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Numeration systems, fractals and
stochastic processes

27T HTRR
KERTHTILRE
Teturo Kamae
Osaka City Univ.”

This is a trimmed version of [1], which can be downloaded from
http://www.sci.osaka-cu.ac.jp/” kamae.

1 Numeration systems and colored tiling
space

By a numeration system, we mean a compact metrizable space ()
with at least 2 elements as follows:

1. There exists a nontrivial closed multiplicative subgroup G of
R, such that (R,G) acts numerically to {2 in the sense that there
exist continuous mappings x1 : @ X R — Q and x3 : @ x G — 4,
where we denote w + ¢ := x1(w,t), Aw := x2(w, A), satisfying that

wH+0=w, W+t)+s=w+(t+s)
lw=w, T(Aw) = (TA\)w
Aw+ 1) = Aw + M

forany w e, t,s e Rand \,7 € G.
2. The additive action of R to €2 is minimal and uniquely ergodic
having O-topological entropy.
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3. The multiplicative action of A(€ G) to € has | log A|-topological
entropy. Moreover, the unique invariant probability measure under
the additive action is invariant under the G-action and is the unique
invariant probability measure attaining the topological entropy of the
multiplication by A 5 1.

Note that if () is a numeration system, then €} is a connected space
with the continuum cardinality. Also, note that the multiplicative
group G as above is either R, or {\"; n € Z} for some A > 1.
Moreover, the additive action is faithful, that is w + t = w implies
t=0forany we Qandt e R.

>
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Figure 1: admissible tiles

Let A be a nonempty finite set. An element in A is called a color. A
rectangle [z1,T2) X [y1, y2) in R? is called an admissible tile if zo—zq =
e¥! is satisfied (see Figure 1). A colored tiling w with colors in A is
a mapping from dom(w) to A, where dom(w) consists of admissible
tiles which are disjoint each other and the union of which is R2.
For R € dom(w), w(R) is considered as the color painted on the
admissible tile R. In another word, a colored tiling is a partition of

R? by admissible tiles with colors in A. Let ©(A) be the set of colored
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tilings with colors in A

A topology is introduced on £(A) so that a net {wn}ner C A)
converges to w € Q(A) if for every R € dom(w), there exist R, €
dom(wy,) (n € I) such that

w(R) = wn(R,) for any sufficiently large n € I and lim p(R, R,) =0,

n—oo

where p is the Hausdorff metric.
For an admissible tile R := [z1,Z2) X [t1,%2), t € R and A € R,
we denote

R+t = [5171 "'"tsw2 “t) X [ylayZ)
AR = [Az1,)zo) X [y1 +log A, y2 + log A).

For w € Q(A), t € R and A € Ry, we define w4+t € (A) and
Mw € Q(A) as follows:

dom(w + t) {R+1t; Redom(w)}
(w+t)(R+1t) := w(R) for any R € dom(w)
dom(Mw) = {AR; R € dom(w)}
(Aw)(AR) = w(R) for any R € dom(w).

Thus, (R,R,) acts numerically to €2(A). We construct compact
metrizable subspaces of {2(A) corresponding to weighted substitu-
tions which are numeration systems.

2 Weighted substitutions

A substitution o on a set A is a mapping A — AT, where AT =
U2, A% For ¢ € A, we denote |¢| := £ if £ € A%, and & with [{] = ¢
is usually denoted by £o&; ---&—1 with & € A. We can extend o to
be a homomorphism AT — A* as follows:

o(&) == o(&)o(&) -+ o(e-1),
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where £ € A* nd the right-hand side is the concatenations of o(&;)’s.
We can define 02,03, .- as the compositions of o : AT — AT,

A weighted substztutzon (6,7) on A is a mapping A — A* x (0,1)"
such that |o(a)| = |7(a)| and >, |, 7(a); =1 for any a € A. Note
that o is a substitution on A. Wedefine7": A — (0,1)" (n=2,3,...)

inductively by
() = T(a)im" (0 (a)i);

for any a € A and i, j, kK with

0<i<lo(a)l, 0<j< o™ o(a) k-—Z[anla n)| + g

h<i

Then, (o™, 7") is also a weighted substitution for n = 2,3, ---

A substitution o on A is called primitive if there exists a positive
integer n such that for any a,a’ € A, ¢"(a); = a’ holds for some ¢
with 0 < 4 < |o"(a)].

For a weighted substitution (o, 7) on A, we always assume that

the substitution o is primitive. (1)

We define the base set B(o, T) as the .closed, multiplicative subgroup
of R, generated by the set

Ta);; a €A, n=0,1,--- and 0 <4 < |o"(a)|
such that c™(a); = a '

Let G := B(o, 7). Then, there exists a function g : A — R, such

that
9(0(a)i)G = g(a)7(a)iG (2)

for any a € A and 0 < ¢ < |o(a)|- Note that if G = R, then we
can take g = 1. In the other case, we can define g by g(ag) = 1 and
g(a) := 7 (ap); for some n and i such that o"(ag); = a, where ag is
any fixed element in A.

Let (o,7) be a weighted substitution satisfying (1). Let G =
B(o,7). Let g satisfy (2). Let Q(o,7,9) be the set of all ele-
ments w in Q(A) such that for any [z1,Zs) X [y1,y2) € dom(w) with
w([z1, z2) X [y1,y2)) = a, we have
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(I) e € g(a)G, and 30
(II) R* € dom(w) and w(R") = o(a); hold for i = 0,1,-- -, |o(a)| —

1, where

Roi= [t (@) Yo r(a), ot (@ - ) 3 7(a))

X[y1 +logT(a)i, 1)

A vertical line v := {z} X (—o0,00) is called a separating line
of w € Qo,7,g) if for any R € dom(w), R° N~y = 0, where R°
denotes the set of inner points of R. Let Q(c, 7, g)" be the set of all
w € Qo,7,9) which do not have a separating line and Q(o, 7, g) be
the closure of (o, 7,9)". Then, (R, G) acts to (o, 7, g) numerically.
We usually denote (o, 7,1) simply by Q(c, 7).

Theorem 1. The space Q(o,T,9) is a numeration system with G =
B(o, ).

Theorem 2. Let ) be a numeration system with G = Ry, that s,
with the multiplicative R -action. Then, the additive action on the
probability space {1 with the unique invariant probability measure p
has a pure Lebesque spectrum.

3 (-function

Let Q := Q(o, 1, g) satisfying (1) and (2). For a € C, we define the
associated matrices on the suffix set A x A as follows:

M, = Z 7(a)d (3)

ij0(a)i=a’ a,a’ €A
Ma,_;. = (]-o'(a)oza’ T(a’)g)a,a’EA
Ma," = (10((1)!6(11)1—1:“’ T(a)ﬁr(a)[—l)a a'€A

Let © be the set of closed orbits of Q) with respect to the action of
G. That is, © is the family of subsets £ of € such that £ = Gw for
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some w € ) with Aw = w for some A € G with A > 1. We call ) as
above a multiplicative cycle of £&. The minimum multiplicative cycle
of £ is denoted by c¢(§).

We say that £ € © has a separating line if w € £ has a separating
line. Note that in this case, the separating line is necessarily the y-
axis and is in common among w € £. Denote by ©g the set of £ € ©
with the separating line.

Define the {-function of G-action to €2 by

Gal@) == [J(1—c(&)™), (4)

€O

where the infinite product converges for any o € C with R(a) > 1.
It is extended to the whole complex plane by the analytic extension.

Theorem 3. We have

det(] — My 4)det( — M, )

det(] M ) CEO( )

Cala) =

where

Cro(@) = [J (1= (&)™)

£€Bp

18 a finite product with respect to £ € ©y.

Theorem 4. (i) (a(a) # 0 if R(a) # 0.
(i) In the region R(a) # 0, a is a pole of (q(c) with multiplicity
k if and only if it is a of zero of det(I — M) with multiplicity k for
any k=1,2,---

(i43) 1 is a simple pole of (q(a).

Theorem 5. For Q = Q(o,n,9), if B(o,7) = {\"; n € Z} with
A > 1, then there exist polynomials p,q € Z[z] such that (o(a) =

()\a)/q()\a) Conversely, if (a(a) = p(A*)/q(A*) holds for some
polynomials p,q € Z[z] and X > 1, then B(o,7) = {\**; n € Z} for
some positive integer k.

Theorem 6. If B(o,7) = {\*; n € Z},"then A is an algebraic
number.
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4 [(-expansion system

Let 3 be an algebraic integer with G > 1 such that 1 has the following
periodic B-expansion

1 = (b0 1py0271 .. - pp 0= 1)
bl’b2:"' abk € {1727 3 I_/B_l}
i1, ik € {1,2,--+},

where ( )* implies the infinite time repetition of ( ). Let n :=
21 +12%+---+1i; > 1 and assume that n is the minimum period of the
above sequence. Since the above sequence is the expansion of 1, we
have the solution of the following equation in aj,ag,: -, agy; With
a1=ak+1=1and0<aj< 1 (j“—"Q, ,k)l

a; =bif ™ +a;aB7Y (j=1,2,--- k).

Let A:={1,2,---,k} and define a weighted substitution (o, 7) by
J— (1, (1/a))B~1)% (5 +1, (aj+1/a;)87%)
7=1,2,---,k—1)

k— (1, (1/ar)B7)% (1, (ar+1/ax)B7)
where (, )* implies the k-time repetition of (, ). Then, ¢ is primitive
and B(o,7) = {8" n € Z}. Define g : A — Ry by g(j) := a;. Then,
g satisfies (2) and Q(o, 7, g) is a numeration system by Theorem 2.

We denote §2(F) = Q(o,7,g9) and () is called the [-expansion
system.

Theorem 7. We have

1-p67¢
e e

Cag)(a) =

5 homogeneous cocycles and fractals

Let 2:= Q(o, 7, g) satisfy (1) and (2).
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A continuous function F : ) x R — C is called a cocycle on €2 if
F(w,t+s)=F(w,t)+ F(w+t,s3) (5)

holds for any w € €2 and s,t € R. A cocycle F on () is called a-
homogeneous if
F(Aw, At) = A*F(w, t)

for any w € 2, A € G and t € R, where « is a given complex number.
A cocycle F(w,t) on Q is called adapted if there exists a function
=:A xR, — C such that

F(w,z3) — F(w,z1) = Z(w(R), 2 — x1) (6)

for any w € Q and tile R := [z1, x2) X [y1,y2) € dom(w).
In [2], nonzero adapted a-homogeneous cocycles on ) with 0 <
a < 1 is characterized. In fact, we have

Theorem 8. A nonzero adapted a-homogeneous cocycle on §) is
characterized by (6) with o and Z satisfying that R(«) > 0 and there
exists a nonzero vector £ = (£y)aeca Such that M,& = &€ (see (3)) -and
E(w(R), za—x1) = (Ta—x1)*€u(r) for any tile R = [z1, Z2) X [y1,Y2) €
dom(w). Hence, a nonzero adapted a-homogeneous cocycle exists if
and only if R(a) > 0 and « is a pole of (a(a).

It is known [2] that

Theorem 9. Let p be the unique invariant probability measure on
Q under the additive action. Let 0 < o < 1. For a nonzero «-
homogeneous cocycle F' on €2, we have the following results.

(i) There exists a constant C such that

|Fw,t) = F(w,s)] < Clt — s]°

for any w € Q and s,t € R. That is, the functions F(w,t) on t for
w € Q) are uniformly a-Hélder continuous.
(it) For anyw € Q and t € R,

1
lim sup ;—5|F(w,t+ s) — Fw,t)] >0
sl0
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holds. That is, for any w € Q the function F(w,-) is nowhere lo-
cally o/ -Holder continuous for any o > «a. In particular, F(w,-) is
nowhere differentiable.

(iti) The stochastic process F(w,t) with time parameter t € R
and random element w € ) with respect to u has a strictly ergodic
stationary increment having 0-entropy.

(iv) F(w, \t) has the same law as A*F(w,t) for any A € G. Hence,
the process F(w,t) is a-self similar if G = R..

(v) [ F(w,t)du(w) =0 for any t € R.

Example 1. Let A = {4+, -} and (o, 7) be a weighted substitution
such that

+ = (+,4/9)(—,1/9)(+,4/9)
— = (=4/9)(+,1/9)(—,4/9).

Then, 4/9 € B(o, ) since o(+)o = + and 7(+)o = 4/9. Moreover,
1/81 € B(o,7) since 0(+)4 = + and 7%(+)s = 1/81. Since 4/9 and
1/81 do not have a common multiplicative base, we have B(o,T) =
Ry. Let Q = Q(o, 7). Then we have

1
- (1-2(4/9)% = (1/9)2)(1 — 2(4/9)* + (1/9)*) ’

Ca(a)
so that 1/2 is a simple pole of {g. In fact, the associated matrix
_( 4/3 1/3
Mz = ( 1/3 4/3 )
has an eigen-vector £ = ( __11 ) with eigen-value 1. Let F' be the
1/2-homogeneous adapted cocycle on 2 defined by the equation:

F(w, CCQ) — F(w, .’L‘l) = i(mg — 33'1)1/2

if there exists a tile [z1, z3) X [y1,¥2) in w with color =+, respectively
(see Theorem 9).

Then, F(w,t) is a 1/2-selfsimilar process with respect to the unique
invariant measure p under the additive action, called N-process ([3]).
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Let Z(Q) be the set of w € Q such that there exists [z1,z2) X
[y1,y2) € dom(w) satisfying that z; = 0 and y; < 0 < y2. An
element w € Z(€) is called an integer in ). Let

TT(Q) == {(w,t) € T(Q) x R; w+1t € T(Q)}.

A continuous function F' : ZZ(Q2) — C is called a cocycle on Z(Q2) if
(5) is satisfied for any w € Z(Q) and ¢, s € R such that (w,t) € ZZ()
and (w,t+ s) € IZ(9).

A cocycle F on Z(Q) is called adapted if there exists a function
Z: A x Ry — C such that (6) is satisfied for any w € Z(2) and tile
T

Z(9) is called a-homogeneous if
F(Aw, At) = \*F(w, t)

for any (w,t) € IZ(Q) and A € G with (Aw, At) € TZ(2). Note that
if (w,t) € ZZ(f), then for any A € G with A > 1, (Qw, Xt) € TZ(Q2)
holds.

A cocycle F on Z(Q) is called a coboundary on Z(£2) if there exists
a continuous function G : Z()) — R* such that

F(w,t) = Gw + 1) — Gw)

for any (w,t) € ZZ(92).
The following theorem is proved in [4].

Theorem 10. A nonzero adapted a-homogeneous cocycle on Z(£2)
with R(a) < 0 is characterized by (6) with = satisfying that there
exists a nonzero vector £ = (&;)qea such that M€ = £ (see (3)) and
E(w(R), x3—x1) = (23—21)*u(r) for any tile R == [z1,32) X [y1,92) €
dom(w) with yo > 0. Hence, a nonzero adapted a-homogeneous cocy-
cle on Z(Q) with R(a) < 0 exists if and only if « is a pole of (a(cr).
Moreover, any cocycle as this is a coboundary.

Example 2. Let us consider the (-expansion system with 8 > 1
such that 32 — 32 — 8 —1 = 0. Then the expansion of 1 is (110)*
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and the corresponding weighted substitution is

1 — (1, B7H(2, B72+57%)
2 - 1, —Pya, ——)
- g7 g

Denote 2 := Q(5). The associated matrix is

- -2 -3\
Maz( g’-{-l (ﬁ —Bﬁ ) )
(B+1)=

Let v be one of the complex solutions of the equation 23 —2%2—2—1 =
0. Then, |y| < 1. Let a € C be such that v = 8% Then, R(a) < 0.

Since we have : .
w(5)=(5)

(6 +1 )
ﬁ—-——— there exists an a-homogeneous adapted cocycle

with § := ,
(B+1)=
F on I(£)) satisfying that

O(zz —21)*  (w(R) =2)

Flw,z9) — F(w, ;) = { (o —21)*  (w(R)=1)

if there exists R := [z1, %) X [y1,¥2) € dom(w) with y, > 0.

For w € Z(9), let Ry(w) be the tile [xg,z1) X [yo,¥1) € w such
that 2o = 0 and yo < 0 < ;. Fori=0,1,2,---, let R; be the i-th
ancestor of Ro(w). Let Corner(R;) =: (xz;,v;). Let

0

Gw) ==Y (2 — ziy1)™.

=0

Since if x; > x;41, then there exists a tile [;11, ;) X [yi1, Yir1+10g §)
with color 1 in w, we have

F(w,2;) = F(w, Tiy1) = (T — 2i41)®

forany i =0,1,---.
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Take any t € R such that (w,t) € TZ(Q?). Let (R})i=12,. and
(2})i=0.1,. be the sequences as above for w + ¢ instead of w. Then,
there exist 49 > 1, jo > 1 such that R ., = Rj4x + t for any
k=0,1,---. Then, since j , = Tip+x — ¢ for any k =0,1,---, we
have

Gw+1t) — G(w)

Jo—1 io—1
= ) (@ —2j)* = D (3 — zip1)®
i=0 i=0
= —F(w+t,2})+ Flw, ;) = Flw,t).

-1.53i

Figure 2: G(Z(Q2))

Thus, the a-homogeneous cocycle F' is a coboundary with cobound-
ary function G. The set G(Z(2)) is known as Rauzy fractal which is
shown in Figure 2.
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6 Open problems

(1) Does a numeration system which is not homomorphic to any nu-
meration system coming from weighted substitutions exists? If yes,
how to characterize the numeration systems coming from weighted
substitutions?

(2) Does the condition B(o,7) # R, imply that the R-action of a
numeration system coming from weighted substitutions with respect
to the unique invariant probability measure is not weakly mixing?
When doess it have the discrete spectrum?

(3) What is the multiplicity of the pure Lebesgue spectrum possessed
by the R-action of a numeration system coming from a weighted sub-
stitution with B(o,7) = R, with respect to the unique invariant
probability measure?

(4) When does a numeration system admit an additive group struc-
ture consistent with the (R, G)-action?
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