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Hyunseok Kim* and Hideo Kozono
Mathematical Institute, Tohoku University
(e-mail) khs319@postech.ac.kr
(e-mail) kozono@math.tohoku.ac.jp

1 Introduction

The purpose of this note is to provide a removable isolated singularity theorem
for smooth solutions of the Navier-Stokes equations

~Au+divlu®u)+Vp=f and divu=0 (NS),

where Q is a nonempty open subset of R™ with n > 3. Here u = (u!,u?,---,u")

and p denote the unknown velocity and pressure fields of a stationary viscous
incompressible fluid driven by an external force f. We also denote by div(u®u)
the vector field whose j-th component is div(uu?) = 37, %(uiu").

Our main result reads

Theorem 1 Let (u,p) be a C®-solution of the Navier-Stokes equations (NS)
in Br \ {0}. Suppose that

f € C*(BR)
and
wuelL™(Br) or [|u(@)=o(z|™") (1)
as T — 0. Then (u,p) can be defined at 0 so that it is a C*°-solution of (NS)
in Bpg.

Theorem 1 improves the previous results by Dyer and Edmunds [2], Shapiro
[9, 10] and by Choe and Kim [1]. Moreover, for the three-dimensional case
(n=3), Theorem 1 is best possible due to singular solutions constructed by Tian
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and Xin [12]. For any real number c with |c| > 1, let us define u = (u!,u?,u?%)
and p by

CI:Z:|2 — 27"1‘3"' + cm% u2( ) =9 x2(cx1 - lwl)
lzl(clz| — z1)2 |z|(c|z| — z1)?’

_ cxy — |z|
and P@) = AT = e

ul(z) =2

1113(61111 - I(L‘l)
|z|(cle| - 21)?

ud(z) =2

Then a straightforward calculation shows that (u,p) is a C*-solution of (NS)
in By \ {0} with f =0, |u(z)| = O(]z|~!) as £ — 0 but the singularity at 0 is
irremovable.

Our proof of Theorem 1 is based on Shapiro’s removable singularity result
and our new regularity result for distribution solutions of (NS). In [10], Shapiro
proved

Theorem 2 (Shapiro [10]) Suppose that
1. ue LY (Bg) for some 8>2, pe L} (Br\ {0}), f € L (Bg),
2. (u,p) is a distribution solution of (NS) in Bg \ {0}
3. and (r"" [s, [ul? d:z:) Y o(r—(m=1/2) g5 r — 0.

Then p € L},.(Br) and (u,p) is a distribution solution of (NS) in Bp.

To state our regularity result, let us introduce the definition of the weak
L™(2)-norm:
1
|ullLa @) = supo [{x € Q : |u(z)| > o}|™.
>0

Then since
llullLp(B,) < llullzas,) and |||z|7!||Ln@n) = C(n) < oo,
we easily show that if u satisfies the condition (1), then
lullzg,) »0 a0,

Therefore, in view of Theorem 2, Theorem 1 is an immediate consequence of
the following regularity result.

Theorem 3 For each integer m > 0, let q be a real number such that

g€ (l,00) if m=0 and g€ (l,00)N[n/4,00) if m>1.
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Then there exists a small constant € = €(n,q) > 0 with the following property.
If (u,p) € L} () x L},.(Q) is a distribution solution of (NS) in  with f €
Wiw9(2) and if u satisfies

llullLa @) <€,

then
m+2'q(9) and pGW"H'l’q(Q)

loc loc

As an easy corollary of Theorem 3, we also obtain the following interior
regularity theorem for the Navier-Stokes equations (NS).

Corollary 4 Let (u,p) € L?(Q) x L}, .(Q) be a distribution solution of (NS)
in . Suppose that
feWgi ()

for some integer m and real number g such that
m=0 and g€ (1,00) or m>1 and g€ (1,00)N[n/4,00).

Then
Wmt(Q) and pe WHHY(Q).

loc loc

Corollary 4 improves an interior regularity result in a book [3] by Galdi as well
as Shapiro’s one in [9]. It was shown in [3, Section VIIL5] that if (u,p) €

Ly (QNWE2(Q) x L, (Q) is a weak solution of (NS) in  and if f € Wi;2?(Q)
for some (m,q) such that ¢ € [2n/(n + 2),00) if m = 0 and ¢ € [n/2,00) if
m > 1, then u € W%9(Q) and p € W9(Q).

Theorem 3 and its proof are inspired by our recent works [5, 7] on the
interior regularity of weak solutions with small L>(0,T; L3 (£2))-norm of the
non-stationary Navier-Stokes equations in three dimensions. The remaining
part of the note is devoted to giving a sketch of the proof of Theorem 3. For a

more complete proof, pleas refer to our original paper [6].

2 A sketchy proof of Theorem 3

Let us first consider the following boundary value problem for the perturbed
Stokes equations
-Av+diviu®v)+Vp=f in B
divv=g in B (2)
v=0 on OB,
where u is a known divergence-free vector field in L?(B) and B = B, B; or Bs.
The following lemma is of basic importance to derive estimates for the con-
vective term in (2).
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Lemma 5 Ifve L} (B) and w € WH9(B) with 1 < g < n, then
v-w€LYB) and |jv-wl|lrm) < Cllvllnmllwllwies).
Here and after C denotes a positive constant depending only on n and q.

Proof. Note that LI(B) = L%9(B) and L?(B) = L™°(B). Hence it follows
from Holder and Sobolev inequalities in Lorenz spaces (see Proposition 2.1 and
Proposition 2.2 in [8]) that

llv - wllzeesy = llv - wllzaa(s) < Clivllzme(mllwll 20 5

= C||vl| o By llwllw.e(B)-

O

In view of Lemma 5, we have

/B 4@ v : V8| dz < Clfollzel 141V [l 1o 5
< CllvllLayllulla )| ®llw2.e (5) (3)

whenever

ve LY(B), &e W27 (B) and 1<q—(—1—z—1—<n

Hence if -+ < ¢ < o0, then weak solutions in L(B) to the problem (2) can be
defined as follows

Definition 6 A vector field v € LI(B) with %5 < g < oo is called a q-weak
solution or simply a weak solution to the problem (2), provided that

—/{U-A©+u®v:V¢>}dz=<f,<D> (4)
B

and
—/v-V<pda:=<g,<,o> (5)
B v

for all & € C*°(B) and p € C=(B) such that div® = 0 in B and ® = 0 on
OB. Here f and g are sufficiently regular distributions so that the right hand
sides of (4) and (5) are well-defined.

The uniqueness of g-weak solutions to the problem (2) can be proved under
the assumption that ||ul|Lz (B) is sufficiently small.
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Lemma 7 For each g € (325,00), there exists a small positive number €, =
£1(n,q) such that if u satisfies

lJullLn By < €1,
then g-weak solutions to the problem (2) are unique.

Proof. We prove the lemma by an elementary duality argument. Let v be a
weak solution to (2) with f =0 and g = 0 so that

/{v-A<I>+u®'v:V<I>}da:=O and /v-Vgodx=0 (6)
B B

for all & € C*°(B) and ¢ € C*°(B) such that div® =0in B and & = 0 on 9B.
Let w € C(B) be fixed. Then in view of a classical theory (see [3] for
instance), the Stokes problem :

-AP+Vp=w, divd=0 in B and ®=0 on OB
has a unique solution (®, ) such that
©2eC®(B), ¢€C>®B) and |[[®|lwa (s < CllwllLe (s

Hence by virtue of (6) and (3), we have

/ v-wda::/ v-(—AD + V) dx=/ u@®u:Veodx
B B B
< ClpllLas) vl o i®llwze 8)
, < Cillvllzagmyllulleg sy llwll Lo (B)-
Since w € C®(B) is arbitrary and C®(B) is dense in L% (B), it follows that
Ivllzeemy < Cillully m)llvllLecs)-

Therefore, taking £; = 1/2C;, we conclude that if ||u]|z» (5) < €1, then ||v]|L(B) =
0. This completes the proof of Lemma 7. (0

We can also prove the existence of weak solutions in W¢(B) and W24(B).

Lemma 8 For each q € (1,n), there ezists a small positive constant g2 =
g2(n, q) such that if u satisfies

lullLz By < €2,

then for every
feW YYB) and ge LYB) with / gdz =0,
B

there exists a unique weak solution v in W,*¥(B) to the problem (2).



Remark 9 This solution v is actually a ng/(n — g)-weak solution in the sense
of Definition 6 since W;'¥(B) ¢ L™/("~9(B) and 32; < 2L < co.

Proof. By virtue of Lemma 5, we have
Hu®vHLq(3) < C”“HL:},(B)H””WL"(B) forall ve Wl’q(B).

Hence it follows from the classical theory of the Stokes equations (see [3]) that
for each v € W;*9(B), there exists a unique weak solution 7 = Lv € W}*9(B) to
the problem

divi=g in B

—AT+Vp=f—div(u®v) in B
7=0 on OB,

which satisfies the estimate

IBllwrey < C (Ifllw-1e8y + llgllLas)y + |lu @ vl|Lecm)) -

Moreover, the operator L on W,*(B) satisfies

Lvi — Lvzllw1.esy < Cllu® (v1 — v2)||La(m)

< CollullLgmyllvr — vallwra(a)

for all v1, vo € Wy'?(B). Therefore, taking £ = 1/(2C:), we conclude that if
llullza (By < €2, then L is a contraction on W,'?(B) and so have a unique fixed
point. This proves Lemma 8. [J

Lemma 10 For each ¢ € (1,n), there exists a small positive constant €3 =
€3(n,q) such that if u satisfies

ulles By < €3,
then for every

fe€eLi(B) and ge WY“(B) with / gdz =0,
B

there ezists a unigque weak solution v in Wy*?(B) NW24(B) to the problem (2).

Proof. Similar to the proof of Lemma 8. [

Now Theorem 3 can be deduced from the following result by a standard
scaling argument and induction on m.
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Proposition 11 Assume that Q = B3 and q € (1,n). Then there exists a small
positive constant € = €(n, q) with the following property.
If u satisfies ||ul| L (Bs) < € and if (v,p) € L}, (B3) x L' (Bs) is a distribution
solution of
{ —Av+diviu®v)+Vp=f in Q (1)
divv =0 in

with f € LY(Bs), then
ve W29(B;) and pe WHY(B,).

Proof. 1t is easy to show that L™(Bs) C L"%(Bs) for any 6 > 0. This fact
together with Sobolev inequality yields

Vo —u®v € W m%(B;) + L30-5=5)(Bg) ¢ W—"~%(Bs)

for any 6 > 0 and so Vp = f +div(Vv—u®v) € W~24(Bj3) because 1 < ¢ <n.
Hence it follows that p € W~19(Bj3).

Let us choose a cut-off function ¢ € C°(Bs) such that ¢ = 1 in B, and
¢ =01in B3 \ Bs/2. Then it is easy to show that 7= pv € L?(B3) N L(B3) is
a 2-weak solution (in the sense of Definition 6) to the following problem

~AT+div(u®7)+VB=f in B
divi=g in Bj (8)
=0 on OBs,
where
p=yppe W (B;), g=Vy-veL¥Bs)
and

F=pf+ V- (u®v—2Vv+pl) — (Ap)v € W19(Bs).
We now assume that u satisfies
HullLa (Bs) < €2(n, ) (9)

Then by virtue of Lemma 8, there exists a unique solution w € Wol'q (Bs) to the
problem (8). Note that

w € L7~ (Bs) and < < 00.
n—1 n-—gq

Hence by virtue of Lemma 7, we deduce that

T=w€ WY9(B;3) andso ve WY“9(B,),




provided that

. n
lllizion S i), where @ =min (2,-"L). (10

Moreover, it follows from Lemma 5 that
Vp = f +div(Vv —u ® v) € W™ 14(By),
p€ LYB;), feLiB;) and ge W"(B,).

On the other hand, we observe that if we choose ¢ € C°(Bs) so that ¢ =1 in
B; and ¢ = 0 in B3 \ By/, then 7 = pv € Wh4(B;) is a ¢1-weak solution to
the problem (8) with B3 replaced by Bs.

Therefore, assuming in addition to (9) and (10) that

l[ullLp (Bs) < €3(n, q)-
we conclude from Lemma 10 and Lemma 7 that
7€ W29(B,;) andso ve€ W29(B),

which implies then that p € W+9(B;). This completes the proof of Proposition
11. O
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