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ABSTRACT. In this note, we announce new results on large deviation properties for
countable to one Markov systems estabished in [35] (http://www.sapporo-u.ac.jp/yuri/ )i
Our results are applicable to higher-dimensional number theoretical transformations.

§1 Introduction

Let T : X — X be a non-invertible map of a compact metric space X which is
not necessarily continuous and piecewise C-invertible with respect to a countable
generating Markov partition @ = {X;};er of X. The main purpose of this article is
to establish large deviation estimates for such countable to one piecewise invertible
Markov systems (T, X, @). In particular, we shall be concerned with large deviation
properties of weak Gibbs measures u for non-Holder potentials ¢. We shall clarify
a class of functions f in which we can describe the (Helmholtz) free energy function
associated to u in terms of the topological pressure defined in §1 (Theorem 2.1).
As we will see in §2, our class of functions is larger than C(X) so that our results
on large deviations are generalizations of those in the standard context which are
applicable to hyperbolic systems with equilibrium states for Holder potentials (c.f.
121, [3], [7], 18], [9], [10], [12], [21]). We apply our results to countable Markov maps
which arise from number theory and exihibit common phenomena in transition to
turbulence (the so-called Intermittency). Since these countable to one maps are
not expansive, the dual variational principle may not hold even if the variational
principle for the pressure holds. For this reason, we observe naturally different
stages of phase transitions which were not treated yet in previous works. It was
proved in [26,27,31] that intermittent systems typically admit weak Gibbs ergodic
equilibrium states absolutely continuous with respect to weak Gibbs smooth mea-
sures. These weak Gibbs measures are non-Gibbsian states in the sense of Bowen
and both non-Gibbsianness and non-uniqueness of equilibrium states are caused by
an appearance of indifferent periodic orbits with respect to potentials ([31-34]). We
shall formulate different stages of indifferency and relate our new characterization of
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phase transitions to these indifferent periodic points. In §3, we shall study the level
1 upper large deviations by restricting our attention to the multifractal version of
large deviation laws (Theorem 3.1). In [3,8,15-17], a connection between the multi-
fractal formalism and the theory of large deviation was established for subshifts of
finite type and expanding conformal dynamics. We recall that the theory of multi-
fractals is based on Kolmogorov’s work ([11]) on completely developed turbulence
and Mandelbrot’s observation for intermittent turbulence in [14]. Taking this phys-
ical background into consideration, in §4 we shall associate non-differentiability of
the Hausdorff dimension of level sets with phase transitions for intermittent sys-
tems. In Appendix, we collect definitions and present previous results for piecewise
CY-invertible transitive FRS Markov systems.

§2 Large deviations for weak Gibbs measures

Let (T, X, Q) be a piecewise C%-invertible transitive FRS Markov system.

Definition. Let p € M(X) and f : X — R. The (Helmholtz) free energy function
for a random process (ZZ;; fT", 1)p>1 is defined by

Hulf) o= Jim L1og [ expl3 TH@)du(o)
h=0

whenever it exists.

In the standard framework of the theory of large deviations, H, on C(X) can
be characterized by H,(g) = sup,cpr(x){v(9) — Hu"(v)} for each g € C(X), where
Hu™(v) i= supseox){v(f) — H,(f)} is the convex conjugate of M, (c.f. [9], [21]).
Define W(T') := {f : X — R|f satisfies the WBV property and Pop(T, f) < oo}
The next result show that the limit H,(f) exists for any f € W(T) U C(X).

Theorem 2.1. Let (T, X, Q) be a transitive FRS Markov system. If u is a weak
Gibbs measure for ¢ € W(T') with —Piop(T, ¢), then Vf € W(T) U C(X)

Hu(f) = Ptop(Ta ¢) + f) - -Ptop(Tv ¢)

Since Pigp (T,‘.) satisfies convexity, H,, : W(T) UC(X) — R is a convex function.
We define

-

Wi(T) := {f e W(T)[Varn(f) — 0(n — o)},

where Varn(f) :=supx, , supyyex,  {If(z)—f(y)l} Since

n-—-1 . n
swp swp exp[S {/TH) — ST < expl> ] Vara(£)),
Xiqeoin TLYEX i i h=0 h=1

Vary(f) — 0(n — oo) is suffices for f to satisfy the WBV property. Now we define
a generalized Legendre transform of the convex function H, on Wy (X) U C(X) as
follows :
Mo = s {olf) = Ha(f)} (v € M(X)).
fFeEw(TUC(X)
Then we have H,"(v) > 0 (Vv € M(X)) as H,"(v) > —H,(0) = 0 and we can
establish a weak duality between M, and H,*.
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Proposition 2.1.

Hu(a)> sup {v(g) = Hu* (W)}

veEM(X)
Although a complete duality between H,, and H,* may not hold in our setting,
Theorem 2.1 allows one to establish the following upper large deviation estimates.

Theorem 2.2(The level 2 upper large deviation inequality). Let (T, X, Q)
be a transitive FRS Markov system. Let u be a weak Gibbs measure for ¢ € Wi(T)
with —Peop (T, ¢). Then VK C M(X) a compact subset,

n—1
hmsup log,u({a:EXl—ZéTh EK})<—1an *(v).

n—oo

Definition. If v € M(X) satisfies H,(f) = v(f) — H,"(v) for f € Wi(T) U C(X),
then v is called an equilibrium state for f with respect to p. E,(f) denotes the set
of all equilibrium states for f with respect to pu.

By Theorem 2.1 we can write

(1) : Hu*(v) = (Peop (T, ¢) — () — {Pop(T, ¢ +9) —v(¢+9)},

QEW1(T)UC(X)

which allows us to see that the equality

PtOp(T> ¢ + f) - T/(¢ + f) = gEWl(i%l)fUC(X){PtOP(T’ ¢ +g) - V(¢ +g)}

is equivalent for v being an equilibrium state for f € Wy (T') U C(X) with respect
to p. Recalling non-negativity of H,"(v) allows us to see that H,*(v) measures the

distance of an orbitary v € M(X) from the set £, (0).
Definition. v € M(X) is a tangent functional of Piop(T,.) at ¢ € Wi (T) if

Ptop(T,gb_*— f) - Ptop(T7 ¢) 2 V(f) (Vf € Wl(T) UO(X))

The set of all tangent functionals of Piop(T,.) at ¢ is denoted by Dp(¢) (c.f. [7]).

Theorem 2.3 (Exponential decreasing property). Let (T, X ,22) be a transi-
tive FRS Markov system. Suppose that p is a weak Gibbs measure for ¢ € Wi (T)
with —Piop (T, ¢). If K(C M (X)) is a compact subset with Dp(¢) N K =0, then

n—1
lim sup — logu({a: € XIl Z drng € K}) <

Corollary 2.1. IfU C M(X) is an open neighbourhood of Dp(¢), then

n—1

1
lim sup — logu({w € X|l Z drng ¢ U}) < 0.

n—0o0 h 0
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Theorem 2.4. Suppose that (T,X,Q) is a transitive FRS Markov system and
¢ € Wi(T) U C(X). Assume further that (J;,.x,—¢ Xi consists of periodic orbits.
Then Piop(T, @) > b (T) +m(¢) for all m € Mp(X) with m(¢) > —oo.

Corollary 2.2(Variational Principle). If ¢ admits an indifferent periodic point,
then Piop (T, ) = sup{hm(T) + m(d)|m € Mp(X) with m(¢) > —oo}.

Definition. We say that m € My(X) is an equilibrium state for ¢ € Wi (T) if
hm(T) + m(¢) = Piop(T, ¢) holds. Er(¢) denotes the set of all equilibrium states
for ¢ € Wi (T). .

Since ergodicity of u € Mz(X) implies lim, e 1 ZZ:é drhgy = i in the weak
topology on M(X) for p-a.e.z € X, if p is an ergodic weak Gibbs measure for
¢ € Wi(T) with h,(T) < oo and ¢ € L*(u), then -};Zz;é dpng converges to
u € Er(¢) weakly p-a.e.x € X. However, for each n > 1, %22;3 drny may be
still far from u. In general, ergodicity of u may not be necessarily for the weak
convergence of the empirical measures %Zz;é dpng to u € Ep(¢). Theorem 2.3
insists that the decreasing rates of u({z € X| Z;é dpng ¢ U}) is exponential for

any open neighbourhood U of £,(0) = Dp(¢) and the rate is determined by the
distance of U¢ from Dp(¢).

Definition. For v € M(X), define h,(T) := inf gew, (myucx){ Peop (T 9) — v(9)}
which is called a generalized entropy of v.

Definition. We say that v € M(X) is a generalized equilibrium state for ¢ if
Piop(T, ) —v(¢) = hy (T) holds. E(¢) denotes th set, of all generalized equilibrium
states for ¢ and Er(@) denotes the set of all T-invariant generalized equilibrium
states for ¢.

Definition. We say that Piop(7,.) : Wi(T) — R is differentiable at ¢ € Wi (T) if

the limit ;
0 Ptop(T7 (23 + tf) - Ptop(T7 ¢)
t

limt_é

exists for all f € C(X).

Since co-existence of tangent functionals implies failure of differentiability of the
pressure function (see [33]), if Dp(¢) # 0 and Piop (T, .) is differentiable at ¢, then

Dp () consists of a single element v and 1'1rr1t_,011(—“7(t—11Z = v(f) for all f e C(X).

Theorem 2.5. Let (T,X,Q) be a transitive FRS Markov system. Suppose that
Uinex,—p Xi consists of periodic orbits. Let u be a T-invariant weak Gibbs measure
for ¢ € Wi(T) with —Piop(T, ) which satisfies h,(T) < oo and ¢ € L*(p). If
Piop (T, .) is differentiable at ¢, then we have the followings.
(i) p({z e X|: ZZ;; Orng € U}) decays exponentially as n — oo for any open
neighbourhood of Ex(¢).
(i) (The level 1 upper large deviations.) Ve > 0 and Vf € Wy (T) U C(X),

n—1
nl'i}rgo%bgu({:c € X’%;foTh(a;) > p(f)+eb <O
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In general, differentiability of Pyop(7,.) easily fails, even if uniqueness of equi-
librium states holds. Indeed, we have four stages of phase transitions as follows

(1) $Er(¢) > 1 (stage 1 phase transition)

(2) hET(qﬁ) =1 and ﬁET( ) > 1 (stage 2 phase transition)
(3) #E7(¢) =1 and §E(¢) > 1 (stage 3 phase transition)

(4) 4E(¢) =1 and §Dp(¢) > 1 (stage 4 phase transition)

All (1)-(4) are sufficient for a lack of differentiability of the pressure function
which may give a crucial difficulty in establishing lower large deviations bounds. As
we have already mentioned above, we will see in §4 that the stage 1 phase transition
happens for the important potentials — log|det DT} in the class of intermittent
maps. More specifically, we recall that if z( is an indifferent periodic point with
respect to ¢, then ézz;t drhy, € Er(¢). Since —log|det DT| typically admits
an indifferent periodic point, the Dirac measure supported on the periodic orbit
is one equilibrium state for —log|det DT'|. On the other hand, it is known that
a T-invariant absolutely continuous weak Gibbs equilibrium state exists ([27]). In
order to clarify occurance of various types of phase transitions in the context of
nonhyperbolic systems, we consider zo as an indifferent periodic point at stage 1
and generalize indifferency as follows.

Definition. A periodic point zo with period ¢ which is repelling for all g € Wi(T)
is called indifferent with respect to ¢ at stage 2 ( resp. stage3) if %Zz;é Ophg, €

Er(9)/Er(¢) (vesp.} Y0_¢ rna, € Dp()/Er(9)).

Moreover, we introduce the following quantities which measure the distance of
an arbitrary v € M(X) (or v € Mp(X)) from the sets Er(¢), E(¢), Dp(¢) respec-
tively.

4 () = {Puop(T, 8) = (@)} — ho (T) (v € Mr(X).

43 (v) = {Peop(T, 8) — v(#)} — hu(T) (v € M(X).

dy) (v) = M, (v) (v € M(X)).
Then we see that a generalized indifferent periodic point zp with period g with
respect to ¢ at stage i(i = 1,2,3) are characterized by

©dy 1)( ZaThxo )>0 and d“) Zémo )=0."
h 0 h 0

A lack of differentiability of Pop(T,.) is caused, for example, by more than one
indifferent periodic orbits at verious stages. In case when Py, (T, 0) < 00, we have
the following result.

Theorem 2.6 (Exponential decreasing property). Let (T, X,Q) be a transi-
tive FRS Markov system with Pyop(T,0) < oco. Suppose that | J;,,x,—g Xi consists
of periodic orbits. If ¢ € Wy (T') is a bounded function and p is a T-invariant weak
Gibbs measure for ¢, then v ¢ E(¢) iff H,*(v) > 0. In particullar, for any open
neighbourhood U of E(¢),

n—1

1
lim sup — logu({:c € X|l Z dpng & U}) < 0.

n—00 h 0
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Moreover, if sup,c x ¢(x) < Piop(T, ¢), then the above inequality holds for any open
neighbourhood U of Er(¢).

We recall that (DVP) is valid when the entropy map is upper semi-continuous.
For any continuous expansive action of a compact metric space, the entropy map
is upper semi-continuous. Moreover, differentiability of Piop (7, .) is valid at Holder
potentials ¢ in the context of hyperbolic systems (e.g., aperiodic SF'T, uniformly
expanding maps), where the differentiability is equivalent to uniqueness of equilib-
rium states (§E7(¢) = 1). If §Q < oo, then T is expansive because of the property
(03) so that (DVP) is valid. Hence by Theorem 2.6 we have exponential decreas-
ing property for any compact subset K of M(X) with K N Er(¢) = 0. On the
other hand, in case when {Q = oo, T may fail expansiveness even if it is piece-
wisely expanding. Such phenomena are easily found for many number theoretical
transformations (like Gauss-type transformations). However, we can still establish
differentiability of Piop(T,.) at ¢ when {¢ o ;}ier is equi-Holder continuous and
uniqueness of equilibrium states for ¢ follows from this property. Without differen-
tiability of Piop(T,.), we may have inf, ek d((;')(u) = 0 for a compact subset K with
KN Er(¢) =0 as Ep(¢) C Dp(¢p) and we may observe the verious types of phase
transitions in the above. For establishing (level 2) lower large deviations bounds,
t}Eu( f) =1for all f € C(X) which are finite linear combinations of functions of
a countable subset in C(X) is suffices in the usual setting ([9]). Indeed, it is well-
known that this condition is satisfied for the unique equilibrium state p for Holder
potentials in case of hyperbolic systems. We relate E,,(f) to Er(¢ + f) as follows.

Proposition 2.2. Assume that Piop(T,0) < 0o and sup,ecx |¢(z)| < oo. If m €
My (X) satisfies b (T) = hm(T), then m € Ep(¢+ f) iff m € EL(f).

Even if 45, (¢+ f) = 1 for all Holder functions £, again a lack of the (DVP) may
cause crucial difficulty in establishing the level 2 lower large deviations bounds.

§3 Multifractal large deviation laws

Let (T, X, Q) be a piecewise C-invertible transitive FRS Markov system. Let
¢ € W(T) be a negative function which can be unbounded (inf,cx ¢(z) > —o0).
Choose a nonpositive function f € W(T') such that for each ¢ > 0, a zero t(g) of the
next generalized Bowen's equation : Prop(7), ¢f +1t(¢)¢) = 0 is uniquely determined
(see §4). We can show that t(g) is a strictly convex function because of the (strictly)
covexity of Poop(T,.) : W(T) — R. For establishing multifractal version of (level 1)
upper large deviation inequality, we restrict our attention to piecewise conformal
(countable to one) transitive FRS Markov systems (T, X, Q@) with X C RP and
potentials ¢ = — log || DT||. Choose an observable function f € W(T') and for each
R > 0, we define

n—1 n—1 .

ng(z) = inf{n € NJmax{» _ ¢T"(z), Y fT™(z)} < —R} < 0.
h=0 h=0

If both ¢ and f are strictly negative (i.e., supex @(z) < 0, supzex f(z) < 0), then

nr(z) < co(Vz € X). We consider a generalized (Helmholtz) free energy function

for the random process (Zz;()')—l afT", W) R0,

ngr(z)—1

H,(qf) == Iimsupélogfxexp[ Z qf (T"z)]du(z).

R—co h=0
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Theorem 3.1. Let ¢ = —log||DT]||, f € W(T) be strictly negative functions sat-
i5fying suPpsq NRB' < 00. Suppose that for ¢ > 0, 31t(q) a decreasing function such
that Piop(T, qf + t(q)¢) = 0. Assume further that

(C1) 3Imy a weak Gibbs measure for qf +t(q)¢ (with 0).
(C2) 3Imgy a weak Gibbs measure for q(—f) + t(q)¢ (with 0).

If u is a weak Gibbs measure for t(0)¢ and v is a weak Gibbs measure for f, then

Ya >0
lOgl‘/(Xil...inR(m) (z)) > a})
logdiamX, .., ., (2)

1
lim sup = log u({z € X|
R—o0o R

nR(a:) 1 h.’]]
T P

< limsup —= log p({z € X|

R—oo R
< Et(’){qa +Hu(gf)} < —t*(a) — +(0),

where t* () 1= sup,>o{ga — t(q)} is the Legendre transform of t(g).

Corollary 3.1. If we replace the weak Gibbs property imposed on w,v, myi, ma by
the Gibbs property, then we can remove the assumption suppgsg -NRB- < 00.

Remark If inf,c x ¢(z), infzex f(z) > —oo, then suppyg % < 00. On the other
hand, as we will see in §4, for typical derived systems arising from Intermittent
SUp, ¢ x inf{neN| ZR:;; $T" (2)<—R} < o

maps both infzex ¢(x) = —o0 and supp.,
are satisfied for —log || DT|.

As we will see in the next section, our examples of nonhyperbolic piecewise
conformal systems admit jump systems which satisfy the following two properties.

(a) Piop(T, —log|det DT'|) = 0 so that t(0) =
(b) 3J C R+ such that Vg € J,31t(q) > 0 w1th Ptop(qf - t(q) log||DT||) = 0,
31 g a T-invariant Gibbs measure for gf — t(g)log||DT'|| and for 8(q) :=
Sy Fdna
— [ log || DT[du, (>0),

dimp Mgy = qB8(q) +t(q),

where o

Shie fTh(2) |
A ={zre X — n — 0o)}.
SR > P e R

f (C.£. [30])

Corollary 3.2. Under (a) and (b), Vo € {3 € RT|3¢' € J such that B(¢') = 5’}
dq € J such that

1 logv(X;,..i z
limsup—élogu({mEX| B (Xis ir 0 (7)) > a})

o ]_Og diam-Xil...inR(a:) (w)

< dimgAy — t(0) — 2ga = dimpg Ay — D — 2qa < 0.
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§4 Applications to Intermittent systems

Let (T,X,Q) be a transitive FRS Markov system. Let By C X be a union
of cylinders X; € @ with cl(intTX;) = X. Define the stopping time over Bj,
R: X — NU{oo} by R(z) = inf{n > 0: Tz € B1} + 1 and for each n > 1,
define inductively B, := {z € X|R(z) = n}. Now we define Schweiger’s jump
transformation ([23]) 7™ : U, B, — X by T*z = TR®z, We denote X* :=
X\ T (Nasof R(z) > n})) and

I" .= U{(Zl . .’I:n) eI" :Xh---’in C Bn}

n>1

Then it is easy to see that (1™, X*,Q* = {X;}icr-) is a piecewise CP-invertible
Bernoulli system. Assume further that (T, X, Q) is a piecewise conformal system.
For f € Wi(T) with Piop(T, f) = 0 and ¢ > 0 we shall consider the following
equations :

(2) : Prop(T*, qf" — tlog ||DT*)) = 0
(3) : Prop(T) af — tlog || DT][) = 0.

Definition. We say that a piecewise Cl-invertible Markov system is locally uni-
formly expanding with respect to By if T associated to By is uniformly expanding

(i-e., sup;e 1« SUPc x+ || DYi(z) || < 1).

Definition. We say that a potential ¢ : X — R satisfies local bounded distortion
(LBD) with respect to By if Vi = (i1...4)) € I*,3 0 < Ly (i) < oo satisfying

|p(s()) = 6% ()] < Lo(&)d(z, y)’

and
li|—1

Ly(c0) := sup Z Lg(ijq1-. 1)) < 00,

Under the locally uniformly expanding property with respect to B, we see that
— log || DT*}| is a negative function. Choose f a nonpositive function satisfying LBD
with respect to By. By Lemma 12 in [29], if Piop (T, f*) > 0 and ||Lq¢-1]] < 00(V0 <
g < 1) then we can determine t(g) > 0 satisfying the equation (2). Futhermore,
by Lemma 7 in [31} Piop(T™,T*, ¢f* — t(q) log ||DT™*||) = 0 forces to Piop(T, qf —
t(g)log||DT||) = 0. We claim that #(g) is not necessarily a unique solution of (3). It
was proved in [30] that the properties (a) and (b) are valid for (T, X*, @) and for
f*. Moreover, t(g) is analytic on J and 8(g) = —t'(q) holds. The next result allows
us to specify the first order phase transition point at which ¢(g) is non-differentiable.

Theorem 4.1. Suppose that g — t(q) log ||DT|| € Wi(T). Assume further that
there exist two different tangent functionals of Piop(o,.) at {gpom —t(g)log||DT o
|}, By, By satisfying 0 # ;(log || DT o 7||) < 00, gom € L1 (f;)(i = 1,2) and

hy(pom) Ta(pom)
B1(log ||[DT on|[) * Ty(log || DT o 7||)”
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Then q is the first order phase transition point.

All our results are applicable to the next two-dimensional number theoretical
transformations. We refer the reader to [35] for further details.

Ezample 1 (A complex continued fraction [23,24,31]). We can define a complex
continued fraction transformation 7" : X — X on the diamond shaped region
X ={z=ma+za: —1/2 < 21,2 < 1/2}, where a = 1+ 14, by T(z) =
1/z —[1/2], . Here [2]; denotes [z1 + 1/2]a+ [z2 + 1/2]@, where 2 is written in the
form z = z100 + 22@, [z] = max{n € Z|n < z}(z € N) and [z] = max{n € Z|n <
z}(z € Z — N). This transformation has an indifferent periodic orbit {1,—1} of
period 2 and two indifferent fixed points at ¢ and —i. For each naa + ma € I =
{ma+na : (m,n) € Z2—(0,0)}, we define Xpoiyma = {z € X : [1/2]; = na+ma}.
Then we have a countable Markov partition @ = {X,}eer of X and (T, X, Q) is a
transitive FRS Markov system with Py (T, 0) = oo.

Ezample 2 (Brun’s map [19,26,27,31]). Let X = {(z1,z2) € R2: 0 < 3 < 7 < 1},
and let
Xi={(z1,z) e X 1z, +21 212> z541 + 21}

for i = 0,1, 2 where we put zo = 1 and z3 = 0. T is defined by

T(z1,x2) = (1%, 7227) on Xo,

T(:L‘l,wz) = (I—ll- -— 1, %) on X],

T($1,£E2) = (%, 51; - 1) on Xz.
This map admits an indifferent fixed point (0,0) (i.e., | det DT(0,0)| = 1). We can
easily see that TX; = X (1 =0,1,2), i.e., @ = {X;}2_, is a Bernoulli partition.
Ezample 3 (Inhomogeneous Diophantine approzimations). We define X = {(z,y) €
R? : 0§y§1,—y§x<—y+1} and T: X — X by

_(r_|l=y B D A
T(:c,y)—(m [m]_i_[x}’ [m] ac)’
where [z] = max{n € Z|n < z}(z € N) and [z] = max{n € Z|n < z}(z € Z\N).
This map admits indifferent periodic points (1,0) and (—1,1) with period 2, i.e.,
| det DT?(1,0)| = |det DT?(~1,1)| = 1. Let a(x,y) = [=2] — [Z¥] and b(z,y) =
~[~%]. We can introduce an index set

- I={(}) 1a,b€Za>b>0,ora<b<0} _

and a partition Q := {X(a) : (Z) € I} , where X, = {(z,y) € X : a(z,y) =
b
a,b(z,y) = b}. Then we can directly verify all conditions (01)-(03) so that (T, X, Q)

is a transitive FRS Markov system with Pi,,(7,0) = 0.

Appendix

Let X be a compact metric space with metric d and let T : X — X be a
noninvertible map which is not necessarily continuous. Let Q@ = {X;}icr be a
countable disjoint partition @ = {X;}ies of X such that | J,.;intX; is dense in X
and satisfy the following properties. ‘

(01) For each i € I with intX; # 0, T|intx, : intX; — T(intX;) is a homeomor-

phism and (T'|inex,) ! extends to a homeomorphism 4; on cl(T'(intX;)).

(02) T(Uinex, =0 X2) € Uinex,=0 Xs-
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For § = (i1...1,) € I"™ with int(X;, N T~ 1X;, N.. .T‘("‘l)Xin) # ), we define
X =X;,nT~1X;, N.. .T"("‘l)Xin which is called a cylinder of rank n and write
|z} = n. By (01), T™intx,, ,, 0t Xy, 4, — T™(int(Xy, . 4,)) is a homeomorphism
and (T™|intx, ., )" " extends to a homeomorphism v;, 0 4y, 0 ... 0 ¥, = ¥, 4, :
c(T™(intX;)) — cl(intX;). We assume further the next generator condition :

(03) o(n) := sup{diamX;,. i, |Xi,. i, € \/;:01 T-9(Q)} = 0 (n — o).

We say that (T, X, @ = {X;}ic1) is a piecewise C%-invertible Markov system, if
int(cl(intX;) Nel(intTX;)) # 0 implies cl(intTX;) D cl(ntX;). By the condition
(03), (T, X, Q) provides a countable Markov shift (X, ) such that there exists a
uniformly continuous map 7 : ¥ — X defined by

o0

n(isha...) = () (T (intX;,,,)) (#0)

j=0

which satisfies 7o = T'omw. We should note that, in general 7(X) is a proper subset
of X. The next condition gives a nice countable states symbolic dynamics similar
to sofic shifts (cf. [25]):

(Finite Range Structure). U = {int(T"X;,. ;) : VX,  4,,Vn > 0} consists of
finitely many open subsets Uy ... Uy of X.

Definition. We say that ¢ : X — R is a potential of weak bounded variation (WBV)
if there exists a sequence of positive numbers {C,, } satisfying lim,,_,»(1/n)log C,, =
0and Vn > 1,YX;, ., € ViZy T79Q,

sup,ex,, ., exp(X]o; (1)) <
infrex,, ., exp(Xi— ¢(T9z)) ~

n-

Let (T, X, Q) be a piecewise C%invertible Markov system with FRS and satisfy
the next condition which is automatically satisfied by Bernoulli systems:

(Transitivity). intX = U{leUk and VI € {1,2,...N},30 < s; < oo such that for
each k € {1,2,... N}, Uy contains an interior of a cylinder X (%) (s;) of rank s; such
that Tt (int X &0 (5))) = U,

Then for ¢ : X — R a potential of WBV we can define the partition function

Za(9) = ) expl 3 9T (a(0)],

i:li]=n,int(TX,, ) DintX;, h=0
where z(7) is the unique point satisfying ;z(¢) = (i) € cl(intX;). By Theorem 1

in [31] we know that there exists the limit

Poop(T,6) i= Tim = log Zu(¢) € (—00,00].

n—oo 1,

Moreover, for any ¢ : X — R with ¢|U cl(intX;) = @U cl(intX;) WE See that
. i€l ' iel *
Piop(T, ¢) = Piop(T', ¢). For this reason, WOLG we assume
(04) UiEI,intXi#m cl(intX;) N Uief,mtx,:@ X;=0.
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and for ¢ of WBV with Pop (T, ¢) < o0,
(05) sup,qy %, @) < Puop(T, ).

Then we see immediately that Vzo € X with T9xz¢ = g,

i€l intX; =0

g-1
Pop(T,6) > = 3 6T (o)
q h=0

(Lemma 10 in [31]). Let F be the o-algebra of Borel sets of the compact space X.
M (X) denotes the set of all probability measures on (X, F) and Mp(X)(C M (X))
denotes the set of all T-invariant probability measures.

Definition. xg is called an indifferent periodic point with period ¢ with respect to ¢
if Piop(T, ¢) = %Z%_:_B T"(zg). If o is not indifferent, then we call z¢ a repelling
periodic point.

The following definition appeared in [25] gives a weak notion of Bowen’s Gibbs
measure in the category of piecewise CC-invertible systems.

Definition ([25-34]). A probability measure v on (X,F) is called a weak Gibbs
measure for a function ¢ with a constant P if there exists a sequence {Kp }n>g of
positive numbers with lim,_,(1/n)log K,, = 0 such that v-a.e.z,

o (X, g, () < K,
exp[Y_7 7y ¢T9(z) +nP] ~

K1 <

where X;,. ;. (z) denotes the cylinder containing z.
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