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1 Introduction
Let $T$ be a nonsingular transformation on the unit interval $I$ $=[0,1]$ with the following
properties:

(1) There is a countable partition $¥{ I_{j} : j=1,2, ¥cdots¥}$ of I illto such subintervals tffit
for each $j=1,2$ , $¥ldots$ the restriction $T_{J}$ of $T$ to $I_{j}$ is monotonic and can be extended to a
$C^{2}$-function on the closure $I_{j}$ .

(2) The collection $¥{ J_{j}:=T(I_{j}), j=1,2, ¥ldots¥}$ consists of a finite number of different
subintervals.

In the case that there exists a positive integer $n_{0}$ for which $T$ satisfies

$¥gamma(T^{n_{0}}):=¥inf|(T^{n_{0}})^{¥prime}(x)|>1$

and $T$ has the unique and weakly mixing invariant measure, J.Rousseau-Egele ([15])
got the central limit theorem, using the so-called ” Fourier transform technique” which
ffid been used to obtain limit theorems for Markov processes (cf. $[3],[8],[14]$ ). In the
more general case, central limit theorems of mlxed type for such transformations were
given in [5]. lhat is, under suitable assumptions on the function $f$ and the probability
measure $z/$ , the distribution function $¥nu¥{¥sum_{k=0}^{n-1}f(T^{k}x)/¥sqrt{n}<z¥}$ is asymptoticffiy a convex
combination of no rmal distribution functions.

On the other hand, it seems more naturaJ to consider that $T$ itself might be slightly
but randomly perturbed for each step) if we successively calffiate $f(T^{k}x)$ by a computer.
Moreover, when $f(T^{k}x)$ is a variable in the nature, for example a population at time $k$

of some insect, it is reasonable to think so. In [11],[12] and [13], T. Morita studied the
ergodic properties of“random iterations” of transformations and got the random ergodic
theorem. The aim of this article is to generalize the central limit theorem of mixed type
to random iterations. By virtue of the results in [11] and [13], we can apply the Fourier
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transform technique to this, and we can obtain the analogous result to that of the case of
a single transformation.

Another aim of this article is to generalize central limit theorems of mixed type for a
transformation in [5] : the result for random iterations contains the following Theorem as
a special case.

Theorem. Let $T$ satisfy (1) and (2). Assume that there exists a positive number $n_{0}$

for which we have $¥gamma(T^{n_{0}}):=¥inf|(T^{n_{0}})^{¥prime}(x)|>1,$ and that $¥nu$ is an absolutely continuous
probability measure. Then, there exist nonnegative constants $a_{j}(j=1,2, ¥ldots, M)$ with
$¥sum_{j=1}^{M}a_{j}=1$ such that if $f$ is a function of bounded varlation, we have for some $¥sigma_{j}¥geq$

$0(j=1,2, ¥ldots, M)$

$¥lim_{n¥rightarrow¥infty}u¥{¥sum_{k=0}^{n-1}(f(T^{k}x)-f^{*})/¥sqrt{n}<y¥}=¥sum_{¥mathrm{j}=1}^{M}o_{j}F(0, ¥sigma_{j}; y)$

at the continuity point of the left hand side, where $F(0, ¥sigma^{2};y)$ stands for the distribution
function of $ N(0¥sigma^{2})¥rangle$ and $f^{*}=¥lim_{n¥rightarrow¥infty}¥sum_{k=0}^{n-1}f(T^{k}x)/n$ . If we assume further that $¥sigma_{j}>0$

for all $j$ and that $d¥nu/dm$ has a version of bounded variation, then we have

$¥sup_{y}|¥nu¥{¥sum_{k=0}^{n-1}(f(T^{-1}x)-f^{*})/¥sqrt{n}<y¥}-¥sum_{j=1}^{M}a_{j}F(0, ¥sigma_{j};y)|¥leq C/¥sqrt{n}$

for some constant $C>0$ .

Central limit theorems for $¥beta$ transformations, $¥alpha$-continued fraction transformations,
Wilkinson’s piecewise linear transformations and unimodal linear transformations were
given as corollaries to this theorem.

We give our results and an idea of their proofs in §2. Although those are analogous
to the results in [5], remark the following. First, we could obtain the improvement of
the rate of convergence, by slightly changing the method. Second, it is shown that the
number $M$ of possibly different limiting norlx]Bll distributions is equal to the number of
ergodic invariant measures, which was not yet proved in [5]. Last of all, note that there is
a remarkable difference between random and deterministic cases. That is, the number of
different limiting normal distributions, which appear in the central limit theorem of mixed
type for random iterations, is far smaller than in the deterministic cases. Therefore) the
ordinary central limit theorem easily holds in the case of random iterations.

In §3, some examples and applications are discussed. First, we give a central limit
theorem for random iterations of unimodal linear transformations. Second, the central
limit theorem for the random time iteration of dyadic transformation is given as a corollary
to the results in §2. Central limit theorem of mixed type for a class of “dynamical system
with stochastic perturbations” ([9]) can be also obtained as a corollary to the result in §2.
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2 Definitions and Results
We denote by $m$ the Lebesgue measure on the interffi $I$ $=[0,1]$ and by $(L^{1}(m), ||¥cdot||_{m})$

the Banach space of Lebesgue integrable functions. A transformation $T$ is said to be
$m$-nonsingular, if $m(A)=0$ implies $m(T^{-1}A)=0$ . Let us write $T^{n}$ for the $n$-th iteration
of $T$.

We shall begin by defining the random iteration of $m$-nonsingular transformations:
(i) Let $Y$ be a complete separable metric space, $¥mathcal{B}(Y)$ be its topological Borel field

and $p$ be a probability measure on $( Y, ¥mathcal{B}(Y))$ .

(ii) Define $¥Omega:=¥Pi_{i=1}^{¥infty}Y$ and let us write $¥mathcal{B}(¥Omega)$ for the topological Borel field of $¥Omega$ . We
equip the product measure $P:=¥Pi_{t=1}^{¥infty}p$ on $(¥Omega, ¥mathcal{B}(¥Omega))$ .

(i) Let $¥{T_{y}:y¥in Y¥}$ be a family of $m$-nonsingular transformations on the unit interval
I such that the mapping $(X_{)} y)¥rightarrow T_{y}x$ is measurable.

In order to study the behavior of the random iterations, we consider the skew product
transformation $S$ : $ I¥times¥Omega¥rightarrow I¥times¥Omega$ deffied by

$S(x, ¥omega):=(T_{¥omega_{1}}x, ¥sigma¥omega)$ (2.1)

for $(x, ¥omega)¥in I¥times¥Omega$ , where $¥omega_{1}$ stands for the first coordinate of $¥omega$ and $¥sigma$ : $¥Omega¥rightarrow¥Omega$ is the shift
transformation to the left. Remark that we have

$S^{n}(x, ¥omega)=(T_{¥omega_{n}}¥circ T_{¥omega_{n-1}}¥circ¥ldots¥circ T_{¥omega_{1}}x, ¥sigma^{n}¥omega)$ . (2.2)
Therefore, we can consider the random iteration as $rr_{l}S^{n}(x, ¥omega)$ , writing $¥pi_{1}$ : $I¥times¥Omega¥rightarrow I$

for the projection onto $I$ . Under these settings, T.Morita ([11]) investigated the existence
of invariant measures and their mixing properties. His method is also useful for our
purpose.

Since $T_{y}$ are mnonsingular transformations, $S$ is a nonsingffiar transformation on
$(I¥times¥Omega, ¥mathcal{B}(I¥times¥Omega), m¥times P)$ . Therefore, we can define the Perron-Frobenius operator $¥mathcal{L}$ :
$L^{1}(m¥times P)¥rightarrow L^{1}(m¥times P)$ corresponding to $S$ by

$¥int¥int g¥cdot ¥mathcal{L}fdmdP=¥int¥int f(x, ¥omega)g(S(X_{)}¥omega))dmdP$ (2.3)

for all $g$ $¥in L^{¥infty}(m¥times P)$ , where $L^{¥infty}(m¥times P)$ denotes the Banach space of $(m¥times ¥mathrm{P})$ -essentially
bounded functions. It is well known that the operator $L$ is linear, positive and satisfies
the various convenient properties ([5]). Similarly, we define the Perron-Frobenius operator
$¥Phi_{y}$ : $L^{1}(m)¥rightarrow L^{1}(m)$ corresponding to $T_{y}$ .

Lemma 4.1 in [11] can be rewritten as follows:

Proposition 2.1 (i) If $(¥mathcal{L}f)(x, ¥omega)=¥lambda f(ff_{)}¥omega)for|¥lambda|=1_{f}$ then $f$ does not depend on $¥omega$ .

(ii)For any $f¥in L^{1}(m)$ , we have

$(¥mathcal{L}f)(x, ¥omega)=¥int(¥Phi_{y}f)(x)p(dy)$ $m¥times P$ $-a.e.$ , (2.4)

and hence $¥mathcal{L}f¥in L^{1}(m)$ .
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This proposition ensures us to consider $¥mathcal{L}$ as an operator on $L^{1}(m)$ , and we can treat
our problem similarly to the case of a single transfo rmation, given in [5].

For $f$ : $[0, 1]¥rightarrow C$ , we denote the total variation of $f$ by $var(f)$ . Let $V$ be the set
of ffinctions $f¥in L^{1}(m)$ which have the version $¥tilde{f}$ with $ var(f)<¥infty$ . $V$ is a subspace of
$L^{1}(m)$ , but not closed. Put

$||f||_{V}:=||f||_{m}+v(f)$ (2.5)

for $f¥in V,$where $ v(f):=¥inf$ { $var(¥tilde{f})$ : $¥tilde{f}$ is a version of $f$ }. Then we can easily prove that
$(V, ||¥cdot||_{V})$ is a Banach space and

$||fg||_{V}¥leq 2||f||_{V}||g||_{V}$ (2.6)

for $f¥in V$ and $g$ $¥in V$ (cf.[5],[15]).

Definition 1 We call that the skew-product $S$ satisfies the condition (A) $f$ if its Perron-
Frobenius operator $¥mathcal{L}$ on $L^{1}(m)$ can be regarded as an operator on $V$ , and if it fulfills the
following

(A) For the Perron-Frobenius operator $L$ of $S$ , there exist a positive integer $n_{0}$ and
real numbers $0<¥alpha<1$ , $ 0<¥beta<¥infty$ such that

$v(L^{n_{0}}f)¥leq¥alpha v(f)+¥beta||f||_{m}$

for all $f¥in V$ .

A single $m$-nonsingular transformation $T$ is also said to satisfy the condition (A), if
the sa me property holds for its Perron-Frobenius operator $¥Phi$ .

This condition (A) plays an essential role in our discussion. In order to get the concrete
and sufficient condition for this, we need the followings.

Definition 2 By $D_{¥infty}$ we denote the set of transformations $T$ of $I:=[0,1]$ satisfying:
(1) There is a countable partition $¥{ I_{j} : j=12)’ ¥cdots¥}$ of I into such subintervals that

for each $ j=1,2,¥ldots$ the restriction $T_{j}$ of $T$ to $I_{j}$ is monotonic and can be extended to $a$

$C^{2}-$ function on the closure $¥overline{I}_{j}$ .

(2) The collection $¥{ J_{j}:=T(I_{j});j=1,2,¥ldots¥}$ consists of a fifinite number of different
subintervals

(3) $T$ satisfifies $¥gamma(T):=¥inf|T^{¥prime}(x)|>0$ .

The following inequality has been given by J. ffiusseau-Egele ([15]).
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Proposition 2.2 Suppose that $T$ belongs to $D_{¥infty}$ , and let $¥Phi$ be the Perron-Frobenius
operator of $(T, m)$ . Then we have

$v(¥Phi f)¥leq¥alpha(T)v(f)+¥beta(T)||f||_{m}$ (2.7)

for each $f¥in V,$ where we write $¥alpha(T):=2(¥gamma(T))^{-1}$

and

$¥beta(T):=¥sup¥{m(J_{J})^{-1} ^{:} j=1,2..¥}¥}+¥sup_{1¥leq j}¥{(¥sup_{x¥in J_{j}}|(T_{j}^{-1})^{¥prime}(x)|)/(¥inf_{x¥in J_{f}}|((T_{j})^{¥prime}(x)|)¥}$ .

This proposition shows that if for $T¥in D_{¥infty}$ there exists a positive integer $n_{0}$ for which
$T$ satisfies

$¥gamma(T^{n_{0}}):=¥inf|(T^{n_{0}})^{¥prime}(x)|>1$ ,

then the condition (A) is satisfied. Note that $¥beta$-transformations, unimodal linear trans-
formations, $¥alpha$ -continued ffaction transformations and so on satisfy this condition (cf. [5]).
For the random iterations we can show the following sufficient conditions.

Proposition 2.3 Let the family $¥{T_{y} : y¥in Y¥}$ be contained in $D_{¥infty}$ , Suppose that the
inequalities

$¥int¥int¥ldots¥int¥alpha(T_{y_{n}}¥circ T_{y_{¥mathfrak{n}-1}}¥circ¥ldots¥circ T_{y_{1}})p(dy_{n})p(dy_{n-1})¥ldots p(dy_{1})<1$ (2.8)

and
$/f¥cdots$ $¥int¥beta(T_{y_{n}}¥circ T_{y_{n-1}}¥circ¥ldots¥circ T_{y_{1}})p(dy_{n})p(dy_{n-1})¥ldots p(dy_{1})<¥infty$ (2.9)

hold for some $n$ . Then, this family satisfifies the condition (A).

Under the assumption (A) we can get the following proposition, which is similar to
Proposition 1.2 in [5] ( see also [11] ).

Proposition 2.4 Suppose that the skew product satisfifies the condition (A). Then there
exist a positive integer $M$ and nonnegative functions $g_{1}(x)$ , $g_{2}(x),¥cdots,g_{M}(x)f$ belonging
to $V$ , such that $¥{ g_{i}>¥mathit{0}¥}¥cap¥{g_{j}>¥mathit{0}¥}=¥phi(i¥neq j),d¥mu_{f}¥times dP:=g_{j}dm¥times dP$

$(j=1,2, ¥cdots, M)$ are invariant probability measures under $S$ and all other $S$-invariant
$(m><P)$ -absolutely continuous probabilities are convex combinations of $¥mu_{j}¥times P^{¥prime}s$ . Moreover
$(S,$ $¥mu_{j}¥mathrm{x}$ $P)(j=1,2, ¥cdots, M)$ are ergodic.

In the sequel we shall use the following notations. Let $¥pi_{1}$ : $I¥times¥Omega¥rightarrow I$ be the projection
onto $I$ . For a function $f(x)$ on $[0,1]$ we denote

$¥mathrm{S}_{n}(f)(x, ¥omega)=¥sum_{k=0}^{7l-1}f(¥pi_{1}S^{k}(x, ¥omega))=¥sum_{k=0}^{n-1}f(T_{¥omega_{k}}¥circ T_{¥omega_{k-1}}¥circ¥ldots¥circ T_{¥omega_{1}}x)$
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and $b_{j}=¥mu_{j}(f)=¥int fd¥mu_{j}$ , if it has the meaning for each $j=1,2$ , $¥cdots$ , $M$ . Since $f$ and
$b_{f}=¥mu_{j}(f)$ appear at the same time, there will be no confusion. It is known that the limit

$¥lim_{n¥rightarrow¥infty}¥frac{1}{n}¥sum_{k=0}^{n-1}f(¥pi_{1}S^{k}(x, ¥omega))=f^{*}(x)(m¥times P-a.e.)$ (2.10)

exists for all $f¥in¥bigcap_{j=1}^{M}L^{¥infty}(¥mu_{j})$ ( [5], [13] ). Similarly to Lemma1.3 in [5], we can get the
following

Lemma 2.1 Under the condition (A) we have that for any $f¥in V$ the limit

$¥lim_{n¥rightarrow¥infty}f$ $(¥sum_{k=0}^{n-1}(f(¥pi_{1}S^{k}(x, ¥omega))-b_{¥mathrm{J}})/¥sqrt{n})^{2}d¥mu_{j}dP=¥sigma_{j}$ (2.11)

exists for each $j=1$ , $2$ , $¥cdots$ , $M$ .

We define

$F(b, ¥sigma_{f}^{2}.y):=(¥frac{1}{¥sigma¥sqrt{2¥pi}})¥int_{-¥infty}^{y}¥exp¥frac{-(x-b)^{2}}{2¥sigma^{2}}dx$

for $¥sigma^{2}>0$ and

$F(b, 0;y):=¥{$
$1$ $(b¥leq y)$

0 $(y<b)$ .

Under these notations we give our results.

Theorem 1 (Cenfml limit theorem of mixed type). Let the condition (A) for the family
$¥{T_{y}: y ¥in Y¥}$ be satisfied and $u$ be an $m$-absolutely continuous probability measure. Then,
there exist nonnegative constants $a_{i}$ with $¥sum_{j=1}^{M}a_{j}=1$ such that we have, for all functions
$f¥in V$ ,

$¥lim_{n¥rightarrow¥infty}(¥nu¥times P)¥{¥sum_{k=0}^{n-1}(f(T^{k}x)-f^{*})/¥sqrt{n}<y¥}=¥sum_{j=1}^{M}a_{j}F(0, ¥sigma_{j};y)$

at the continuity point of the left hand side. If we assume further that $¥sigma_{j}>0$ for all $j$

and that $d¥nu/dm$ $¥in V$ , we have

$¥sup_{y}|(U¥times P)¥{¥sum_{k=0}^{n-1}(f(T^{k}x)-f^{*})/¥sqrt{n}<y¥}-¥sum_{=J1}^{M}a_{j}F(0, ¥sigma_{j};y)|¥leq C/¥sqrt{n}$

for some some $C>0$ .
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Remark 2.1 If the parameter set $Y$ consists of a single point, Theorem 1 implies the
theorem in §1 , which is the improvement of Theorems 1 and 2 in [5]. Remark that the
rate of convergence in Theorem 1 is the best possible and better than those of Theorems 1
and 2 of [5]. Note also that the number of different normal distributions in Theorem 1 is
equal to the number of ergodic $¥mathrm{S}$ -invariant measures.

As corollaries to Theorem 1, ordinary central limit theorems for 1-dimensional trans-
formations, which are improvements of Theorems 3 and 4 in [5], are obtained.

Theorem 2 If a single transformation $T$ satisfifies the condition (A) and has a unique
$m$ -absolutely continuous invariant probability measure $¥mu$

) then; for any $m-$ absolutely
continuous probability measure $lJ$ and for any $f¥in V$ , there exists $¥sigma^{2}¥geq ¥mathit{0}$ such that we
have

$¥lim_{n¥rightarrow¥infty}¥nu¥{¥sum_{=k0}(f(T^{k}x)-b)¥sqrt{n}n-1<y¥}=F(0, ¥sigma^{2};y)$

at any continuity point of $F_{f}$ where $ b=¥int fd¥mu$ . In case $¥sigma^{2}¥neq ¥mathit{0}$ and $¥mathrm{dv}/¥mathrm{d}¥mathrm{m}$ $¥in V$ , we have

$¥sup_{y}|¥nu¥{¥sum_{k=0}^{n-1}(f(T^{k}x)-b)/¥sqrt{n}<y¥}-F(0, ¥sigma^{2};y)|¥leq C/¥sqrt{n}$

holds for so me $C>¥{)$ .

Theorem 3 If $T$ , defifined on $I$ , satisfifies the condition (A) and $¥mu$ is an $m$ --absolutely
continuous ergodic $T$ --invariant probability measure, then for any $f¥in V$ there exists
$¥sigma^{2}¥geq ¥mathit{0}$ such that

$¥lim_{n¥rightarrow¥infty}¥mu¥{¥sum_{k=0}^{n-1}(f(T^{k}x)-b)/¥sqrt{n}<y¥}=F(0, ¥sigma^{2};y)$

at any continuity point of $F_{f}$ where $ b=¥int fd¥mu$ . In case $¥sigma^{2}¥neq ¥mathit{0}$ ,

$¥sup_{y}|¥mu¥{¥sum_{k=0}^{n-1}(f(T^{k}x)-b)/¥sqrt{n}<y¥}-F(0, ¥sigma^{2});y)|¥leq C/¥sqrt{n}$

for some $C>0$ .

Morita’s result (cf. [11]} Lemma 5.4) ensures us to insist that, in the case of random
iteration, the number $M$ of different normal distributions in Theorem 1 becomes far
smffier than in the case of a single transformation. Here, we give the following result,
which insists that the ordinary central limit theorem for the random iterations is easier
to hold than that for a single transformation. His result shows us the following:
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Proposition 2.5 Assume that there exists $a$ $¥in Y$ with $p(a)>0$ such that $T_{a}$ has an
ergodic invariant measure $g(x)dm$ . Suppose also that the skew product $S$ has an ergodic
invariant measure $f(x)dm$ . Then either $¥{g(x)>0¥}¥subset¥{f(x)>0¥}$ or $¥{g(x)>0¥}¥cap$

$¥{f(x)>0¥}=¥phi$ holds.

3 Applications and Examples
In this section we give some examples, using the above statements.

Example 1 (Unimodal linear transformations) Let us defifine the so-called unimodal linear
transfonnation by

$T_{(a,b)}(x):=¥{$ $ax+¥frac{(a+b-ab)}{b} (0¥leq x¥leq 1-¥frac{1}{b}) -b(x-1) (1-¥frac{1}{b}<x¥leq 1)$

,

where $a$ $>0, b>1$ and $a+b-ab¥geq 0$ . In [6] and [7], Sh. Ito, S, Tanaka and H.
Nakada investigated in detail how the behavior of $T$ depends on parameter values (a) $b)$ .

The mappings in question belong to $¥mathcal{D}$ , but do not always have the property (A): there
exist the so-called window cases, in which (A) $w$ not satisfified and $T_{(a,b)}$ does not have the
$m$-absolutely continuous invariant probability measure.

Let $Y=$ $¥{ y_{i}=(a_{t}, b_{i}): i=1,2, ¥ldots, N¥}$ and $p(y_{i})=:p_{i}>0$ with $¥sum_{i=1}^{N}p_{i}=1$ .

Since $Y$ is $a$ fifinite set and since $T_{y_{i}}:=T_{(a_{i},b_{i})}$ belongs to $¥mathcal{D}_{f}$ the fact $T_{y_{i}}^{¥prime}(x)¥equiv 0$ shows
that $¥beta(T_{y_{k}}¥circ T_{y_{k-1}}¥circ¥ldots¥circ T_{y_{1}})$ is uniformly bounded in $(y_{k}, y_{k-1}, ¥ldots, y_{1})$ for all fixed $k$ . This
implies that (2.9) holds for all $k$ $>0$ . Therefore) if the inequality

$¥int¥int¥cdots$ $¥int(¥gamma(T_{y_{k}}¥circ T_{y_{k-1}}¥circ¥ldots¥circ T_{y_{1}}))^{-1}p(dy_{k})p(dy_{k-1})¥ldots p(dy_{1})<1$ (3.1)

holds for some $k$ , then we can derive from Proposition 2.3 that the property (A) is satisfified
in this casc. Hence, if (3.1) is fulfilled, we can apply Theorem 1; and we can get the central
limit theorem of mixed type.

As is known in [7], $T_{(a,b)}$ has the unique $m$ -absolute $ly$ continuous invariant probability,
if and only if it has the property $¥gamma(T_{(a,b)}^{k})>1$ for some $k>0$ . If we have, besides (S. $¥mathrm{I}$ ),
$¥gamma(T_{y_{i}})^{k}>1$ for some $y_{i}¥in Y$ and $k>0,$ we can apply Proposition 2.5 to get the ordinary
central limit theorem.

More concretely, $¥sum_{i=1}^{N}(¥min¥{a_{i}, b_{i}¥})^{-1}p_{i}<1$ means that the inequality (2.8) is valid
by putting $k=1$ , because we have $¥gamma(T_{y_{i}})^{-1}=(¥min¥{a_{i}, b_{i}¥})^{-1}$ So we can apply Theorem
4 zn §1 and get the ordinary central limit theorem.

Example 2 (Random time iterations) Let us defifine $T(x):=2x$ (mod. $¥mathit{1}$). We denote
$Y:=$ $¥{ ¥mathit{0},¥mathit{1},¥mathit{2},¥ldots¥}$ , $p(n)=:p_{n}¥geq ¥mathit{0}$ with $¥sum_{n=0}^{¥infty}p_{n}=1_{)}$ and $T_{y}:=T^{y}$ . Under this setting,
we easily have the following:
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Proposition 3.1 Suppose that $p(0)<1$ . Let $¥nu$ be an $m$-absolutcly continuous probability,
Then, for any $f¥in V,$ there exist $¥sigma^{2}¥geq 0$ and $b$ such that we have

$¥lim_{n¥rightarrow¥infty}(¥nu¥times P)¥{¥sum_{k=0}^{n-1}(f(T^{(¥omega_{1}+¥omega_{2}+¥ldots+¥omega_{k})}x)-b)/¥sqrt{n}<y¥}=F(0, ¥sigma^{2});y)$

at any continuity point of F. In case $¥sigma^{2}¥neq ¥mathit{0}$ and $du/dm$ $¥in V_{f}$

$¥sup_{y}|(¥nu¥times P)¥{¥sum_{k=0}^{n-1}(f(T^{-1}x)-b)/¥sqrt{n}<y¥}-F(0, ¥sigma^{2};y)|¥leq C/¥sqrt{n}$

holds.

Proof. Clearly, we have $¥gamma(T^{y})=2^{y}$ and hence

$¥int¥gamma(T^{y})^{-1}p(dy)=¥sum_{n=0}^{¥infty}2^{-n}p(n)<¥sum_{n=1}^{¥infty}p(n)=1$ .

We also have $¥beta(T^{y})=1$ for every $y¥in Y$ . Proposition 2.3 insists that the property (A)
holds for this. It is $¥mathrm{wel}¥rfloor$-known that the Lebesgue measure $m$ itself is the unique invariant
probability for $T^{n}(n>0)$ . Theorem 4 , therefore, shows our results.

Remark 3.1 We clearly have the same results, putting $T(x):=nx$ ( mod.1) for any
positive integer $n$ $¥geq 2$ . Moreover, if we think about the family of the so-called $¥beta$ -

trans formation$T(x):=¥beta x$ $( mod.¥mathit{1}, ¥beta>1)$ and put $Y:=¥{0,1, ¥ldots, N¥}$ , then we
can get the same results by changing the proof.

Example 3 (Dynamical systems with stochastic perturbations) Let $T$ be a transforma-
tion belonging to $D_{¥infty}$ with and $¥{ ¥xi_{n} : n =1,2, ¥ldots¥}$ be a sequence of independent and
identically distributed random variabfes. Assume that ess. $¥sup|¥xi_{1}|$ is small cnough to have
$T(x)+¥xi_{1}¥in[0,1](a.e. )$ , Defifine $Y=R$, $p(A):=Prob¥{¥xi_{1}(¥omega)¥in A¥}$ and $T_{y}(x):=T(x)+y$

$¥Omega$ and $S$ are defifined as before. Then, regarding $¥xi_{n}=¥omega_{n},$ we have

$¥pi_{1}S(x, ¥omega)=T(x)+¥xi_{1}$ ,

$¥pi_{1}S^{2}(x, ¥omega)=T(T(x)+¥xi_{1})+¥xi_{2}$ ,

and
$¥pi_{1}S^{n}(x, ¥omega)=T(T(T(¥cdots(T(x)+¥xi_{1})+¥xi_{2})+¥ldots)+¥xi_{n}$ .

That is, $¥pi_{1}S^{n}(x, ¥omega)=x_{n},$ if $¥{ x_{n} : n=0,1, ¥ldots¥}$ is defifined by

$x_{n}=T(x_{n-1})+¥xi_{n}$ , $x_{0}=x$ .

Therefore; we can regard this type of dynamical system with stochastic perturbations (cf.
[8]) as a special case of our random iterations.

Clearly, $¥gamma(T_{y})=¥gamma(¥mathrm{T})$ and $¥beta(T_{y})=¥beta(T)$ . Assuming $¥gamma(T)>2$ , we can easily see that
the central limit theorem of mixed type holds.
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Example 4 Let us define

$T_{1}(x):=¥{$
$(1/2)$ $(2x)$ $(0¥leq x<(1/2))$

$(1/2) (2(x-(1/2)))+(1/2)$ $((1/2)¥geq x<1)$ ,

and

$T_{2}(x):=¥{$
$(1/3) T(3x)$ $(0¥leq x<(1/3))$

$(1/3) T((3/2)(x-(1/3)))+(1/3)$ $((1/3)¥geq x<1)$ ,

where $T(x):=2x(¥mathrm{mod} 1)$ . Put $Y:=¥{12¥})’ p_{1}:=P(¥{1¥})>0$ and $p_{2}:=P(¥{2¥})>0$

with $p_{1}+p_{2}=1$ . Then it is clear that $T_{1}$ has two absolutely continuous ergodic prob-
abdlities , whose supports are [0, 1/2) and (1/2) 1]. $T_{2}$ also has two ergodic compo-
nents, [1, 1/3) and (1/3) 1]. Since $¥gamma(T_{1})=¥gamma(T_{2})=2¥beta(T_{1})=2$ and $¥beta(T_{2})=3$ clearly
hold, the skew product $S$ satisfifies the condition (A). Moreover, Froposition 2.5 implies
that the skew product $S$ has a unique ergodic measure. Hence we have an ordinary central
llimit theorem for this random iteration, though for $T_{1}$ and $T_{2}$ we have 2 limitting normal
distributions.
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