7.2.
In particular G}% agrees with Gx,_, for X = B,C and the incidence number
corresponding to the edges in gfﬁ agree with the incidence numbers associated to

the edges Gx,_, -

k
Notation 8.9. For any X = A, B,C, D, E, we consider a subgraph Gx, [*-- -] of
k
Gx, consisting of all vertices of the form (---%---¥) and the corresponding edges

k

between them. Similarly we define Gx,[0* - --x]. For example G4,[] = G5 _, and
Ga,[0] = Ga,_,. Also G4,[*+] and G4,[0+] are top and bottom of G5 .
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Each of these subgraphs gives rise to a chain complex. Within the context of

a specific simple Lie algebra and concrete coefficients (Z or Q) we will use the
k k

—— Pt
shorthand notation H?([%---x]) or HZ([0* - - -x]) for its gth cohomology. There is
a double chain complex structure and a corresponding spectral sequence expressing

k=1 A k
HI([%7 %)) in terms of H9([0%---*]) and H7([%"- %))
(
= | : .

BT 2] - HA(FER)

\

We now give a proof of Theorem 8.6 for type B or C:

Proof. We proceed by induction on the rank and use the same method that
was used in the prof of Theorem 7.7 in the case of type A. We use a double
chain complex strtucture corresponding to the two subgraphs Gx,_, and G 5:(1-1 for
X = B,C. There are no = involving these two subgraphs. This translates into
dr = 0 or 67 = 0 in the E; term. Hence we have a collapsed spectral sequence. We
have

(0 - Q (=1
0 — 20 (g=1-1)
moomil |
0 — 20 (¢="2)
Q@ — 20 (¢=1)
Q - Q (¢=0)

\

O

A proof of Theorem 8.6 for type D; with ! odd is as follows:
Proof. We summarize the steps of the proof which is analogous to the proof for
P

the case of type B or C. If p > 1 is odd one can show that H*([%---x]) = Q

when k = 0,1 and zero otherwise. If p # 0 is even then one can show that
P P

H*([%-%]) = 0. Also that for p # 1 H*([0%-.-%]) = Q when k = 0,1 and
zero otherwise. This pattern is broken with H*([0x]) = 0 for all k. This is just a
consequence of noticing that Gp,[0%] = Ga,_,[¥] = G4,_,. By Lemma 7.2 it then
follows that H*([0]) = 0 for all k.

Since H*([x#]) = 0 (p = 2 case above) , using the spectral sequence relating
H*([0%]) and H*([#]), one obtains H*([x]) = 0. This also breaks the previous
patterns (which assumed p > 1). Finally since H*([0]) is the cohomology associated
to the graph Gp,[0] = Ga4,_, we obtain the desired result using again the spectral
sequence involving H*([0])and H*([*]). g

Since the proof of Theorem 8.6 for type D; with I even is analogous to that of
the case D, with ! odd, we omit it.
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APPENDIX A. DYNKIN DIAGRAMS FOR REAL SPLIT SIMPLE LIE ALGEBRAS

Here we list the Dynkin diagrams for real split simple Lie algebras. The simple

roots for each algebra are labeled as in Figure 9.

Al O mmmemmmmemcssmmmcoscscaenennnn. -O—0
(o 5] o2 ' [0 45
B! o SO et o1
(0.} (o &} (0 45
C: o S o D A LE LA LLE CELLLEL L EELLEE o0
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(0.4}
D! (o e @ LELTEREELLEEEEELEELELEE
[0 ] o2 (045
Qs
Es
o2 (0. 4] o3 o4 [0 X
oy
E7 (o, O —O <O OoO———O
(0. 9] [0 4] s L4 s [0 4]
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Es O O O —— O —O lo]
(o ] L2 o3 (o ] ols Ols (0 %4
Fa O- — = Yo
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Ficurk 9. The Dynkin diagrams for simple Lie algebras and the

labeling on the simple roots
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