On a removable isolated singularity theorem for the stationary Navier-Stokes equations

Hyunseok Kim* and Hideo Kozono

Mathematical Institute, Tohoku University

(e-mail) khs319@postech.ac.kr

(e-mail) kozono@math.tohoku.ac.jp

1 Introduction

The purpose of this note is to provide a removable isolated singularity theorem for smooth solutions of the Navier-Stokes equations

$$-\Delta u + \operatorname{div}(u \otimes u) + \nabla p = f$$
 and $\operatorname{div} u = 0$ (NS),

where Ω is a nonempty open subset of \mathbb{R}^n with $n \geq 3$. Here $u = (u^1, u^2, \dots, u^n)$ and p denote the unknown velocity and pressure fields of a stationary viscous incompressible fluid driven by an external force f. We also denote by $\operatorname{div}(u \otimes u)$ the vector field whose j-th component is $\operatorname{div}(uu^j) = \sum_{i=1}^n \frac{\partial}{\partial x_i}(u^i u^j)$.

Our main result reads

Theorem 1 Let (u, p) be a C^{∞} -solution of the Navier-Stokes equations (NS) in $B_R \setminus \{0\}$. Suppose that

$$f \in C^{\infty}(B_R)$$

and

$$u \in L^n(B_R)$$
 or $|u(x)| = o(|x|^{-1})$ (1)

as $x \to 0$. Then (u, p) can be defined at 0 so that it is a C^{∞} -solution of (NS) in B_R .

Theorem 1 improves the previous results by Dyer and Edmunds [2], Shapiro [9, 10] and by Choe and Kim [1]. Moreover, for the three-dimensional case (n=3), Theorem 1 is best possible due to singular solutions constructed by Tian

^{*}supported by Japan Society for the Promotion of Science under JSPS Postdoctoral Fellowship For Foreign Researchers.

and Xin [12]. For any real number c with |c| > 1, let us define $u = (u^1, u^2, u^3)$ and p by

$$u^{1}(x) = 2\frac{c|x|^{2} - 2x_{1}|x| + cx_{1}^{2}}{|x|(c|x| - x_{1})^{2}}, \quad u^{2}(x) = 2\frac{x_{2}(cx_{1} - |x|)}{|x|(c|x| - x_{1})^{2}},$$
$$u^{3}(x) = 2\frac{x_{3}(cx_{1} - |x|)}{|x|(c|x| - x_{1})^{2}} \quad \text{and} \quad p(x) = 4\frac{cx_{1} - |x|}{|x|(c|x| - x_{1})^{2}}.$$

Then a straightforward calculation shows that (u, p) is a C^{∞} -solution of (NS) in $B_1 \setminus \{0\}$ with f = 0, $|u(x)| = O(|x|^{-1})$ as $x \to 0$ but the singularity at 0 is irremovable.

Our proof of Theorem 1 is based on Shapiro's removable singularity result and our new regularity result for distribution solutions of (NS). In [10], Shapiro proved

Theorem 2 (Shapiro [10]) Suppose that

1.
$$u \in L^{\beta}_{loc}(B_R)$$
 for some $\beta > 2$, $p \in L^1_{loc}(B_R \setminus \{0\})$, $f \in L^1_{loc}(B_R)$,

2. (u,p) is a distribution solution of (NS) in $B_R \setminus \{0\}$

3. and
$$\left(r^{-n}\int_{B_r}|u|^{\beta}\,dx\right)^{1/\beta}=o(r^{-(n-1)/2})$$
 as $r\to 0$.

Then $p \in L^1_{loc}(B_R)$ and (u, p) is a distribution solution of (NS) in B_R .

To state our regularity result, let us introduce the definition of the weak $L^n(\Omega)$ -norm:

$$||u||_{L_w^n(\Omega)} = \sup_{\sigma>0} \sigma |\{x \in \Omega : |u(x)| > \sigma\}|^{\frac{1}{n}}.$$

Then since

$$||u||_{L^n_w(B_r)} \le ||u||_{L^n(B_r)}$$
 and $|||x|^{-1}||_{L^n_w(\mathbf{R}^n)} = C(n) < \infty$,

we easily show that if u satisfies the condition (1), then

$$||u||_{L^n_w(B_r)} \to 0$$
 as $r \to 0$.

Therefore, in view of Theorem 2, Theorem 1 is an immediate consequence of the following regularity result.

Theorem 3 For each integer $m \geq 0$, let q be a real number such that

$$q \in (1,\infty) \ \ \text{if} \ \ m=0 \ \ \ \ \text{and} \ \ \ \ q \in (1,\infty) \cap [n/4,\infty) \ \ \text{if} \ m \geq 1.$$

Then there exists a small constant $\varepsilon = \varepsilon(n,q) > 0$ with the following property. If $(u,p) \in L^2_{loc}(\Omega) \times L^1_{loc}(\Omega)$ is a distribution solution of (NS) in Ω with $f \in W^{m,q}_{loc}(\Omega)$ and if u satisfies

$$||u||_{L^n_w(\Omega)} \leq \varepsilon,$$

then

$$u \in W^{m+2,q}_{loc}(\Omega)$$
 and $p \in W^{m+1,q}_{loc}(\Omega)$.

As an easy corollary of Theorem 3, we also obtain the following interior regularity theorem for the Navier-Stokes equations (NS).

Corollary 4 Let $(u, p) \in L^n_{loc}(\Omega) \times L^1_{loc}(\Omega)$ be a distribution solution of (NS) in Ω . Suppose that

$$f \in W^{m,q}_{loc}(\Omega)$$

for some integer m and real number q such that

$$m=0$$
 and $q\in (1,\infty)$ or $m\geq 1$ and $q\in (1,\infty)\cap [n/4,\infty)$.

Then

$$u \in W^{m+2,q}_{loc}(\Omega)$$
 and $p \in W^{m+1,q}_{loc}(\Omega)$.

Corollary 4 improves an interior regularity result in a book [3] by Galdi as well as Shapiro's one in [9]. It was shown in [3, Section VIII.5] that if $(u,p) \in L^n_{loc}(\Omega) \cap W^{1,2}_{loc}(\Omega) \times L^2_{loc}(\Omega)$ is a weak solution of (NS) in Ω and if $f \in W^{m,q}_{loc}(\Omega)$ for some (m,q) such that $q \in [2n/(n+2),\infty)$ if m=0 and $q \in [n/2,\infty)$ if $m \geq 1$, then $u \in W^{m+2,q}_{loc}(\Omega)$ and $p \in W^{m+1,q}_{loc}(\Omega)$.

Theorem 3 and its proof are inspired by our recent works [5, 7] on the interior regularity of weak solutions with small $L^{\infty}(0,T;L_w^3(\Omega))$ -norm of the non-stationary Navier-Stokes equations in three dimensions. The remaining part of the note is devoted to giving a sketch of the proof of Theorem 3. For a more complete proof, pleas refer to our original paper [6].

2 A sketchy proof of Theorem 3

Let us first consider the following boundary value problem for the perturbed Stokes equations

$$\begin{cases}
-\Delta v + \operatorname{div}(u \otimes v) + \nabla p = f & \text{in } B \\
\operatorname{div} v = g & \text{in } B \\
v = 0 & \text{on } \partial B,
\end{cases}$$
(2)

where u is a known divergence-free vector field in $L_w^n(B)$ and $B = B_1, B_2$ or B_3 .

The following lemma is of basic importance to derive estimates for the convective term in (2).

Lemma 5 If $v \in L_w^n(B)$ and $w \in W^{1,q}(B)$ with 1 < q < n, then

$$v \cdot w \in L^q(B)$$
 and $||v \cdot w||_{L^q(B)} \le C||v||_{L^n_w(B)}||w||_{W^{1,q}(B)}$.

Here and after C denotes a positive constant depending only on n and q.

Proof. Note that $L^q(B) = L^{q,q}(B)$ and $L^n_w(B) = L^{n,\infty}(B)$. Hence it follows from Hölder and Sobolev inequalities in Lorenz spaces (see Proposition 2.1 and Proposition 2.2 in [8]) that

$$||v \cdot w||_{L^{q}(B)} = ||v \cdot w||_{L^{q,q}(B)} \le C||v||_{L^{n,\infty}(B)}||w||_{L^{\frac{nq}{n-q},q}(B)}$$
$$= C||v||_{L^{n}_{m}(B)}||w||_{W^{1,q}(B)}.$$

In view of Lemma 5, we have

$$\int_{B} |u \otimes v : \nabla \Phi| \ dx \leq C||v||_{L^{q}(B)}|| |u|| \nabla \Phi| ||_{L^{q'}(B)}
\leq C||v||_{L^{q}(B)}||u||_{L^{n}_{w}(B)}||\Phi||_{W^{2,q'}(B)}$$
(3)

whenever

$$v \in L^{q}(B), \quad \Phi \in W^{2,q'}(B) \quad \text{and} \quad 1 < q' = \frac{q}{q-1} < n.$$

Hence if $\frac{n}{n-1} < q < \infty$, then weak solutions in $L^q(B)$ to the problem (2) can be defined as follows.

Definition 6 A vector field $v \in L^q(B)$ with $\frac{n}{n-1} < q < \infty$ is called a q-weak solution or simply a weak solution to the problem (2), provided that

$$-\int_{B} \left\{ v \cdot \Delta \Phi + u \otimes v : \nabla \Phi \right\} \, dx = \langle f, \Phi \rangle \tag{4}$$

and

$$-\int_{B} v \cdot \nabla \varphi \, dx = \langle g, \varphi \rangle \tag{5}$$

for all $\Phi \in C^{\infty}(\overline{B})$ and $\varphi \in C^{\infty}(\overline{B})$ such that $\operatorname{div} \Phi = 0$ in B and $\Phi = 0$ on ∂B . Here f and g are sufficiently regular distributions so that the right hand sides of (4) and (5) are well-defined.

The uniqueness of q-weak solutions to the problem (2) can be proved under the assumption that $||u||_{L^n_m(B)}$ is sufficiently small.

Lemma 7 For each $q \in (\frac{n}{n-1}, \infty)$, there exists a small positive number $\varepsilon_1 = \varepsilon_1(n,q)$ such that if u satisfies

$$||u||_{L^n_{m}(B)} \leq \varepsilon_1,$$

then g-weak solutions to the problem (2) are unique.

Proof. We prove the lemma by an elementary duality argument. Let v be a weak solution to (2) with f = 0 and g = 0 so that

$$\int_{B} \left\{ v \cdot \Delta \Phi + u \otimes v : \nabla \Phi \right\} dx = 0 \quad \text{and} \quad \int_{B} v \cdot \nabla \varphi dx = 0$$
 (6)

for all $\Phi \in C^{\infty}(\overline{B})$ and $\varphi \in C^{\infty}(\overline{B})$ such that $\operatorname{div} \Phi = 0$ in B and $\Phi = 0$ on ∂B . Let $w \in C^{\infty}(\overline{B})$ be fixed. Then in view of a classical theory (see [3] for instance), the Stokes problem

$$-\Delta \Phi + \nabla \varphi = w$$
, div $\Phi = 0$ in B and $\Phi = 0$ on ∂B

has a unique solution (Φ, φ) such that

$$\Phi \in C^{\infty}(\overline{B}), \quad \varphi \in C^{\infty}(\overline{B}) \quad \text{and} \quad ||\Phi||_{W^{2,q'}(B)} \leq C||w||_{L^{q'}(B)}.$$

Hence by virtue of (6) and (3), we have

$$\int_{B} v \cdot w \, dx = \int_{B} v \cdot (-\Delta \Phi + \nabla \varphi) \, dx = \int_{B} u \otimes v : \nabla \Phi \, dx$$

$$\leq C||v||_{L^{q}(B)}||u||_{L^{n}_{w}(B)}||\Phi||_{W^{2,q'}(B)}$$

$$\leq C_{1}||v||_{L^{q}(B)}||u||_{L^{n}_{w}(B)}||w||_{L^{q'}(B)}.$$

Since $w \in C^{\infty}(\overline{B})$ is arbitrary and $C^{\infty}(\overline{B})$ is dense in $L^{q'}(B)$, it follows that

$$||v||_{L^q(B)} \le C_1 ||u||_{L^n_u(B)} ||v||_{L^q(B)}.$$

Therefore, taking $\varepsilon_1 = 1/2C_1$, we conclude that if $||u||_{L^n_w(B)} \le \varepsilon_1$, then $||v||_{L^q(B)} = 0$. This completes the proof of Lemma 7. \square

We can also prove the existence of weak solutions in $W^{1,q}(B)$ and $W^{2,q}(B)$.

Lemma 8 For each $q \in (1,n)$, there exists a small positive constant $\varepsilon_2 = \varepsilon_2(n,q)$ such that if u satisfies

$$||u||_{L^n_w(B)} \leq \varepsilon_2,$$

then for every

$$f\in W^{-1,q}(B)$$
 and $g\in L^q(B)$ with $\int_B g\,dx=0,$

there exists a unique weak solution v in $W_0^{1,q}(B)$ to the problem (2).

Remark 9 This solution v is actually a nq/(n-q)-weak solution in the sense of Definition 6 since $W_0^{1,q}(B) \subset L^{nq/(n-q)}(B)$ and $\frac{n}{n-1} < \frac{nq}{n-q} < \infty$.

Proof. By virtue of Lemma 5, we have

$$||u \otimes v||_{L^q(B)} \le C||u||_{L^n_w(B)}||v||_{W^{1,q}(B)} \quad \text{for all} \quad v \in W^{1,q}(B).$$

Hence it follows from the classical theory of the Stokes equations (see [3]) that for each $v \in W_0^{1,q}(B)$, there exists a unique weak solution $\overline{v} = Lv \in W_0^{1,q}(B)$ to the problem

$$\left\{ \begin{array}{ll} -\Delta \overline{v} + \nabla \overline{p} = f - \operatorname{div}(u \otimes v) & \text{in} \quad B \\ \operatorname{div} \overline{v} = g & \text{in} \quad B \\ \overline{v} = 0 & \text{on} \quad \partial B, \end{array} \right.$$

which satisfies the estimate

$$||\overline{v}||_{W^{1,q}(B)} \leq C \left(||f||_{W^{-1,q}(B)} + ||g||_{L^q(B)} + ||u \otimes v||_{L^q(B)}\right).$$

Moreover, the operator L on $W_0^{1,q}(B)$ satisfies

$$||Lv_1 - Lv_2||_{W^{1,q}(B)} \le C||u \otimes (v_1 - v_2)||_{L^q(B)}$$

$$\le C_2||u||_{L^n_w(B)}||v_1 - v_2||_{W^{1,q}(B)}$$

for all $v_1, v_2 \in W_0^{1,q}(B)$. Therefore, taking $\varepsilon_2 = 1/(2C_2)$, we conclude that if $||u||_{L_w^n(B)} \le \varepsilon_2$, then L is a contraction on $W_0^{1,q}(B)$ and so have a unique fixed point. This proves Lemma 8. \square

Lemma 10 For each $q \in (1, n)$, there exists a small positive constant $\varepsilon_3 = \varepsilon_3(n, q)$ such that if u satisfies

$$||u||_{L^n_w(B)} \leq \varepsilon_3,$$

then for every

$$f\in L^q(B)$$
 and $g\in W^{1,q}(B)$ with $\int_B g\,dx=0,$

there exists a unique weak solution v in $W_0^{1,q}(B) \cap W^{2,q}(B)$ to the problem (2).

Proof. Similar to the proof of Lemma 8. □

Now Theorem 3 can be deduced from the following result by a standard scaling argument and induction on m.

Proposition 11 Assume that $\Omega = B_3$ and $q \in (1, n)$. Then there exists a small positive constant $\varepsilon = \varepsilon(n, q)$ with the following property.

If u satisfies $||u||_{L^n_w(B_3)} \le \varepsilon$ and if $(v,p) \in L^n_w(B_3) \times L^1(B_3)$ is a distribution solution of

$$\begin{cases}
-\Delta v + \operatorname{div}(u \otimes v) + \nabla p = f & \text{in } \Omega \\
\operatorname{div} v = 0 & \text{in } \Omega
\end{cases}$$
(7)

with $f \in L^q(B_3)$, then

$$v \in W^{2,q}(B_1)$$
 and $p \in W^{1,q}(B_1)$.

Proof. It is easy to show that $L_w^n(B_3) \subset L^{n-\delta}(B_3)$ for any $\delta > 0$. This fact together with Sobolev inequality yields

$$\nabla v - u \otimes v \in W^{-1, n - \delta}(B_3) + L^{\frac{n}{2}(1 - \frac{\delta}{2n - \delta})}(B_3) \subset W^{-1, n - \delta}(B_3)$$

for any $\delta > 0$ and so $\nabla p = f + \operatorname{div}(\nabla v - u \otimes v) \in W^{-2,q}(B_3)$ because 1 < q < n. Hence it follows that $p \in W^{-1,q}(B_3)$.

Let us choose a cut-off function $\varphi \in C_c^{\infty}(B_3)$ such that $\varphi = 1$ in B_2 and $\varphi = 0$ in $B_3 \setminus B_{5/2}$. Then it is easy to show that $\overline{v} = \varphi v \in L^2(B_3) \cap L^q(B_3)$ is a 2-weak solution (in the sense of Definition 6) to the following problem

$$\begin{cases}
-\Delta \overline{v} + \operatorname{div}(u \otimes \overline{v}) + \nabla \overline{p} = \overline{f} & \text{in } B_3 \\
\operatorname{div} \overline{v} = g & \text{in } B_3 \\
\overline{v} = 0 & \text{on } \partial B_3,
\end{cases} \tag{8}$$

where

$$\overline{p} = \varphi p \in W^{-1,q}(B_3), \quad g = \nabla \varphi \cdot v \in L^q(B_3)$$

and

$$\overline{f} = \varphi f + \nabla \varphi \cdot (u \otimes v - 2\nabla v + pI) - (\Delta \varphi)v \in W^{-1,q}(B_3).$$

We now assume that u satisfies

$$||u||_{L^n_w(B_3)} \le \varepsilon_2(n,q). \tag{9}$$

Then by virtue of Lemma 8, there exists a unique solution $w \in W_0^{1,q}(B_3)$ to the problem (8). Note that

$$w \in L^{\frac{nq}{n-q}}(B_3)$$
 and $\frac{n}{n-1} < \frac{nq}{n-q} < \infty$.

Hence by virtue of Lemma 7, we deduce that

$$\overline{v} = w \in W^{1,q}(B_3)$$
 and so $v \in W^{1,q}(B_2)$,

provided that

$$||u||_{L_w^n(B_3)} \le \varepsilon_1(n, q_1), \quad \text{where} \quad q_1 = \min\left(2, \frac{nq}{n-q}\right).$$
 (10)

Moreover, it follows from Lemma 5 that

$$abla p = f + \operatorname{div}(\nabla v - u \otimes v) \in W^{-1,q}(B_2),$$
 $p \in L^q(B_2), \quad \overline{f} \in L^q(B_2) \quad \text{and} \quad g \in W^{1,q}(B_2).$

On the other hand, we observe that if we choose $\varphi \in C_c^{\infty}(B_3)$ so that $\varphi = 1$ in B_1 and $\varphi = 0$ in $B_3 \setminus B_{3/2}$, then $\overline{v} = \varphi v \in W^{1,q}(B_2)$ is a q_1 -weak solution to the problem (8) with B_3 replaced by B_2 .

Therefore, assuming in addition to (9) and (10) that

$$||u||_{L^n_w(B_3)} \leq \varepsilon_3(n,q).$$

we conclude from Lemma 10 and Lemma 7 that

$$\overline{v} \in W^{2,q}(B_2)$$
 and so $v \in W^{2,q}(B_1)$,

which implies then that $p \in W^{1,q}(B_1)$. This completes the proof of Proposition 11. \square

References

- [1] H. Choe and H. Kim, Isolated singularity for the stationary Navier-Stokes system, J. Math. Fluid Mech. 2 (2000), 151–184.
- [2] R.H. Dyer and D.E. Edmunds, Removable singularities of solutions of the Navier-Stokes equations, J. London Math. Soc. (2) 2 (1970) 535-538.
- [3] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Volume 1: Linearized steady problems, Springer Tracts in Natural Philosophy 38, Springer-verlag, New York, 1994.
- [4] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Volume 2: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy 39, Springer-verlag, New York, 1994.
- [5] H. Kim and H. Kozono, Interior regularity criteria in weak spaces for the Navier-Stokes equations, manuscripta math. 115 (2004), 85-100.
- [6] H. Kim and H. Kozono, A removable isolated singularity theorem for the stationary Navier-Stokes equations, preprint.

- [7] H. Kozono, Removable singularities of weak solutions to the Navier-Stokes equations, Comm. Partial Differential Equations 23 (1998), 949-966.
- [8] H. Kozono and M. Yamazaki, Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains, Nonlinear Anal. 38 (1999), no. 8, Ser. A: Theory Methods, 959-970.
- [9] V.L. Shapiro, Isolated singularities for solutions of the nonlinear stationary Navier-Stokes equations, Trans. Amer. Math. Soc. 187 (1974), 335-363.
- [10] V.L. Shapiro, Isolated singularities in steady state fluid flow, SIAM J. Math. Anal. 7 (1976), 577-601.
- [11] V.L. Shapiro, A counterexample in the theory of planar viscous incompressible flow, J. Differential Equations 22 (1976), 164-179.
- [12] G, Tian and Z, Xin, One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal. 11 (1998), no. 1, 135-145.