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L? estimates for some integral operators
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Abstract

We will introduce a method to obtain L? boundedness for some integral operators from
L?_-boundedness, p > po, and also mention some applications of this method.

1. Introduction

Let R" be the n-dimensional Euclidean space. We will consider spaces of functions
defined on R". In the classical Calderén-Zygmund theory, Calderén-Zygmund singular
integral operators were defined as follows:

T =lm [ Kle=)i@)d)
Here K(z) satisfies that
K@) < ,—f}- 2] > 0, 1)
K(-p)- K-l < B > 2l ve @1 2

T is bounded on L%(R") if, for example, K(£) is bounded. And by the well known
argument of the Calderén-Zygmund decomposition, we get that T is of weak type (1,1),
that is

o e RS ITF@I> M < 5 [ If@)ias

for any A > 0 and any f € L}(R").
(The smoothness condition (2) may be replaced by other weaker conditions.)

If T is L? bounded, by Marcinkiewicz interpolation theorme we have L? boundedness
of T for any p € (1,2). And because K(—z) satisfies (1) and (2) if we replace K(z) by
K(-z), we have also L? boundedness for any p € (2,00) by duality. This is the classical
argument. (See for example [S]).

Obviously it does not necessarily require L2 boundedness for T to be of weak type (1,1).
In order to get that it suffices that T is of type (po, po) for some py € (1,00), namely T is
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bounded on L (R").

In this note we would like to show that the operator T which is defined by the kernel
K (z) satisfying the conditions (1) and (2) is L? bounded for any p € (1, c0) if T is of weak
type (1,1) without using duality argument.

Let T be a linear or sublinear integral transformation from a class A of measurable
functions on R" to the space of all the measurable functions on R" with the kernel K (z,y):

Tf(z)= /K(m,y)f(y)dz (z ¢ the support of f),

We assume that if f is in the class A, then fx; and f— fx; = fxmn\s are also in the class
A. Here x;(z) is the characteristic function of a cube I. Then T'(fxs)(x) and T fxmr\1(z)
are well defined for any f € A and any cube 1. '

Theorem 1. Let the kernel K(z,y) of an operator T satisfy that if (z,y) € Q =
{(z,9);  # y} and 2|z — 2’| < |z — g,

K@) - K@)l S B2 ve) 3)

If T is of weak type (po,po) for some py,0 < py < oo, that is, there exists a postive
constant C which satisfies that

e € R T5@) > Al < 5 [ 1f(@)ds

for any A > 0 and any f € A, then T satisfies that for any p, max{1,py} < p < oo,

[ iri@ra <o, [ 1@
Rn R~ |

for all f € AN L™ (R™).

We notice that if T" is of type (po, po), namely,

| mr@ra <o [ 1i@mas

then T is also of weak type (po, o).
So if T is L? bounded and K (z,y) satisfies the smoothness condition (3), we may claim
that T is L? bounded for any p € (2,00). Then we can get L? boundedness of T' without
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duality argument and there is no need for K(z,y) to satisfy that the smoothness condtion
with respect to y, that is,

K(z,5) - K@, y)| < BLLZY oy > 2w —y).
’ T e —ynt B

2. A version of Calderén-Zygmund decomposition

Let 4 be a non-negative Borel measure of R”, which satifies the doubling condition:
p(2I) < Cou(I) < 00

for any cube I of R". Here 21 is the cube having the same center as I, but expanded two
times. Then, it holds that
pR") =00 or O

Let M f be the Hardy-Littlewood maximal function of f.

Mf() =sup — [ 11wl

As is well known, if i satisfies the doubling condition, the maximal theorem holds:

Wls Mi@) > D) < [ 1f@i vA>o

1

(L. Wf(w»’et)% < ([ vers)  a<rso)

Lebesgue’s differentiation theorem shows that
|f(z)] < Mf(z) for a.e.u .

That is, M f is a majorant of |f|. Then we have immediately

[r@Pans [Mmi@ran

for every p, 0 < p < o0.

We can take the same majorant in the following case:
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Lemma 2. Let families F; = {I,gj)}j (k = 1,2,...) of subucues of a cube Q satisfy
that there exists a sufficient large numuber A depending only on x and p, 0 < p < oo such
that

Pt = ¢ i#4 10,10 e R (@)

VI? € i, A2, € Foyy 1P c IP, (5)
R 1 v

> wrd) < Zuad). (6)

i
Then 3C = C(A, p, p) such that

‘/;(iZIGE,j)IX,}‘:‘)(tB)) dMSC/Q (s:pgj:laf)lxdj)(x)) dy.

k=1 j

for any sequence {af) } 19

This lemma claims that if

F@I < 33 6 o @)

k=1 j
then sup E Iascj)lx 1o (z) plays the same role as a pointwise majornat of F(z) though the
P
j

supports of {af’},,,,- are overlapping, because of the packing condition (6). Therefore
r 4
/Q F@Pdu<0 [ (sngIai”lx,,gﬂ (m)) dp
Q J

In particular, if
1
Po

6 < | sup —— / F@)Pdu| , o> 0
JDI,(.‘” ”’(J) J

then for every p € (0, o0)

[ IF@Pa< 0 [ (Ms)@)% du
Q Q

Let T be a linear or sublinear integral transformation from a class A of (Borel) measur-
able functions on R" to the space of all the measurable functions on R™ with the kernel
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K(z,y), namely

75(e) = [ K(e,0)f@)du(s) (o ¢ the support of 1),

or

Tf(z) = sup / |K1(z,v) £ () du(w).

We can obtain a version of Calderén-Zygmund decomposition for T'f.

Lemma 3. Let T be of weak type (pg, o), 0 < po < 00, f(z) be a function in A and let
{Br}: be any sequence of numbers correspending to all subcubes I of a cube Q. For A > 1
there exist a constant mrs(Q), a function g(z) and families Fj = {19}, (k= 1,2,...) of
subcubes of Q such that F; = {I,(cj)}j which satisfy (2), (3) and (4) in Lemma 2 and

Tf@) = g(@)+mrs(@+Y_ D a)x ()
k=1 j

1 a

me(@) < ¢ (o [ Ir@au)”,
lg(=)| < C'((M(If!“)(w))f-‘+gggilg>lT(fon\zr)(y)—BII) for a.e.x
la?] < C (g@)m /J lf(w)l‘”du) +ys61;§) IT(fXgm ;) ¥) — By

Here C depends only on n, 4 and A.

This is our version of Calderén-Zygmund decomposition. However it’s not a decomposi-
tion of f, but a decomposition of Tf. We notice that there is no need of integrability for
Tf.

We may decompose the maximal function M f(z) as follows:
Lemma 4. Let Mf(z) < oo for a.e. = in R™ and let {B;}; be any sequence of

numbers correspending to all subcubes I of a cube Q. For A >1 there exist families
Fi = {I9}; (k = 1,2,...) of subcubes of Q such that F; = {I)}; which satisfy (2), (3)
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and (4) in Lemma 2 and

Mf(z) = g(@)+mums @)+ Y a x,m()

k=1 j

1
(@ < O [ \1(@)lda
l9(z)] < Csup—l—/lf(y) — Brldy  for a.e.x

ol < © oup s 5 [ 17() = Baldu.

From this decomposition we can also get the estimate of M f(z) by the sharp maximal
funtion M!f(z) where

M) = sup—s [176) = s, fr1= 2 [ 1)

Theorem 5. Let f(z) satisfy that there exist positive numbers A and g such that for
any A>0
{z; Mf(z) > A} < AX7

Then it holds that

| Mreraso, [ (M@ra  0<p<oo)
. -

3. Main result
In Lemma 3, if it holds that there exists a number B; for every cube I and y €

T xama)@) - B < Coup o [ 1r@)eau) ™
Then

1

To
) 1 ro
lay’| < C (Js;ulg) o) /J | f(z)] du)

where ro = max{pg,qo}. And also we have

l9(z)| < C (M) ))7 -
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Using the maximal theorem we get for p € (r, 00)
[ murmeFdu<c [ 1@
R" R~
And if f € L (R") then

L1 _
@ om0

Therefore we have:

Theorem 6. If T is of weak type (po, po) with respect to u and there exist numbers
By for all cubes I and y € I such that

T(xmman)®) - Bi < Coup (2 [ If(x)|"°du) , ™
then it holds that for every p, ro = max{pg,q} < p < 00
[ irrerasc [ 1r@prd
Re Rn

for f € AN L™(R"). Here C is independent of f.

In case of that K(z,y) satisfies the smoothness condition (3), let

B; = T(fxrm\21)(20)

where z, is the center of I, then (7) is satisfied with respect to Lebesgue measure for go = 1.
Thus we have Theorem 1.

4. A weighted result
If a postive loccally integrable function u(z) satisfies Ao, condtion: 3C > 0, 35 > 0

/ u(z)dp < C (u((I))> [u(:z:)du

for any subset E of a cube I, then we can easily see that if

X
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then u(z) satisfies that

> [, weins g [, v

I(J)lcl(”) k+1

Thus the packing condition (6) of Lemma 2 holds for an A, weight u(z) if the families
Fr={I (’)}, of subcubes of Q satisfy (4), (5) and (6).

Theorem 7. Let u(z) satisfy Ao condition. If 7" is of weak type (po, pg) With respect
to u and K(z,y) satisfies (7) then it holds that for every p, 0 < p < >

[ mr@rueds < [ MIAmE) ue)ds
Rn R»

if f € AN L™(R") and ro = max{py, g}. Here C is independent of f.

Let u(z) satisfy A, condition, 1 < p < oo:

1 wlz 1 W7 Pl _ o
N(I)/r (z)du (,u(I)/, ( )d“) <C (1-pQ-p)=1,
and o(z) = u'"7(z), then

m fI w(z)de < C ( /I a(m)dp,)l_p.

Therefore if u(z) satisfies A, then u(z) is an A, weight and the following argument

follows:
[ (5 [176@n) uieran
< o(47) [uern (75 |f<m).d,,)"
- o (43) Gy fteran ([ Lotoran)’
< o(’,‘%—))-) /I' o(z)dp ( T a(lm)du ,Icﬁxil“(‘”) d,;) |
Set

M f(z) =Iazﬁ3§>&dic To@d /; |f(z)|o(z)du,

then (roughly speaking)

G ”"’”‘”‘) oz (53) [ (v (§) @) oo
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Using the fact

pa(m)du

J (e ) = of| ()
- [1r@Pue)s

we have the following theorem (Coifman and Fefferman):

Theorem 8. Let the kernel K(z,y) of an operator T satisfy the smoothness condition
(4) and T be of weak-type (1,1) with respect to Lebesgue measure dr. Then if u(z) satisfy
Ap, 1< p< oo,

Tr@Puade < © [ 1f(@Pule)ds
R~ R"

for all f € AN LY(R™).

This argument is due to E. T. Sawyer and C. Fefferman. It might seem to be more
complicated than other argument of weighted norm inequalities. However we think it may
be useful in cases of two-weight inequalities and the ordinary L? argument. Our main ideas
can be seen in [F1] and [F2].
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