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1 Intorduction
A sequence $x_{1}$ , $X_{2}^{l}$ , ’ ’ . $¥in[0,1]$ is called uniformly distributed if

$¥lim_{n¥rightarrow¥infty}¥frac{¥#¥{x_{¥dot{f}}¥in J¥cdot i¥leq n¥}}{n}.=|J|$ ,

where $J$ is an interval and $|J|$ is the Lebesgue measure. The discrepancy of this
sequence is defined by

$D_{n}=¥sup_{J}|¥frac{¥#¥{_{X_{i}¥in Jj}i<n¥}¥leftrightarrow}{n}-|J||$ .

It is well known that the order of the discrepancy $D_{¥mathrm{n}}$ is greater than or equals
to $¥frac{¥log n}{n}$ . Thus, when the discrepancy is of order $¥log n/n$ , this sequence is called
of Iow discrepancy.

The quasi-monte Carlo method is the approximation of the integration $¥int_{0}^{1}f(x)dx$

by
$¥frac{f(x_{1})+¥cdots+f(x_{n})}{n}$

.

using quasi random numbers $¥{x_{i}¥}$ . It is well known that the error term is less
than or equals to $D_{n}¥mathrm{x}$ $V(f)$ when $f$ is of bounded variation, where $V(f)$ is
the total variation of $f$ . Hence, when we use a low discrepancy sequence, the
approximation is best possible,

One of the most famous low discrepancy sequence is the van der Corput
sequence using binary expansion. We will study this from the view point of
dynamical system.

2 Notations
Let $F$ be a piecewise linear transformation from $[0, 1]$ into itself, and its slope
satisfy $|F^{¥prime}(x)|¥equiv¥beta>1$ , Associated with tbis transformation, there exists a finite
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partition $¥{¥langle a¥rangle¥}_{a¥in A}$ of $[0, 1]$ , and on each (a) $F$ is continuous and monotone. We
call this $A$ an alphabet. A finite sequence $w$ $=a_{1}¥cdots a_{n}$ of $A$ a word, and define

$¥langle w¥rangle=¥bigcap_{i=1}^{n}F^{-i+1}(¥langle a_{i}¥rangle)$ ,

$|w|=n$ .

We call this an expression of a dynamical system to a symbolic dynamics.

3 Construction of van der Corput sequence
For a point $x$ $¥in[0,1]$ and word $w$ , we define $wx$ by

$wx$ $¥in¥langle w¥rangle$ , $F^{|w|}(wx)=x$ .

Note that $wx$ does not always exist.
Now we fix a point $x$ , and define an order in $wx$ . For the first, we consider

the natural order in $A$ . Define

$¥circ$ if $|w|<|w^{¥prime}|$ , then $wx<w^{¥prime}x$ .

$¥circ$ if $w=a_{1}¥cdots a_{n}$ , $w^{¥prime}=b_{1}¥cdots b_{n}$ and $a_{n}¥cdots a_{1}<b_{n}¥cdots b_{1}$ in the lexicograph-
ical order then $wx$ $<w^{¥prime}x$ .

We call $¥{wx¥}$ a van der Corput sequence generated by the dynamical system.
Actually, when $F(x^{¥tau})=¥underline{?}x$ $(¥mathrm{mod} 1)$ and $x$ $=¥frac{1}{2}7$ we get the original van der
Corput sequence.

4 Perron-Frobenius operator
Associated with the dynamical system, we define the Perron-Frobenius operator
by

$Pf(x)=¥sum_{y:F(y)=x}f(y)|F^{¥prime}(y)|^{-1}$
.

It is well known that the ergodic properties of the dynamical system are deter-
mined by the spectra of this operator. For example,

1. The number of ergodic components of a dynamical system equals the
dimension of the eigenspace associated with eigenvalue 1 of $P$ . In our
case, the dimension of the eigenspace equals 1.

2. The eigenfunction of the eigenvalue 1 of $P$ gives the density function of
the invariant probability measure.

3. $P$ is originally a transformation on $1^{1}$ , and all the points in the unit circle
are eigenvalues with infinite multip icity.
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4. When we restrict $P$ a transformation of the functions with bounded vari-
ation, then all the point in the circle with radius 1/ $¥beta$ are eigenvalues with
infinite multiplicity. We call 1/! the essential spectrum radius.

5. The second greatest eigenvalue of $P$ in modulus gives the decay rate of
convergence:

$¥int f(x)g(F^{n}(x))d¥mu-¥int fd¥mu¥times¥oint gd¥mu$ ,

where $f$ is of bounded variation, $g$ is a bounded measureable function and
$¥mu$ is the invariant porbability measure.

Theorem 1 The eigenvalues of $P$ in $|z|>1/¥beta$ coincide with the singularities
of the dynamical zeta function

$¥zeta(z)=¥exp[¥sum¥frac{z^{n}}{n} ¥infty¥sum |F^{n¥prime}(p)|^{-1}]$ .

$n=1$ $p=F^{n}(p)$

For an interval $J$ , we get

$P^{n}1_{J}(x)=¥sum_{y:F^{n}(y)=x}1_{J}(y)|F^{n¥prime}(x)|^{-1}$

$=¥sum_{|w|=n}1_{J}(wx)¥beta^{-n}$
.

This equals the number of hits to $J$ of the subsequence of our van der Corput
sequence corresponding to the words with length $n$ . On the contrary, when we
express the density function of $¥mu$ by $¥rho_{7}$

and the second greatest eigenvalue of $P$ by $¥eta$ , as a very rough expression, we
get

$P^{n}1_{J}(x)=|J|¥rho(x)+O(¥eta^{n})$ .

Since $1_{J}$ is of course of bounded variation, we know that $¥eta$ is greater than or
equals to 1/ $¥beta$ . Thus we get

$¥#¥{wx¥in J:|w|=n¥}=|J|¥beta^{n}¥rho(x)+O(1)$ .

iFrom this, we can estimate the discrepancy of our van der Corput sequence.

Definition 1 We call an endpoint of $¥langle a¥rangle$ a Markov endpoint if the image of this
point coincides with some endpoint of (cr) (a $¥in A$).

Theorem 2 Let us denote by $k$ the number of Markov endpoints of F. If the
dyna $¥prime m$ical zeta function of $F$ has no singularities in 1/$¥beta<|z|¥leq 1$ escept 1, we
get that the discrepancy $D_{N}$ of our van der Corput sequence equals of $ord$er

$¥frac{(¥log N)^{k+1}}{N}$ .

Expecially, if $F$ is Markov, our vart der Corput sequence is of low discrepancy.
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5 Extension to higher dimensions
In the higher dimensional cases, we can conclude that if the essential spectrum
radius of the Perron-Frobenius operator coincides with its reciprocal of the Ja-
cobian, then we can get the similar results as one dimensional case. However,
the estimate of the essential spectrum radius is crucial in general. Until now, we
suceeded to costruct low discrepancy sequences for 2 and 3 dimensional cases
using special transformations. We used binary expansions, so we believe these
sequences

will be better than the Halton sequences, but we have not suceeded to con-
struct higher dimensional cases with dimensions greater than 3 nor general the-
ory for higher dimensional cases.
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