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1 Introduction and basic definitions
In this manuscript, we consider the isomorphism problem for a one-parameter
family of non-invertible infinite measure preserving transformations, which we
call $¥alpha-$ Farey maps, $¥frac{1}{2}¥leq¥alpha¥leq 1$ , together witb the same problem for their natural
extensions, based on [8]. The author has introduced the notion of the $¥alpha-$Farey
maps as a generalization of the Farey map in [7]. The notion of the Farey map
originally arose from the mediant convergents of the regular continued fractions,
see [3], and this map induces the Gauss map as a jump transformation or an
induced transformation, see [2]. Here, the Farey map $F$ and the Gauss map $T$

are defined by the following, respectively :

where $[y]$ denotes the integer part of a real number $y$ . If we put $¥tau(x)=¥min¥{n¥geq$

$0$ : $F^{n}(x)¥in[¥frac{1}{2},1]¥}$ , then we see that $T(x)=F^{¥tau(x)+1}(x)$ . It is well-known that $T$

preserves the Gauss measure, which is given by $¥frac{1}{¥log 2}¥cdot¥frac{1}{1+x}dx$ and $F$ preserves the
infinite measure given by $¥frac{1}{x}dx$ . The a-Farey maps $F_{¥alpha}$ are related in a similar
way to the $¥alpha-$ Gauss maps $T_{¥alpha}$ , which are generalization of the Gauss map. Their
maps are defined as follows explicitly. For $¥frac{1}{2}¥leq¥alpha¥leq 1$ , we put $¥mathrm{I}_{¥alpha}=$ $[¥alpha-1, ¥alpha]$ .
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Define the map $T_{¥alpha}$ of $¥mathrm{I}_{¥alpha},$ which we call the $¥alpha-$ Gauss map, by the following :

$T_{¥alpha}(x)=¥{$

$|¥frac{1}{x}|-[|¥frac{1}{x}|]_{¥alpha}$ if $x$ $¥in ¥mathrm{I}_{¥alpha}¥backslash ¥{0¥}$ ,

$0$ if $x$ $=0$ ,

here $[y]_{¥alpha}=n$ if $y$ $¥in[n-1+ ¥mathrm{a}, n+¥alpha)$ . We note that $T_{1}$ is the Gauss map and
$T_{¥frac{1}{2}}$ is the nearest integer continued fraction transformation. The fundamental
properties of $T_{¥alpha}$ were discussed in [6] together with some ergodic properties.
In particular, it was shown that there exists an absolutely continuous ergodic
invariant finite measure $¥mu_{¥alpha}$ for $T_{¥alpha}$ , which is given by

$¥mu_{¥alpha}(A)=¥int_{A}h_{¥alpha}(x)dx$ for any measurable subset $A¥subset ¥mathrm{I}_{¥alpha}$

with the following :

Case(i) $¥frac{1}{2}¥leq¥alpha<¥frac{¥sqrt{5}-1}{2}$

with $G=¥frac{¥sqrt{5}+1}{2}$ .

Case(ii) $¥frac{¥sqrt{5}-1}{2}¥leq¥alpha¥leq 1$

$h_{¥alpha}(x)=¥{$

$¥frac{1}{x+2}$ if $x¥in[¥alpha-1, ¥frac{1-¥alpha}{¥alpha}]$

$¥frac{1}{x+1}$ if $x¥in(¥frac{¥mathrm{i}-¥alpha}{¥alpha}, ¥alpha)$ .
(1.2)

Next, we put $¥mathcal{J}_{¥alpha}=$ $[¥alpha-1,1]$ and define $F_{¥alpha}$ of $¥mathcal{J}_{¥alpha}$ , which we call the $¥alpha-$Farey
map, by

$F_{¥alpha}(x)=¥{$

$-¥frac{x}{1+x}$ if $x¥in[¥alpha-1,0)=:¥mathcal{J}_{¥alpha,1}$ ,

$¥frac{x}{1-x}$ if $x$ $¥in[0, ¥frac{1}{2})=:¥mathcal{J}_{¥alpha,2}$ ,

$¥frac{1-2x}{x}$ if $x¥in[¥frac{1}{2}, ¥frac{1}{1+¥alpha}]=:¥mathcal{J}_{¥alpha,3}$ ,

$¥frac{1-x}{x}$ if $x¥in(¥frac{1}{1+¥alpha}, 1]=:¥mathcal{J}_{¥alpha,4}$ .

As for the case between the Gauss map and the Farey map, we see that $F_{¥alpha}$

induces $T_{¥alpha}$ as a jump transformation for each $¥alpha$ , $¥frac{1}{2}¥leq¥alpha¥leq 1$ .

Proposition 1. For $x$ $¥in$ $¥mathrm{I}_{¥alpha}$ , put

$¥tau_{¥alpha}(x)=¥min_{n¥geq 0}¥{n : F_{¥alpha}^{n}(x)¥in ¥mathcal{J}_{¥alpha,3}¥cup ¥mathcal{J}_{¥alpha,4}¥}$ .

Then, we have

$T_{¥alpha}(x)=F_{¥alpha}^{¥tau_{¥alpha}(x)+1}(x)$ .
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Corollary 1. There exists an absolutely contimuous in variant infinite measure
$¥nu_{¥alpha}$ for $F_{¥alpha}$ . Moreover $F_{¥alpha}$ is ergodic with respect to $¥nu_{¥alpha}$ .

The main claim of this manuscript is the following:

Main Result.
For any a and $¥alpha^{¥prime}$ , $¥frac{1}{2}¥leq¥alpha¥neq¥alpha^{¥prime}¥leq 1_{¥mathit{3}}F_{¥alpha}$ and $F_{¥alpha^{¥prime}}$ are not isomorphic, on the

other hand, their natural extensiorts are isomorphic.

In the next section, we give the standard representation $¥tilde{F}_{¥alpha}$ of the natural
extension of $F_{¥alpha}$ . However, for the proof of the main result, a different repre-
sentation $¥hat{F}_{¥alpha}$ of the natural extension is useful. We construct an isomorphism
between these two representations $¥tilde{F}_{¥alpha}$ and $¥hat{F}_{¥alpha}$ , and claim the fact that $¥hat{F}_{¥alpha}$ is also
the natural extension of $F_{¥alpha}$ . Then it is easy to see that $¥hat{F}_{¥alpha}$ is always isomorphic
to $¥hat{F}_{1}$ for any $¥alpha$ , $¥frac{1}{2}¥leq¥alpha¥leq 1$ . In the following, we show that $F_{¥alpha}$ and $F_{¥alpha^{¥prime}}$ are
not isomorphic whenever $¥alpha¥neq¥alpha^{¥prime}$ . In general, if two ergodic probability measure
preserving transformations are isomorphic, then the measure of a measurable
subset and that of its image by the isomorphism have to be the same. We may
use this fact to prove the non-isomorphy of two transformations. In the case of
infinite measure preserving transformations, these measures are not necessarily
the same but they must be constant multiples of each other, see later. For the
$¥alpha$-Farey maps with the invariant measures $¥nu_{¥alpha}$ given in §2, we see that the mui-
tiplicative constant is always equal to 1, which is shown in Lemma 1, §2. With
this fact, we prove the non-isomorphy of $¥{F_{¥alpha} : ¥frac{1}{¥mathit{2}}¥leq¥alpha ¥leq 1¥}$ by using the above
idea.

In the sequel, we give basic definitions and some facts on the natural ex-
tension. The construction of the natural extension, which is stated later, will
be used for $T_{¥alpha}$ and $F_{¥alpha}$ in the next section. Let $T_{i}$ be ergodic $¥sigma$-finite measure pre-
serving transformations defined on the standard measure spaces $(X_{i}, ¥mathrm{B}_{i}, m_{i})$ , $i=$

$1,2$ . A map $¥pi$ from $X_{1}$ onto $X_{2}$ is said to be a factor map fiiom $T_{1}$ to $T_{2}$ if
$¥pi¥circ T_{1}=T_{2}¥mathrm{o}¥pi$ $(m_{1}- ¥mathrm{a}.¥mathrm{e}.),¥pi^{-1}¥mathrm{B}_{2}¥subset ¥mathrm{B}_{1}(¥mathrm{m}¥mathrm{o}¥mathrm{d}.0) $and there exists a positive
constant $c$ such that

$m_{1}¥mathrm{o}¥pi^{-1}(A)=c¥cdot m_{2}(A)$ for any $A¥in ¥mathrm{B}_{2}$ .

If a map $¥pi$ : $X_{1}¥rightarrow X_{2}$ is a factor map from $(X_{1}, ¥mathrm{B}_{1}, m_{1}, T_{1})$ to $(X_{2}, ¥mathrm{B}_{2}, m_{2}, T_{2})$ ,
then we write $¥pi$ : $T_{1}¥rightarrow T_{2}$ for brevity

Definition 1 (Factor, Extension). If there erists a factor map from $T_{1}$ to
$T_{2,}$ then $T_{1}$ is said to be art extension of $T_{2}$ and $T_{¥mathit{2}}$ is said to be a factor of $T_{1}$ .

Definition 2 (Isomorphism, Isomorphic). If there exists a factor map $¥pi$ :
$T_{1}¥rightarrow T_{2}$ with the constant $c$ such that $¥pi$ is $a$ one-to-one onto map and $¥pi^{-1}$ :
$ T_{2}¥rightarrow$ $T_{1}$ is also a factor map with the constant $1/c,$ then $T_{1}$ and $T_{2}$ are said to
be isomorphic and $¥pi$ is said to be an isomorphism.

Definition 3 (Natural extension). A measure preserving transformation $¥tilde{T}$

is said to be a natural extension of a measure preservimg transformation $T$ if
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$¥tilde{T}$ is aminimal i.nvertible extension of $T_{,}$ that is, if $S$ is inverti $b$ le and is an
extension of $T$ , then $S$ is an extension of $¥tilde{T}$

.

About the existence and the uniqueness of the natural extension, we quote
the following fact, see Theorem 3.1.5 and 3.1.6, J. Aaronson [1] :

Theorem. For any ergodic measure preserving transformation $T$ of a stan-
dard, $¥sigma$ -finite measure space, there exists a natural extension $¥tilde{T}$ on a standard
space. Moreover, if $¥tilde{T}$ and $¥overline{T}$ are natural estensions of $T,¥tilde{T}$ and $¥overline{T}$ are isomor-
phic.

One standard way of constructing the natural extension is the following.
Let $T$ be an ergodic $¥sigma$-finite measure preserving transformation of a $¥sigma$-finite
standard measure space $(X, ¥mathrm{B}, m)$ . We put

$¥mathrm{X}=¥prod_{0}^{¥infty}X=¥{(x_{0},x_{1}, x_{2}, ¥ldots) : x_{i}¥in X, i¥geq 0¥}$ .

Define

$¥tilde{¥mathrm{X}}=¥{(x_{0},x_{1}, x_{2}, ¥ldots)¥in ¥mathrm{X} : x_{i}=T(x_{i+1}), i¥geq 0¥}$ (1.3)

and

$¥tilde{T}(x_{0}, x_{1}, x_{2}, ¥ldots)=(Tx_{0},x_{0}, x_{1}, ¥ldots)$ for $(x_{0}, x_{1},x_{2}, ¥ldots)¥in¥tilde{¥mathrm{X}}$ . (1.4)

Let $¥tilde{¥mathrm{B}}$ be the a-algebra of $¥tilde{¥mathrm{X}}$ which is generated by the sets of the form

$¥cap_{k=0}^{n}T^{-(n-k)}A_{k}$

for any $n$ $¥geq 0$ and $A_{0}$ , $A_{1}$ , $¥ldots$ , $A_{n}¥in ¥mathrm{B}$ . Then we define the measure $¥tilde{m}$ on $¥tilde{¥mathrm{X}}$ by

$¥tilde{m}(¥{(x_{0_{7}}x_{1}, x_{2_{7}}¥ldots)¥in¥tilde{¥mathrm{X}} : x_{k}¥in A_{k}, 0¥leq k¥leq n¥})=m(¥cap_{k=0}^{n}T^{-(n-k)}A_{k})$ . (1.5)

It is possible to show that $¥tilde{T}$ on $(¥tilde{¥mathrm{X}},¥tilde{¥mathrm{B}},¥tilde{m})$ is a representation of the natural
extension of $T$ on $(X_{7}¥mathrm{B}, m)$ , see p90,[1].

2 Main theorem
We denote by $(¥tilde{I}_{¥alpha},¥tilde{¥mu}_{¥alpha},¥tilde{T}_{¥alpha})$ and $(¥tilde{J}_{¥alpha},¥tilde{¥nu}_{¥alpha},¥tilde{F}_{¥alpha})$ the natural extensions of $T_{¥alpha}$ and $F_{¥alpha}$

given by (1.3) and (1.4), respectively, that is,

$¥tilde{I}_{¥alpha}=¥{(x_{0}, x_{1}, x_{2}, ¥ldots)¥in¥prod_{0}^{¥infty}¥mathrm{I}_{¥alpha} ^{:} x_{i}=T_{¥alpha}(x_{i+1}), i¥geq 0¥}$ ,

$¥tilde{T}_{¥alpha}(x_{0}, x_{1}, x_{2}, ¥ldots)=(T_{¥alpha}x_{0}, x_{0}, x_{1}, ¥ldots)$ for $(x_{0}, x_{1}, x_{2}, ¥ldots)¥in¥tilde{¥mathrm{I}}_{¥alpha}$
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and

$¥tilde{¥mathcal{J}}_{¥alpha}=¥{(z_{0}, z_{1}, z_{2}, ¥ldots)¥in¥prod_{0}^{¥infty}J_{¥alpha} : z_{i}=F_{¥alpha}(z_{i+1}), i¥geq 0¥}$ ,

$¥tilde{F}_{¥alpha}(z_{0_{2}}z_{1}, z_{2}, ¥ldots)=$ $(F_{¥alpha}z_{0}, z_{0}, z_{1}, ¥ldots)$ for $(z_{0}, z_{1},z_{2}, ¥ldots)¥in¥tilde{J}_{¥alpha}$ .

Moreover, $¥tilde{¥mu}_{¥alpha}$ and $¥tilde{¥nu}_{¥alpha}$ are the measures given by (1.5). We do riot mention the $¥sigma-$

algebras specifically since they are induced by cylinder sets and the construction
of measures $¥tilde{¥mu}_{¥alpha}$ and $¥tilde{¥nu}_{¥alpha}$ make it clear what these $¥mathrm{cr}$-algebras are.

Concerning the isomorphism problem for $¥alpha-$ Gauss maps $T_{¥alpha}$ , the following
results hold: For any $¥alpha$ and $¥alpha^{¥prime},¥frac{¥sqrt{5}-1}{2}¥leq¥alpha¥neq¥alpha^{¥prime}¥leq 1$ , $T_{¥alpha}$ and $T_{¥alpha^{¥prime}}$ ( $¥tilde{T}_{¥alpha}$ and $¥tilde{T}_{¥alpha^{¥prime}}$ )
are not isomorphic, since their metrical entropy values are different each other.
On the other hand, for $¥frac{1}{2}¥leq¥alpha¥leq¥frac{¥sqrt{5}-1}{2}$ , C. Kraaikamp has proved that $¥tilde{T}_{¥alpha}$ are
isomorphic each other, see [4]. Here we note the following result.

Theorem 1. For any $¥alpha$ and $¥alpha^{¥prime}$ , $¥frac{1}{2}¥leq¥alpha¥neq¥alpha^{¥prime}¥leq¥frac{¥sqrt{5}-1}{2}$ , we have $T_{¥alpha}$ and $T_{¥alpha^{¥prime}}$ are
not isomorphic.

We can prove this theorem by showing that the set of Jacobian is different
each other for different values of $¥alpha$ . Concerning the isomorphism problem for
a-Farey maps $F_{¥alpha:}$ we have the following result, which is the main theorem.

Theorem 2 ([8]). For any a and $¥alpha^{¥prime}$ , $¥frac{1}{2}¥leq¥alpha¥neq$ $¥alpha’¥leq 1_{P}$ we have

(i) $F_{¥alpha}$ and $F_{¥alpha^{¥prime}}$ are not isomorphic,

(ii) $¥tilde{F}_{¥alpha}$ and $¥tilde{F}_{¥alpha^{¥prime}}$ are isomorphic.

Now, we prove Theorem 2 in several steps. We note that we prove the
assertion (ii) at first and then the assertion (i). As the first step, we show a
relation between $¥tilde{F}_{¥alpha}$ and $¥tilde{T}_{¥alpha}$ .

Put
$¥tilde{¥mathcal{J}}_{¥alpha,0}=¥{¥mathrm{z} =(z_{0_{7}}z_{1}, z_{2},¥ldots)¥in¥tilde{¥mathcal{J}}_{¥alpha} : z_{1}¥in ¥mathcal{J}_{¥alpha,3}¥cup ¥mathcal{J}_{¥alpha,4}¥}$ .

We denote by $(¥tilde{F}_{¥alpha})_{¥tilde{¥mathcal{J}}_{¥alpha,0}}$ the induced transformation of $¥tilde{F}_{¥alpha}$ to $¥tilde{¥mathcal{J}}_{¥alpha,0}$ , that is,

$(¥tilde{F}_{¥alpha})_{¥tilde{¥mathcal{J}}_{¥alpha,0}}(¥mathrm{z})=¥tilde{F}_{¥alpha}^{¥tau_{¥alpha}(z_{0})+1}(¥mathrm{z})$ .

Proposition 2. $(¥tilde{F}_{¥alpha})_{¥tilde{¥mathcal{J}}_{¥alpha,0}}$ and $¥tilde{T}_{¥alpha}$ are isomorphic.

Next, we consider different representations of the natural extensions of $T_{¥alpha}$

and $F_{¥alpha}$ , respectively, for the proof of the main theorem.

We put

$¥hat{¥mathrm{I}}_{¥alpha}=¥{$

$[¥alpha-1, ¥frac{1-2¥alpha}{¥alpha})¥times$ $[-¥infty, -¥frac{¥sqrt{5}+3}{2}]¥cup[¥frac{1-2¥alpha}{¥alpha}, ¥frac{2¥alpha-1}{1-¥alpha})¥times$ $[-¥infty, -2]$

$¥cup[¥frac{2¥alpha-1}{1-¥alpha}, ¥alpha]¥mathrm{x}$ $[-¥infty, -¥frac{¥sqrt{5}+1}{2}]$ if $¥frac{1}{2}¥leq¥alpha¥leq¥frac{¥sqrt{5}-1}{2}$ ,

$[¥alpha-1, ¥frac{1-¥alpha}{¥alpha})¥times$ $[-¥infty, -¥underline{9}]¥cup$ $[¥frac{1-¥alpha}{¥alpha}, ¥alpha]¥rangle¥langle[-¥infty, -1]$ if $¥frac{¥sqrt{5}-1}{2}¥leq¥alpha¥leq 1$
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and

$¥hat{¥mathcal{J}}_{¥alpha}=¥{$

$[¥alpha-- 1, ¥frac{1-2¥alpha}{¥alpha}$ ) $¥mathrm{x}$ $[-¥infty, -¥frac{¥sqrt{5}+3}{2}]¥cup[¥frac{1-2¥alpha}{¥alpha}, 0)¥times$ $[-¥infty, -2]¥cup[0, ¥alpha)¥times$ $[-¥infty, 0]$

$¥cup[¥alpha, ¥frac{1-¥alpha}{¥alpha})¥times$ $[-¥frac{¥sqrt{5}+1}{2},0]¥cup[¥frac{1-¥alpha}{¥alpha}, 1]¥mathrm{x}$ $[-1,0]$ if $¥frac{1}{2}¥leq¥alpha¥leq¥frac{¥sqrt{5}-1}{2}$ ,

$[¥alpha-1,0)¥mathrm{x}$ $[-¥infty, -2]¥cup[0, ¥alpha)¥mathrm{x}$ $[-¥infty, 0]¥cup[¥alpha, 1]¥mathrm{x}$ $[-1,0]$

if $¥frac{¥sqrt{5}-1}{2}¥leq¥alpha¥leq 1$ .

Define a measure $¥hat{¥nu}_{¥alpha}$ on $¥hat{¥mathcal{J}}_{¥alpha}$ by

$d¥hat{¥nu}_{¥alpha}=¥hat{g}_{¥alpha}(x$ , $y)dxdy $for $(x, y)¥in¥hat{¥mathcal{J}}_{¥alpha}$

with $¥hat{g}_{¥alpha}(x, y)=¥frac{1}{(x-y)^{2}}$ , and $¥hat{¥mu}_{¥alpha}$ denotes the restriction of $¥hat{¥nu}_{¥alpha}$ to $¥hat{¥mathrm{I}}_{¥alpha}$ , that is,

$d¥hat{¥mu}_{¥alpha}=¥hat{g}_{¥alpha}(x, y)dxdy$ for $(x,y)¥in¥hat{¥mathrm{I}}_{¥alpha}$ .

We define maps $¥hat{T}_{¥alpha}$ of $¥hat{¥mathrm{I}}_{¥alpha}$ and $¥hat{F}_{¥alpha}$ of $¥hat{¥mathcal{J}}_{¥alpha}$ by

$¥hat{T}_{¥alpha}(x, y)=(¥frac{¥epsilon_{¥alpha,1}(x)}{x}-c_{¥alpha,1}(x),$ $¥frac{¥epsilon_{¥alpha_{7}1}(x)}{y}-c_{¥alpha,1}(x))$

and

$¥hat{F}_{¥alpha}(x, y)=¥left¥{¥begin{array}{l}¥iota_{-¥frac{x}{1+x}},-_{¥overline{1}+¥overline{yy}}^{¥mathit{4}})¥¥(¥frac{x}{1-x},¥frac{qd}{1-y})¥¥()¥¥()¥end{array}¥right.$

respectively.

Proposition 3. $¥hat{F}_{¥alpha}$ is $a$ one-to-one onto map of $¥hat{¥mathcal{J}}_{¥alpha}$ except for a set of Lebesgue
measure 0 and $¥hat{¥nu}_{¥alpha}-$preserving.

We will construct an isomorphism from $(¥tilde{F}_{¥alpha},¥tilde{¥nu}_{¥alpha})$ to $(¥hat{F}_{¥mathrm{Q}},¥hat{¥nu}_{¥alpha})$ . We note that
the $x$-marginal density of $¥hat{¥mu}_{¥alpha}$ coincides with $h_{¥alpha}(x))$ see (1.1) and (1.2). Moreover
the marginal distribution of $¥hat{¥nu}_{¥alpha}$ gives the absolutely continuous invariant measure
$¥nu_{¥alpha}$ for $F_{¥alpha}$ , that is,

$d¥nu_{¥alpha}(x)=g_{¥alpha}(x)dx$

with

$g_{¥alpha}(x)=¥int_{y:(x,y)¥in¥hat{J}_{¥alpha}¥}}¥hat{g}_{¥alpha}(x, y)dy$ . (2.1)

Note that $¥hat{¥nu}_{¥alpha}(¥hat{¥mathcal{J}}_{¥alpha})=¥nu_{¥alpha}(¥mathcal{J}_{¥alpha})=¥infty$ . If we change $y$ to $¥omega=-¥frac{1}{y}$ for $(x, y)¥in¥hat{¥mathrm{I}}_{¥alpha}$ ,
then we get the natural extension that was discussed in [6].
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Proposition4. There exists an isomorphism $¥xi$ : $¥tilde{T}_{¥alpha}¥rightarrow¥hat{T}_{¥alpha}$ such that $¥tilde{¥mu}_{¥alpha}¥circ¥xi^{-1}=$

$¥hat{¥mu}_{¥alpha}$ .

Proposition 5. $¥hat{T}_{¥alpha}$ and $(¥hat{F}_{¥alpha})_{¥hat{¥mathrm{I}}_{¥alpha}}$ are isomorphic.

Proposition 6. $¥hat{F}_{¥alpha}$ and $¥tilde{F}_{¥alpha}$ are isomorphic.

Proposition 7. $¥hat{F}_{¥alpha}$ and $¥hat{F}_{1}$ are isomorphic.

We note that for any $¥alpha$ , $¥frac{1}{2}¥leq¥alpha¥leq 1,¥hat{ F}_{¥alpha}$ and $¥hat{F}_{1}$ are isomorphic with the
isomorphism $¥hat{¥psi}$ : $¥hat{F}_{¥alpha}¥rightarrow¥hat{F}_{1}$ which is given by the following :

$¥hat{¥psi}(x, y)=¥{$

$(x+1, y+1)$ if $x¥in[¥alpha-1,0)$

$(x,y)$ if $x¥in[0,1]$ .

The statement (ii) of Theorem 2 follows from Proposition 6 and 7. Now we
show the statement (i). We start with the following lemma.

Lemma 1. Suppose that $¥tilde{¥pi}$ is art isomorphism from $¥tilde{F}_{¥alpha}$ to $¥tilde{F}_{¥alpha^{¥prime}}$ such that $¥tilde{¥nu}_{¥alpha}¥circ$

$¥tilde{¥pi}^{-1}=¥tilde{¥nu}_{¥alpha^{¥prime}}$ , then $¥tilde{¥nu}_{¥alpha}¥circ¥tilde{¥pi}^{¥prime-1}=¥tilde{¥nu}_{¥alpha^{¥prime}}$ for any isomorphism $¥tilde{¥pi}^{¥prime}$ from $¥tilde{F}_{¥alpha}$ to $¥tilde{F}_{¥alpha^{¥prime}}$

.

Proof. The induced transformation of $F_{1}$ to $[¥frac{1}{2},1]$ is isomorphic to $T_{1}$ by the
isomorphism $¥frac{1}{x}-1$ . Thus, $F_{1}$ is pointwise dual erg○ dic since $T_{1}$ is continued
fraction mixing. Hence, $¥tilde{F}_{1}$ is rationally ergodic which implies $¥tilde{F}_{¥alpha}$ is also ra-
tionally ergodic for any $¥alpha$ , $¥frac{1}{2}¥leq¥alpha¥leq 1$ . The rational ergodicity of $¥tilde{F}_{¥alpha}$ implies
that $¥tilde{F}_{¥alpha}$ has a law of large numbers in the sense of [1]. Then $¥tilde{¥nu}_{¥alpha}¥circ¥tilde{¥eta}^{-1}=¥tilde{¥nu}_{¥alpha}$

for any isomorphism $¥tilde{¥eta}$ : $¥tilde{F}_{¥alpha}¥rightarrow¥tilde{F}_{¥alpha}$ , see 3.3.1 and Definition and Remark 1, p96
in [1]. This shows the assertion of the lemma since $¥tilde{¥pi}^{¥prime-1}¥circ¥tilde{¥pi}$ : $¥tilde{F}_{¥alpha}¥rightarrow¥tilde{F}_{¥alpha}$ is an
isomorphism. We refer to pp93 -99 and ppllS -128, [1] for the detail. $¥square $

Let

$E_{¥alpha,i}=¥{x ¥in J_{¥alpha} : ¥# F_{¥alpha}-1(¥neg x)=i¥},$ $i=1,2$ .

We also need the following lemma :

Lemma 2. We have

$(¥nu_{¥alpha}(E_{¥alpha,1}), ¥nu_{¥alpha}(E_{¥alpha,2}))¥neq(¥nu_{¥alpha^{J}}(E_{¥alpha^{¥prime},1}), ¥nu_{¥alpha^{¥prime}}(E_{¥alpha^{¥prime},2}))$

for any $¥alpha$ and $¥alpha^{¥prime},¥frac{1}{2}¥leq¥alpha¥neq¥alpha^{¥prime}¥leq 1$ ,

Proof of Theorem 2 (i).
Suppose that $¥phi$ : $F_{¥alpha}¥rightarrow F_{¥alpha^{¥prime}}$ is an isomorphism. Then $¥phi$ induces the isomorphism
$¥tilde{¥phi}$ from $¥tilde{F}_{¥alpha}$ to $¥tilde{F}_{¥alpha^{¥prime}}$ by $(z_{0}, z_{1}, z_{2}, ¥ldots)$ to $(¥phi(z_{0}), ¥phi(z_{1}),$ $¥phi(z_{2})$ , $¥ldots)$ . From Proposi-
tion6, Proposition 7 and their proofs, it is possible to construct an isomorphism
$¥tilde{¥theta}:¥tilde{F}_{¥alpha}¥rightarrow¥tilde{F}_{¥alpha^{¥prime}}$ such that $¥tilde{¥nu}_{¥alpha}¥circ¥tilde{¥theta}^{-1}=¥tilde{¥nu}_{¥alpha^{¥prime}}$ . From Lemma1, we see $¥tilde{¥nu}¥alpha¥circ¥tilde{¥phi}^{-1}=¥tilde{¥nu}_{¥alpha^{¥prime}}$ .
This implies $¥nu_{¥alpha}¥circ¥phi^{-1}=¥nu_{¥alpha^{¥prime}}$ . Since

$¥phi^{-1}(E_{¥alpha^{¥prime},i})=E_{¥alpha,i}$ , $i=1,2$ ,
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we have

$¥nu_{¥alpha^{¥prime}}(E_{¥alpha^{¥prime},i})=¥nu_{¥alpha}(¥phi^{-1}(E_{¥alpha^{¥prime},i}))=¥nu_{¥alpha}(E_{¥alpha,i})$ .

This is impossible by Lemma 2. $¥square $

Remark. If “
$¥frac{¥nu_{a}(E_{¥alpha,1})}{¥nu_{¥alpha}(E_{¥alpha,2})}¥neq¥frac{¥nu_{¥alpha^{¥prime}}(E_{¥alpha^{¥prime}1})}{¥nu_{¥alpha}¥prime(E_{¥alpha^{¥prime},2})},$

” holds for any $¥alpha¥neq¥alpha^{¥prime}$ , then we do not need
Lemma 1. However, for some $¥alpha$ , there exists $¥alpha^{¥prime}¥neq¥alpha$ such that

$¥frac{¥nu_{¥alpha}(E_{¥alpha,1})}{¥nu_{¥alpha}(E_{¥alpha,2})}=¥frac{¥nu_{¥alpha^{¥prime}}(E_{¥alpha^{¥prime},1})}{¥nu_{¥alpha^{¥prime}}(E_{¥alpha^{¥prime},2})}$

,

holds.
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