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On global solutions for wave equatioris

under the null condition in 3 space dimensions

H# W (Makoto Nakamura)
HAEK - #5#t (GSIS Tohoku University)

Abstract. Small global solutions for quasilinear wave equations are considered in three
space dimensions in exterior domains. The obstacle is compact with smooth boundary
and the local energy near the obstacle is assumed to decay exponentially with a possible
loss of regularity. The null condition is needed to show global solutions for quadratic

- nonlinearity.

1 Introduction

This is a note on the joint work with Jason Metcalfe and Christopher D. Sogge [29].
The goal of this paper is to prove global existence of solutions to quadratic quasilinear
Dirichlet-wave equations exterior to a class of compact obstacles. As in Metcalfe-Sogge
[30], the main condition that we require for our class of obstacles is exponential local
energy decay. Our result improves upon the earlier one of Metcalfe-Sogge [30] by allowing
a more general null condition which only puts restrictions on the self-interaction of each
wave family. In Minkowski space, such equations were studied and shown to have global

solutions by Sideris-Tu [37], Agemi-Yokoyama [1], and Kubota-Yokoyama [25].

We use Klainerman’s commuting vector fields method [20]:
& = 0, Q,-j=:zi6j—wja,~, 1<i#£35j<3, L=td+ Z z;0;.
1<5<3

L is called the scaling operator. We denote {8;}o<;<3 by 8, {Q;j}1<izj<3 by @, {8,0Q} by

Z, and {L, Z} by I. For functions u, u’ denotes Su. These operators have the commuting



relations with d’Alembertian O :
Dﬂij = Qy;0, OL = (L +2)0, Lﬂij = Qy; L, 6,-L =(L+ 1)3_7‘. (L.1)
Using Z, we can earn one weight by Klainerman-Sobolev inequality :

Lemma 1.1 [20] [17, Lemma 2.4] [35, Lemma 8.3] Suppose that h € C*®°(R®). Then, for
R>2,

I8l oo (rejol<rity £ CR™Y ) [[Q%82h| L2(R-1<|z<R42)- (1.2)
| +|BI<2
We describe our assumptions on our obstacles X C R3. We shall assume that K is smooth
and compact, but not necessarily connected. By scaling, without loss of generality, we may
assume |

Kc{zeR3: |z <1}, 0€ K\oK.

The only additional assumption states that there is exponential local energy decay with a

possible loss of regularity. That is, if u is a solution to

Cu(t,z) = 0, (t,z) € Ry x R3\K
u(t7 ')laIC =0 (13)
’U(O, ) = f7 6tu(07 ) =g, supp f Usupp g C {Rs\’C’ 'Z" < 4},

then there must be constants ¢, C > 0 so that

Il (£, )l L2(oerevk,zi<ay < Ce™ D 185%(0, )2 (1.4)
lel<1

Throughout this paper, we assume this local energy decay estimate for K.

Lax, Morawetz and Phillips have shown (1.4) without a loss of regularity, namely |a| =0
in the RHS, when K is star-shaped in [26] (see also (27, Theorem 3.2]).

Morawetz, Ralston and Strauss have shown (1.4) without a loss of regularity (ja| = 0)
when K is bounded connected and nontrapping in [32, (3.1)]. Here if the lengths of all
rays in By(0)\K are bounded, then waves are not trapped and (1.4) holds without a loss
of regularity. They also treat the multi-dimensional cases. See Melrose [28] for further
results. Ralston [33] has shown that (1.4) could not hold without a loss of regularity when

there are trapped rays..



Ikawa has shown (1.4) with an additional loss of regularity, namely |o| < £ with £ > 1
in the RHS, when K is trapping. He has shown (1.4) with £ = 6 when K consists of two
disjoint strictly convex bodies in [12], and (1.4) with £ = 2 when K consists of sufficiently
separated several disjoint strictly convex bodies in [13]. Since we have the standard energy

preservation
llw' (2, )l 2oy = 1 (0, )l z2wevx)

(see (3.3) with v = 0), we can reduce the estimate (1.4) with an additional regularity,
£ > 1, to the estimate for £ = 1 with different constants ¢ and C by the interpolation.

Therefore we can treat the above obstacles by the condition (1.4).

We note that we do not require exponential decay; in fact, O((141)~1~%—™) with § > 0
and m > 0 may be sufficient with a tighter argument, where we need 1 + ¢ for the integral
ability and m is the number of L we need in our argument (see the argument below (4.4)
to bound t#e~°/2). Currently, the authors are not aware of any 3-dimensional example

that involves polynomial decay, but does not have exponential decay.

We consider quadratic, quasilinear systems of the form

Ou = F(u, 8%u), (t,z) € Ry x R3\K
u(t, +)ox =0 (1.5)
w0, -)=f, 060, )=g.

Here O denotes a vector-valued multiple speed d’Alembertian :

Qu = (Dc1u17D02u27 ceey DCDUD)y F= (Fla T 7FD)a D2>1, (1.6)

where

O, =082 -clA, 1<I<D.
We assume that the wave speeds c; are positive and distinct:
O0<e1<---<ep.

Straightforward modifications of the argument give the more general case where the various

components are allowed to have the same speed.




We shall assume that F(8u,8%u) is of the form

Fl(ou,0%u)= Y AfXon’ow®+ Y Biifou’dauX, 1<1<D. (17)
1<J,K<D 0<74,k,1<3
0<35,k<3 1<J,K<D

For the energy estimates, we require the symmetry condition:

BIJK_ KJI _ plJK
Jkl  — ikl T S5k -

To obtain global existence, we also require that the equations satisfy the following null

condition which only involves the self-interactions of each wave family :

Y Alllgie =0 whenever & =c}(¢i+&+¢}), I=1,...,D, (1.8)
\ 0<5,k<3

| Z B},{,’g,-gka =0 whenever ¢Z=ci(¢?+¢2+¢%), I=1,...,D. (1.9)
0<3,k,1<3

l The terms which satisfy the above null conditions are treated by the following estimates :
Lemma 1.2 [37, 40] If the semilinear null condition (1.8) holds, then

{ert — 1)
(t+r)

Z A%@,-u&wi < Cll"u“f)vl + Iau”Fvl

) +C
| 0<7k<3 (r

|9ul|v]. (1.10)

i Suppose that the quasilinear null condition (1.9) holds. Then,

[Tull%] + 10ulldDo] |, (ert =)

(r) (t+r)

| i Z B},{{B,uajakv‘sc

0<sk,I<3

|6ul|8v). (1.11)

We briefly remark on the null condition for the boundaryless case in three space dimen-

sions. John has shown in [14] that the nontrivial solution of single wave equation
Ou = (8tu)2,

which data have the compact support, blows up in finite time. On the other hand,
Christodoulou in [5] and Klainerman in [20] have shown independently the global so-
lutions for small data when the nonlinear term satisfies the null condition. A typical

example of such equation is given by

Ou = a{(6u)? — (Vu)?}, a€R.




Alinhac has shown in [2] that the null condition is necessary to show the global solutions
when the nonlinear term is quadratic quasilinear excluding u itself. Kovalyov pointed out
in [22] that when we consider the systems of wave equations with different speeds, the
situation become different and the the sytems tend to have global solutions for small data.

A typical example which has global solutions for small data is given by

(07 — dA)ur = a(Bpu2)?

(6 — A8 — H(B0) a,b€R, c1#cp>0.

For further historical sketch, we refer to the section 6 in [23] or [24].

We refer to compatibility conditions. For the solution u of (1.5), the functions {8{ u(0,2)};>0
are called compatible functions. The compatible functions are functions of spatial variables
and 6{ u(0, z) are expressed by {05 f}|a|<; and {05 g}|a|<;j~1- We say that the compatibility
conditions of order s are satisfied if BZ u(0,z)|ox = 0 for all 0 < j < s (See [16, Defini-
tion 9.2]). Additionally, we say that (f,g) € C™ satisfies the compatibility conditions to

infinite order if the compatibility conditions are satisfied to any order s > 0.

We can now state our main result:

Theorem 1.3 Let K be a fized compdct obstacle with smooth boundary that satisfies (1.4).
Assume that F(Ou,8%u) and O are as above and that (f,g) € C®(R3\K) satisfy the
compatibility conditions to infinite order. Then there is a constant o > 0, and an integer

N > 0 so that for all € < g, if
> magfle+ D Iz agglla <€ (1.12)
la|<N la|<N=-1

then (1.5) has a unique solution u € C*([0, 00) x R3\K).

This paper is organized as follows. In the next section, we will collect some prelimi-
nary results which are frequently used in this paper. We put several sections for energy
estimates, L? estimates in space and time, and Sobolev embeddings, respectively. We will

show the continuity argument in the last section to prove Theorem 1.3.




2 Preliminaries

We use the following Poincaré inequalities to bound « by ' near the obstacle:

lullL2®s\k joj<r) < CrIIVullL2®s\k,o|<r) I ulox =0, (2.1)
where Cpg is a constant dependent on R > 1 (cf. [7, (7.44)]).
We also use the following elliptic regularity : for any fixed M > 0

Y llo2ullpamevkjai<r) < Cr( D 105Vull p2mevc joi< 1)
2<|a|<M+2 lal<M

+ Y l182Au| ek pi<rin)  (2:2)
la|l<M

if u|lax = 0 (cf. [7, Theorem 8.13]).

Here we briefly sketch the elementary method to treat the nonlinearity.

Lemma 2.1 Let u € C®((0,00) x R3\K). Suppose u has the bound

Y 12t @)l < 2

2.3
la|<My T4t ( )

for some constants My > 0 and Cy > 0. Then for any M > 0 and po > 0, there exists a

constant C such that we have

Y Iew@ln < 2 Y 1 @l
btal<M ptlal<M
K< po u<to
+C > {z) 22! (t)|| .2 > (z)~2/28°U'(t) | 2
Mo+1<|a|<M—My+1 Mo+1<|a|<M—-My—1
+C Y @YW Y @)Y
ptHio|<M~Mo+1 le|l<M-1
1<pu<po
+C Y @ VALrZ ()l Y. @) TVALEOU (). (24)
ptlal<M/2+2 uta|<M-1
1<p<po—1 1<p<po—1

Here 0 can be replaced by Z in the above inequality.




Proof of Lemma 2.1 : We use the following estimates:

PO 2 LS| PRPSD DE a2

ptlal<M ptal+v+|BI<M
u<po utv<po
SO IRl Y (18Pl + ) |6%u'69a'R)
ptlel<M |B1<Mo Mo+1<|a|<M—~Mo—1
v<uo Mo+1<|B|<M~Mp—1

+ > > | LE8%u 88 ||

putla|<M~Mo—1 Mo+1<|8|<M -1
1<p<po

+ Y Yo I L8P .
ptlal<M/2v+|6l<M—1
1<u<po—1 1<vpo—1

Since we have by (1.2)

|40 (8, 7)] S (o) Z 122 L#8°u' (t, )| L2 (2} —1<[y|<[al+1)
[B1<2

S @ 3 @) ALEZP s,
v+ BI<a+lal+2

we obtain the required result using (2.3). O

3 Energy Estimates

Since we are considering the quasilinear wave equation, we need associated energy es-
timates as follows. Let v = {y/"%}, <1 j<p0<jk<3 be any smooth functions on [0, c0) x

R3\K. We consider [, which is defined by

D 3
(@) (¢, x) = (82 — EAW! (¢, z) + Z Z ATk (¢, 2)8;8u’ (t,x), 1< I<D.
J=1jk=0

And we define the energy form associated with O, as follows :

3 D 3 D 3
eb(u) = (Bpuh)? + }:ﬁ(akuf)2 +2 Z Zq’”’m‘aoulakuJ - z Z Y13k gl dpu”

k=1 J=1 k=0 J=17,k=0
(3.1)

D
eo = eo(u) = Zeg(u).
I=1




We define the other components of the energy-momentum vector. For I = 1,2,---,D,

and k =1,2,3, let

D 3
e£ = e‘,:(u) = —2c2}60u13ku1 +2 Z Z'y”’jkaoulajuJ
J=1j=0

D
ej =ej(u) =) e, j=1,2,3
I=1

D 3 D

3
Ri(w) =23 3" @0y "%y a0uBpu” = 3 Y (B0r" ¥ )Bjul B’

J=1 k=0 J=1 j,k=0

D 3

Ri(u)=2 Z Z(Bk'yI‘I’jk)aouIBjuJ
J=1j=0

D 3
R(u) =Y > Ri(u).

I=1k=0"
Then we have the following most fundamental energy estimates (See [39], p13) :
Lemma 3.1 Suppose that the functions y''9% satisfy the symmetry conditions

1Lik — 4JLdk — JITkI for 1< I,J<D, 0<j,k<3. (3.2)

v =7

For any function u in C2((0,00) x R3\K), the following equation holds:

Bieo + div(e1, €2, e3) = 28w - Oyu + R(u). (3.3)

Proof of Lemma 3.1: By direct computation, we have

3 D 3
8066 = 260u183u1 +2 Z c%akulaoakuf + 28pu! Z Z WIJ""“aoakuJ
k=1 J=1k=0
D 3 D 3
+2 Z Z ’YIJ’OkaguIakuJ - Z Z ’)’IJ’jk (aoajulakuj + 6,-u’606ku’) + R{, (3.4)
J=1 k=0 . J=1j,k=0

and

3 3
Y ket = —200u’ FAu’ — 2 " Ful BB’
k=1 k=1
D 3 3 D 3

3 , 3
+ 28pu” Z Z Z A3k, Gu’ + 2 Z Z Z’yIJ’jkaoakulaju" + Z RL. (3.5)

J=1j=0 k=1 J=1j=0 k=1 k=1




We obtain the required result using the symmetry condition (3.2). O

We use (3.3) to show the energy estimates for L*Z®u. However, direct application causes
derivative losses from div(e;, es, €3) since L, Q, 8, don’t preserve the Dirichlet condition.
To avoid it, we cut L near the obstacle and construct the energy estimates for 6tju Let
n € C*°(R?) be a smooth function with n(z) = 0 for |z| < 1 and 5(z) = 1 for |z| > 2. We
define I by L = t8; + nrd,. By simple calculation, we have for any u > 0

=1+ Z .Cp,j,aXu,j,a(z)Lja:axa Xpja € Cgo(Rs)v SUPP Xpu,j,a C B2(0), (3.6)
jtlal<p-1
where {C}, j .o} are constants dependent on lower indices.

Our first task is to show the energy estimates for D‘E}Z u. We put

Butyo(®) = Baapa)t) = [ 3 eolL#8fu)(t,2) do.
pt+i<M
“lpo

The estimate for Eay,,(t) is given by the following lemma. And the energy estimates

for L#3%u follows from it due to the elliptic regularity :

Lemma 3.2 Assume that the perturbation terms v/ satisfy (3.2) and the size condition

D 3
> > o)l g, <8 (37)

1,J=1jk=0
for & sufficiently small. Then for any M > 0 and po > 0, there erists a constant C =
C(M, po, K) so that for any smooth function u in [0, 00) x R3\K with u(t, z)|zcox = 0, the
following estimates hold.

Yo IL#e () S CEVE +C Y (IL*0°Dut, )|le. (3.8)

u+lal<M pt|a|<M-1
w<no B<po




gL/

ENE () < C 3 I0,E00ut, )2+ CI (¢ e Errs, ®) (3.9)
p+j<M
u<po
< ¢ 3 I 0yu(t, )2 + CllY (b e By ()
bt|e|<M
#<po
+C > (L 8%y (2, ) (L 2°28%u(t, -)) 12
p+|an|+ue+laz|<M
pu1+p2<po
p2+|ag|<M-1
+C Y |LFE% (¢, T) | L2 (ai<2) -
ptal<M
p<po—1

When we apply Gronwall’s inequality to (3.9), we need the followihg lemma to bound
the last term in (3.9).

Lemma 3.3 For any M > 0 and up, there exists a constant C = C(M, po, K) such that
for any smooth function u in [0, 00) x R3\K with the Dirichlet condition u(t,)|zcox =0
the following estimate holds.

/IIL"a"u’(s Dogereads SC 30 M@ (L#8)(0, )z

u+j<M puti<M+2
w<po p<po
+ > // I LHO*G (7, y)|l 2 (g~ (s~7) <10y dTds
u+]a|<M+1
#<po
- [ 12400t <o (3.10)
u+la|<M+1
w< o

For the energy estimates for L#Z%u, we need the following estimates. Begin by setting

Vit (£) = / Y eo(LFZou)(t, ) do. (3.11)

|a|+p<M
plpo

We, then, have the following lemma which shows how the energy estimates for L#Z%u can

be obtained from the ones involving L¥8%u.

Lemma 3.4 Assume (3.2), (3.7) and

D 3
V@& Moo= D" D 1872, oo < 6 (3.12)

1,J=1j kl=0



1

- for sufficiently small 6. Then,

O¥ip < CYpeo S I0,LZ%(t, -l -~ (3.13)
lal+p<M
w<po
+C”7I(t’ ')HOOYM,MO +C Z HL“Bau’(s, )”%2(|a:|<2)
|le|+p<M+1
u<po
1/2
< onfal S IzEzeou, -l
lel+usM
#<po
+ > (¥ 2% y)(LH2 Z2%28%u) |2}
p1+|e | +ue+aa|<M
p1+p2<po
p2+az[<M—1
+OIY' (8, looYaruo +C D IL#0%W (s, s (ay<z)
|o|+u<M+1
#<po

4 Local energy estimates and L? estimates in space and time

First we derive local energy estimates for inhomogeneous wave equations near the ob-
stacle.

Lemma 4.1 Let K satisfy the local energy decay (1.4). Let u be the solution of

Ou=F, supp,F(t,z)C By(0)

ulox =0 (4.1)
u(0) = f, 6u(0) =g, supp fUsupp g C By(0).
Then for any M > 0 and pg > 0, the following estimates holds :
Y. IIE#0™ (4 2)llpa(aicqy S Ce2 N [8%6/(0,2) | 12(jai<a)
ptlal<M lal<M+1
u<uo
+C f ~e(t=3)/ ILA0*F (s, Mads+ Y. |L*0*F(t, )2 (4.2)
u+1a|<M+1 ptla|<M-—1
u<po u<pio

Proof of Lemma 4.1 : First we show (4.2) for uo = 0 using induction. The estimate for

M = 0 follows from (1.4) and the Duhamel priciple. Let’s assume that the estimate for
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M > 0, and we consider the case M + 1. We have

3 1 lpagecny S X 10°W lpagai<ny + Y, 18705 ullzaal<s)

Je|<M+1 |e|<M JjtHa|l<M+2
izl
+ Y l6gullz(ei<s) (4-3)
|aj=M+2 :
The first two terms in the RHS are treated by induction since J;u satisfies the Dirichlet
condition. Applying (2.1) and (2.2) to the last term, we have
> 182u®) | a(ai<a S 1 llLa(al<s) + Z 182020l Laiaiesy + D, 1050u]|L2(ja)<5)-
la=M+2 la|<M lal<M
Again by induction, we obtain the required estimate for M + 1. Here we can replace c/2
with ¢ in (4.2) when po = 0.
Next we show (4.2) for pg > 1 by induction. Let’s assume that (4.2) holds for M and
wo. We consider the case pg + 1. Since we have
Yo Il raecny S D 11#0°W | naqiai<ay + S 41680 || La(iai<a)s
utle|l<M ptle|<M bt|a|<M
p<lpo+l u<po 1<usuo+1
(4.4)
it suffices by induction to show the last term in the RHS is bounded by the RHS in (4.2).
If we use (4.2) for pg = 0 for 6{ u which satisfies the Dirichlet condition, and we use that

the=<t/2 is bounded, then we obtain the required estimate. O

Remark. We abstractly remark on how we apply the local energy decay estimates to
obtain the required estimates in the exterior domain case. Let u be the function defined
in the exterior domain with the Dirichlet condition u(t,-)|gx = 0. The estimates for u
when |z| > 2 are obtained by those for boundaryless case by multiplying a smooth cutting
function which vanishes near the obstacle. The estimates for u when |z| < 2 can be

obtained by the following procedure. We decompose Clu by a smooth cutting function as
Ou = Fy + F», suppF; C {|ly| <4}, suppF; C {|y| > 3}.
And we consider two functions such as
Ouj = Fj,  j =12,

ujlox =0

u;(0,7) = f;(-),  Beu;(0,-) = g;(*)



where f; and g; are decomposed functions of u(0,-) and ;u(0,-) by the same cutting
function to F;. We have u = uj + ug. And the estimates for u; can be obtained applying
the local energy decay estimates. To obtain the estimates for u3, we concider the function

v which satisfies
{ v=F, in RyxR®

v(0,) = fa(-),  Gw(0,-) = g2(").
And we define w by us = v + w. Since we are considering the case |z| < 2, using the
smooth cutting function 7 which satisfies n(y) = 1 for |y| < 2 and n(y) = 0 for |y| > 3, we
have uz(t, ) = n(z)v(t, =) + w(t, z). Especially we have

Oug = -2V - Vv — Anu.

Since the RHS of the above equation has its support near the obstacle, we obtain the
estimates for uy by the local energy estimates again. Consequently we can obtain the

required estimates for u.
We need weighted L? estimates. Put
St = {[0,T] x R*\K}

to denote the time strip of height 7" in R, x R3\K.

Lemma 4.2 (1) (Boundaryless case [17, Proposition 2.1]) There ezists a constant C > 0

so that for any function u in [0,00) x R3, the following estimate holds.

T
(log(2+T)) /(=) ™"/ | 2o rixms) < C Y 18°u(0, - )[l2+C /0 ICu(t, -)ll2dt. (4.5)

lo|<1

(2) (Ezterior domain case [18, (6.8), (6.9)]) There ezists a constant C so that for any
function u in [0,00) x R3\K with the Dirichlet condition u(t,z)|zcox = 0, the following
estimate holds. For any M >0 and up > 0

(log2+TNV2 3 (&) V2Lr™W sy < C Y, I(Z#8%u)(0, )12

- |al+p<M lo|+usM+2
B<po u<po
T
+ C’/ Z | L#0%Du(t, - )|l dt + C Z ||L“6°DuI|Lz(ST) (4.6)
O |al4+usM41 lal+p<M

u<po k<po

13
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and

(log(2+T))™2 3" |l{e)"V/2L#Z% ,HL2(ST) <C Y I#Z°u(0,9)ez.

la|+usM |a|+u<M+2
u<uo u<po
+C [OL#Z%u(t, 2 dt+C Y. [OL*Z%llpysy (47)
0 Ial+u<M+1 laj+u<M
k<o ulpo

5 Pointwise Estimates

We consider pointwise estimates in this section.

Lemma 5.1 Let F, f and g be any functions.
(1) (Boundaryless case) Let u be a solution to
(0 — A)u(t,z) = F(t,z), (t,z) € [0,00) x RS
u(0,z) = f(z), OBwu(0,z) = g(z).
Then

(L+t+lauta) <C Y (@8] L#Z%u)(0,2)lrz

bt|e|<3
p<1,5<1

+c// 3 L#zany|d3<">is. (5.1)

u+|a[<3

(2) (Esterior domain case) Let u be a solution to ‘

(8 — Au(t,z) = F(t,z), ()€ [0,00) x RO\K
u(t, )|zeaxc = 0 ' ‘
u(0,z) = f(z), Bwu(0,z) = g(z).



Then for any M >0 and po > 0

(L+t+lz) Y [IFZ°uto)<C Y (Ve ,L¢Z%)(0, )|l

lej+psM Jtptel<M+8
K<po u<po+2, j<1
t dy ds
+C / / 3 |LﬂzaF(s,y)|—-—-’|’|
0 IRNK 1oL u<M+7 y
u<po+l

t
+C > IL*°F(s,y)ll2(y<s) ds- (5.2)

O |a|+u<M+4
uluo+1

Here and throughout {|y| < 4} is understood to mean {y € R3\K : |y| < 4}.

The proof of the above lemma, for vanishing Cauchy data has been shown by Keel-Smith-
Sogge in [18, (2.3), (2.4) and (4.2)] and Metcalfe-Sogge in [30, (3.2)].

The following estimates are the special version to treat the inhomogeneity F near the
light cones, which follows from the Huygens principle.
Lemma 5.2 Let F' be any function.

(1) (Boundaryless case) Let u be a solution to

(8% — 2A)u(t,z) = F(t,z), (t,z) € [0,00) x R3
u(0,-) =0, 8u(0,:)=0.

Assume
suppF C {(t,2);¢ > 1, c1_10t < |z| < 10cpt}.
Then ( .
sup (1+8)ult,z)| < C sup / S (L4ZeF(s,)dy. (5.3)
|z|<c1t/2 0<s<t JR3 '”"Hgllss
u<

(2) (Exterior domain case) Let u be a solution to

(8% — 2A)u(t,z) = F(t,z), (t,z)€[0,00) x RO\K
u(t, z)|zeoxc = 0
u(t,)=0 for t<0.

Assume

6 cit

suppF C {(t,z);t > 1V —, — <|z| < 10cpt}.
C1 10
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Then for any M >0 and o > 0

sup (1+1¢) Z |L¥Z%u(t, z)| < C sup / |LFZ*F(s,y)|dy
‘£|$61t/2 l‘+|a|SM 0<8<t R \IC |a|+y.<M+7
u<uo #lpo+l
+sup (1+3) Y L#0°F(s,9)llLa(yi<e). (5:4)
O<s<t lal+u<M+3
K“<po

We also need the following L™ — L™ estimates to treat the inhomogeneity away from the
light cones, which are special (more elementary) version of Kubota-Yokoyama estimates

(see Kubota-Yokoyama [25, Theorem 3.4] for the boundaryless case).

Lemma 5.3 Let F, f and g be any functions.
(1) (Boundaryless case) Let u be a solution to
(8% - c2A)u(t,z) = F(t,z), (t,z) € [0,00) x R3
u(0,z) = f(z), Owu(0,z) = g(z).

Assume
t
suppF C {(t,z2);0 <t <2, |z| <2} U{(t,2);|z| < % or |z| > 5crt }. (5.5)
Then for any 6 > 0, there ezists a constant C' = C(6) such that

sip (L+B)u(t,z) SO 3 (2) 8, L#22u)(0,2) .z
|z|<crt/2 u+la|<3
u<1y<1
+Coup (1)* (1 + s + [y) ¥ F(s,3)]. (5.6)
yeR®

(2) (Ezterior domain case) Let u be a solution to

(82 - 2A)u(t,z) = F(t,z), (t,z)€[0,00) x RO\K
U(t, x)lea}C =0
u(0,2) = f(z), Bu(0,z) = g(z).

Assume (5.5). Then for any 6 > 0, M > 0 and po > 0, there ezists a constant C =



17

C(6, M, o, K) such that

sup (L+8) Y |[L#Z%(4a)|<C Y. (@) 8, L4 Z%u)(0,)|)12

jz|<ert/2 pta|<M J+u+al<M+8
u<po ulpo+2, j<X1
+C sup (W) (L+s+[y)'*? D |L#Z°F(s,y)
3 lal+u<M
ve u<po
+C sup (> P(L+s+y)*? Y |L#8°F(s,y)). (5.7)
e la+u< M+4
YERT\K u<po

6 -Sobolev-type Estimates

We need the following Sobolev inequalities. The first inequality is due to Klainerman-
Sideris [21], Sideris [35], and Hidano-Yokoyama [9]. The second one is the exterior domain

analog of the first one.

Lemma 6.1 Letc >0, 0 < 6 <1/2 be any constants.

(1) (Boundaryless case) For any function u € C$°((0,00) x R3)

(@) (ct—|a) Pl (o) < C Y ILAZ% ()3 +C Y [(t+Hal) Z°Deult, 7)2a-

| <2 . le|<1
u<1

(6.1)

(2) (Ezterior domain case) For any function u € C§((0, 00) x R3\K) with the Dirichlet
condition ulogx =0, and any M > 0, puo >0

@Vt~ falyi? Y |22 SO Y A2 (o)

s+lal<M ptla|<M+2
u<po pu<po+l

+C Y e+ |2 LA Z°Teu(t, )2

ptal<M+1
u<po

+C(1+1) Y 1LY (¢, 7)o (oj<2)-  (6.2)
u<po
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Proof of Lemma 6.1 : By (3.14c) in [35], and (4.2) in [25], we have
(@) /20t — o) 1P (¢, 2)| < C D 2% (L, 2)llr2 + C Y (et — |2) 2%0%ult, 2) |2
laj<2 lof<1
for any 6 with 0 < § < 1/2. By (2.10) and (3.1) in [21], we have
et — le)o®ult, )z <C D IL*Z%/ (¢, @)z + Cll(¢ + ) Beult, o)l 2
u+|zi1$1
u<

Combining the above two estimates, we obtain (6.1). The proof of (2) can be found as

(4.7) in [29]. O

7 A sketch of the proof of Theorem 1.3

In this section, we show a sketch of the proof of Theorem 1.3. To prove our global
existence theorem, we need a standard local existence theorem (See [10, Theorem 6.4.11]

for the local existence theorem for the boundaryless case).

Theorem 7.1 [16, Theorem 9.4] Let.s > 7. Let (f,g) € H* ® H*™! satisfy the compati-
bility conditions of order s — 1. Then (1.5) has a local solution u € C([0,T); H®), where
T depends on s and the norms of f and g. Moreover if || f|lgs + ||g||gs-1 i8 sufficiently
small, then there ezists C and T independent of f and g so that the solution of (1.5) ezists
for 0 <t < T and satisfies

sup > [18u(t, )l ge-i < C(IfIlme + llgllge-1)-
0<i<T 555

Let My be sufficiently large number which is determined later so that the following all
argument holds. We assume the smallness of the data (1.12) with N = 2Mj. By the same
argument for (10.2) in [18], we can show that there exists C' independent of u such that

sup Y @)®0*u(®) | Lawo\kciai>septy < Ce- (7.1)
>0
=" la|<N
This inequality and the Klainerman-Sobolev inequality (1.2) yield
sup > @4zt |ou(t, )| < Cle (7.2)

120, 2ERN\K |41 N_2
le|>6ept 1S




for some constant C’ > 0. Indeed, for z with |z| > 6¢pt, if |z| — 1 > 5cpt, then the result
follows from (7.1) and (1.2). If |z| — 1 < Bcpt, then the result follows from the standard
embedding H2(R3\K) — L*®(R3\K) since such z is in a bounded set.

And we also have

Y )40 o5, 1aymsepty < Cellog(l +T))Y2, (7.3)
la|<N-2

Indeed, by (7.2), the square of the LHS is bounded by

T
ce ¥ / / (z)~5/2+1el | gey gt
0 Jiz>6cpt

le|<N-2
so that by the Schwarz inequality and (7.1), we obtain (7.3).
Fix a cutoff function x € C°(R) satisfying x(s) = 1 if s < 1/(12¢cp) and x(s) = 0 if
s > 1/(6¢cp), and set

uo(t, 2) = n(t, z)u(t, z), n(t,z) = x(t/|z]).
Then by (7.1) and (7.2), we have

3 @l + (L4t +1e) Y [(z)l0%u| < C. (7.4)

lal<N lo|<N-2

And, by (7.3), we have

Y Wa)y~34Helgoug|| ;- < Celog(1 +T))V2.
la|l<N-2

We put w = v — ug. Then we have
Ow = (1 — n)F(8u, 6%u) - [0, n]u
wlax =0 (7.5)
w(t,z) =0, t<0
for 0 <t < T. Let v be the solution of
Ov = —[0,7]u
vjgx =0 (7.6)

v(t,z) =0, t<O0.
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Then we have u = ug + v + (w — v), and
L+t+lz) > [#z2%a)+ ) L#Z%(, )2 < Ce (7.7)
bt|a|<N-8 pt|a]<N-10
Indeed, by (5.2) and the fact |L#Z28%n| < C|z|~14!, the first term is bounded by
t
Iy (145 Y )0°uldyds,
0 Jécps<|y|<12cps la]<N

which is bounded by the LHS of (7.1) by the Schwarz inequality. For the second term, we
apply (3.3) with v = 0. Then we have

Z Bt/eo(L“Z“v)da: <C Z ||L“6°v’||%2(|z|52)
pt|a|<N-—-10 ptea|<N-9

+ Y / (8,L*Z%v)(QLF Z°v)dz|. (7.8)
ptla|<N-10

The estimate for the first term and (1.1) show that the RHS is bounded by

274\ =2 € a
ety ™ + —— E LFZ%([O, nu)|dy
( ) 1+¢ 6cpt<|y|<12cpt pt|a|<N-10 | ([ ’ ] )I ’

which is bounded by

€
(1+1)3 /ethSIylsmcnt

|(z)!*10%uldy.
o<V -9

e2(t) 2 +
So that (7.1) shows that

Yoooezviz<e Y / eo(L¥ Z%v)dz < Ce?,
utla|<N-10 u+la|<N-10

which shows the estimate for the second term in (7.7) holds.

And we also have

Y @ YLF 2o | agsy) < Cllog(1+T)Y2. (7.9)
pHa|<N-2 :
Indeed, by (4.7), and (1.1), the LHS is bounded by

T
C(log(1 +T)) 2 /0 S 1420, nju(t, ) adt.
btlal<N-1



By the homogenuity of 7, we have

Z IL#Zo[0, nlu(t, )2 < C{)~! Z IL#*Z%' (8, )| L2 (6cpt<z|<12ent)
pHal<N-1 wHlal<N-1

+C(t)~? Z | L# Z%u(t, )| L2 (6cpt<|z|<12¢nt)
wHal<N-1

< Ce(t)?

where we have used (7.1). So that we obtain (7.9).
Especially, we have shown that there exists a constant Cy > 0 such that
> {Ireuo + vYll2 + (l0g(2 + £) 2| (z) /20 (w0 +0)'llz3,
la|<N-10 ' ’

+sup(1 + ¢ + |z|)|T%(uo + 'v)l} < Cpe. (7.10)
T
The function w — v satisfies the equation :

O(w — v) = (1 — n)F(3u, §%u)
(w—"v)lox =0 (7.11)

(w—-v)(t,z) =0, t<0.

Since w — v has vanishing Cauchy data, it would be easy to handle when we apply the
series of L? and pointwise estimates to w — v. We show the global existence of u by the

continuity argument. Let us assume

A+t+lal) Y 12%w - v)| < Coe. (7.12)
|| <Mo

Then we can show that for 0 < up < 3 and any constant o > 0, there exist positive
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constants A,, and D,, such that the following estimates hold :

> ICE#8fw)' (2, - )ll2 + > 1L#6%u' (2, -)ll2

ptal<N-10-8uo s+ a|<N—10-8ug
u<po H<ko
+ €7 (log(2 + 1))~/ > {2) "2 L 8% (w ~ v)' || La(se)
p+a|<N-10~8up—2
u<po
+ > ILAZoW' (2, - )l
u+la|<N—-10—8ug—3
u<uo
+e~ (log(2+¢))~1/2 S ()2 L Z%(w—v) || L2(s,) S Auee(L+t)ProlE+9),
p+|a|<N—-10-8ug—5
p<po

(7.13)

The above estimates (7.13) lead to the pointwise and Sobolev type estimates of high

order such as

e 1+t + |x|) > |LA Z%(w — v)|
u+la|]<N—-10-8x3-13
n<2
+ 3 oM ert — ||yt > |LFZ%!| < Ce(1 +t)?P3(e49)  (7.14)
1<ILD u+la|<N-10-8x3+3
Ku<2

for any 0 < 6 < 1/2. Using (7.14), we can show

SoooFzew—v) [+ (A4t a)) D 1Z2%(w - v)| < Ce2 (7.15)
u+lals<11VIo+9 || <Mo
u<

for some constants C' > 0. The last estimate shows that if we take ¢ sufficiently small,
then we can replace Cj in (7.12) with Cp/2, which means the boundedness of pointwise

estimate and moreover the energy of u such as

A+t+la)) Y 1Z2%)+ D). |ILFZ%) < 2Ce.
jal<Mo p+|e|<Mo+9
u<l

Therefore we can conclude that the local solution is a global solution.

We give a sketch of the proof of the above estimates in the following. The new term

which appears in the exterior domain case compared with the boundaryless case is the



23

first term in the LHS of (7.13). By cutting L near the obstacle, we can avoid the derivative

loss which comes from the boundary of the obstacle. We show (7.13) by an induction. We
show for pg > 0and 0 < M < N — 10 — 8ug

3o T @ e+ Y IL#E% (L, )]s
utla|<M ptoal<M
p<po u<po

+eMlog2+)TM2 Y {a)TV2LE%(w — v)||xs,)

pt|e|<M-2
u<po
+ Y IRz e
pto|<M-3
#<po
+e M log2+1)7M2 Y (@) TVELEZ%(w — v) [l pags,) < AMuee(l + ) PMmolEt)
ptla|l<M-5
<o

(7.16)

asuuming the estimates holds when M and ug are replaced by M — 1 or ug — 1, where
AM,uo and Dy, are positive constants. Let us focus on the first term in the LHS of
(7.16). Let v be set by

,YIK,lcl(t, z) = Z Z BJIleKajuJ(t,m). (7.17)

1<J<D0<5<3

By (3.3), we have

o Y {[etrduvn}”<c 3 o iourcle 3 { [ eo@oiniz}”.

p+lal<M pu+j<M p+ji<M
B<po B<Ho u<po

(7.18)
Using the commuting property (1.1), the first term in the RHS of (7.18) is estimated by

Y I#eDyulla+ > I(L#10%1) (L#28%2%u) o+ D IIL#8W || L2(ja)<2)s
ptla|<M prt|a1|+pat|oe|<M ptlel<M
B<po mrtpa<po p<po—1
k2taz|SM-1
(7.19)

where the last term is the additional term when I hits the cut-off function 7 in L. The
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first two terms in (7.19) are estimated by

Yo e > 1L#O

jal<Mp ptla|l<M
u<lpo
+ Y a2, > I(z)~172L# 2%l
Mo+1<|a|l<M ptla|<M—My+2
1<u<ue
+ > (z) 2Lk zod e Y Ie)M2L#8%u |2, (7.20)
ptla|<(M+1)/2+2 ptlel<M
1<u<Lpo—1 1<p<po—1

where we have used (1.2) for the lower order regularity terms. The first term in (7.20) can

be estimated by (3.8) such as

Ce

> Il <C 3 W)l + 1 D 1140
ptlal<M p+i<M pta|l<M
ulpo #<po u<po
S SR 124 PR SO [ 7% 7]
Mo+1<|a|<M pta|<M—-Mo+1
1<pu<uo

+ Y ey Y (£ lle, (720)

u+la|<M/2+2 ptlal<M
1<p<po—1 1<u<po—-1

where we have used the standard Sobolev embedding H2 < L* instead of (1.2). With
the second term in the RHS in (7.21) moved to the LHS for sufficiently small £, we also
have the estimate to bound the second term in (7.16) by the first term. Using the above
estimates (7.18), (7.19), (7.20) and (7.21), and applying the Gronwall inequality to (7.18),
and (3.10) to the last term in (7.19) similarly, we can consequently conclude that the term

> ([ a@rstuday?,

pt+i<M
#<po

which bounds the first term in (7.16), is deduced from the induction on (7.16).

The most technically important improvement in [29] is the estimate for the first term




in (7.15). By (3.3) with v = 0, we have that the first term in (7.15) is bounded by

C Z //]1;3\ BOL”Z"‘(w—v)I OLYZ%(w —v) >,dyds

1<I<D ]a[+u<M +9

+C ) / / B L* Z%(w — v)8, L* Z%(w — v) nq do dsl (7.22)
|a|+u<M +9

where n = (n1,n2,n3) is the outward normal at a given point on 9K and (-, -) is the
standard Euclidean inner product on RP. Since K C {|z| < 1}, we have that the last term
is bounded by

t
of [ Y L~ o) ()P dy .
0 JH{zeR3\K,|z|<1} |01 4 < Mo+10
v<1

Since we also have that [0, L] = 20 and [0, Z] = 0 and that O(w — v) = (1 — )0u, we
see that (7.22) is controlled by

C / / IL¥Z°0(w —-v)T| ) |L¥Z°0u]|dyds
RS\K |a|+u<M 49 faI+VSMo+9
e / / > 1w - o) (s,y)Pdyds. (7.23)
{mER3\IC,|:c|<1} Ia!+u<Mo+10

Since we have the bound

PO n R R D 5 A D DI 72 A O3]
p+la| < Mo+9 la|l+u< Mo +11 la|+p<Mo+10
u<l u<2 u<l

plas b s~ pzepuly S |rzeagh)

(s + [ul) lal+u< Mo+9 lol+1#< Mo+10
u<l K<l
+ Y X Iz Y |FZRaw), (1.29)
(LK)E(LI) |al+u<Mo+9 laf-+u<Mo-+10 |
u<1 <l

where we have used that the null condition has the commuting property with T (see [37,
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Lemma 4.1]) and the estimates (1.10) and (1.11), the first term in (7.23) is bounded by

t . ayy s {e13 = 1) .
G’/O ./Ra\zc ((y) Y ¢z uH(S—HW S itz a(w—u)ﬂ)

|a|+v<Mo+11 la|+u<Mo+9
v<2 u<l
Yoz w-o) P Y |L"Z°‘u’|2)
|| +n<Mo+9 lal+u<Mo+10
u<1 u<1

+ ) Yoo rzeaw—v)| Y |EFzeawWt) Y. |LFZ°8(uF)|dyds
1SJ,K<D |a|+u<Mo+9 le|+u< Mo+10 |a|+p<Mo+10
u<l ﬁ} <l

(7.25)

Applying (7.14) to the integral of the first term in (7.25), we have it is bounded by

t
Ce / W) V2 (3 Iz B Y )ALz ) ds,
0 |a|+pu<Mo+9 je|+u< Mo+10
u<l u<l

(7.26)

which is O(e?) by (7.10) and (7.13). For the second integral in (7.25), we split R3\X into
two sets A and A5, and apply the second estimate in (7.14) for each cases, then we have
the same bounds of (7.26) for it. Here we note that 14+t+|z| ~ (cft—|z|) when (t,z) € A§.
This completes the proof of (7.15) for the the first term. Here we note that this estimate
yields

o2+ ert — |20 Y (2% (7.27)
la|<Mo+7
<C Y Izl + )] N+t e Z2°Dulla + (1 + D)l | e(ol<2)
Iul+us<1flo+9 || <Mo+8

s
<C Y (IL#z*|2 +Ce,

|o}-+u<Mo+9
u<1

where we have used (6.2), (7.10) and (7.12). 1

For the estimate for the second term in (7.15), we use the smooth functions p, 8 € ‘
C*°(R) which satisfies p(r) = 1 for ¢1t/5 < r < 5¢p, and p(r) = 0 for r < ¢;/10 or
r 2 10cp, B(r) =1for r > 2V (12/c;), and p(r) =0 for r <1V (6/c1). And we put

¢(t,z) = B(t)o(|zl/1t).



The function ¢ has its support near the light cones. Applying (5.4) and (5.7) to the second

term in (7.15), we have

sup (1+1t+|z[) E Z%(w-v)|<C ) |L#Z%(¢0(w — v))|dy
|z|<est/2 la|<Mo la|+u<Mo+8
u<l
+C sup [y P(L+s+ )™ DY |L#Z*((1 - ¢)O(w —v))|, (7.28)
0<s<t
yERA\K |a|<Mo+5

which is bounded by
c Y II*z%d|2+ Cé?

lal+u<Mo+9
u<l1

where we have used (7.27). Since we have by (1.2)
sup (L+t+lal) 3 |Z%w-o)|<C D 112%(w - o), (7.29)
|z|2e1t/2 la| <My la|<Mo+2

the estimate for the second term in (7.15) follows from that for the first term.
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