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Abstract
In this paper we extend invex properties to a method of generalized directional differentials and also we get the
existence and the uniqueness theorems concerning non-continuous optimization problems with almost smooth-

NEess.
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1 Convex analysis and invex analysis

Denote by R™ the n—dimensional real vector space with a positive integer n. Let a subset C be compact and

convex in R™ and let f be a convex function from C to R. Consider a compact convex problem:
minimize f(z) subject toz € C (P)

By analyzing the convexity of feasible set and objective function, we discuss the existence of optimal solutions
of (P) as follows.

Since the definition of the convexity of f, it follows that f(Ay+(1—A)z) < Af(y)+(1-A)f(z) for z,y € Cand
0 < A <1, which means that, by putting n(y,z) =y — =,

[z + M(y,z)) - f(=)
py

< fly) - f(z)

for A > 0. Here z + An(y,z) € C, because C is convex. Moreover assume that f is C!—class, then we have

1(,z)T v f(z) < fy) - f(@)
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for z,y € C. Denote by z7 the transpose of z € R™. Since C is compact, by Fan’s method (see Section 4), there

exists a solution zy € C such that the following variational inequality problem :
(y ~20)T v f(z0) 2 0. (VIP)

Therefore f(zo) < f(y) for any y € C,i.e., o is also an optimal solution of (P).
In what follows we discuss the existence of solutions for optimization problems and variational inequality
problems by applying a generalized directional differential. The generalized directional differential, considering

a parameter function n from C x C to R™, means a Dini’s derivative of f to n for y,z € C as

f' (z;n(y,z)) = liﬂ.?ip flz+ An(y’{z)) - f(x).

Ruiz-Garzén et al. [5] discussed the existence of (VIP) and (P) by invex analysis which is the essential the
idea of generalized directional differential. They defined invex sets and invex functions, which are including the

properties of convex of sets and functions, respectively.

Deflnition 1  Let 1 be a function from C x C to R™. A set C is called invex set(IX) to n, if z +
M(y,z) € C for z,y € C and 0 < X < 1. A differentiable f : C — R is called invex function(IX) to n

n(y,2)T v f(z) < f(y) — f(=) for z,y € C.

When C is (IX) to n = y — z, then £ + My — z) € C, which means that C is convex. When C = ([1, 00) x
R)U (R x [1,00)) ¢ R? is (IX) to n(y,z) = y. When f is differentiable and convex, then it follows that
(=27 v f(2) < f(y) - f(2) for z,y € C.

2 Existence theorem for (VLIP) and (P) by invex analysis

In [5] the existence criteria for (VLIP) and (P) are given under conditions that f is differentiable and y7 v

f(z + ty) is continuous in t.
Theorem R
The following conditions (i)-(iv) hold:

(i) C is non-empty, compact and conver in R";
(ii) n(y,z) is linear in y and n(y,z) + n(z,y) = 0 for y,z € C;
(iii) f is differentiable and f is pseudo invez monotone(PIM) to n;

(iv) yT 7 f(z + ty) is continuous int € [0,1] for y,z € C.
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Then f is pseudo inver(PIX) to 1. Moreover there ezists a solution zg € C of the following variational-like

inequality problem
(Y, 70)T v f(z0) 2 0 (VLIP)

for y € C and also zg is an optimal solution of (P).

Definition 2  Let 1 be a parameter function from C x C to R™ and let f from C to R be differentiable.
v f is called invex monotone(IM) to 7, if n(y,z)T [V f(y) — Vf(z)] = 0 for y,z,€ C.
v f is called pseudo invex monotone(PIM) to 7, if
n(y,2)T 7 f(y) > 0 as long as n(y,z)T v (z) 2 0 for y,z € C.
f is called pseudo invex(PIX) to 9, if f(y) — f(z) 2 0 as long as n(y,z)T v f(z) > 0 for y,z € C.

For the same parameter 7, if f is (IM), then f  is (PIM). For the same parameter 7, if f is (IX), then f is
(PIX).

Example 1 (1) Denote f(z) = z% on C = {z > 0}. Then f is (IM) to n(y,z) = ¥ — €%, because

(v, 2)[f (v) - £ (a)] i -
=(y—z)(1+y;z+y Hgﬂg

+-)2(y + z)(y — )
> 0.

(2) Denote f(z) =—z (£ <0); f(z)=0(z>0). Then 1" is (IM) and (PIM) to the same 7(y,z) = eV — €.
(3) Denote f(z) =2z +sinz on C = R. Then f (z) = 2+cosz > 0 forz € C. Let n(y,z) = —f-@%@ Then
it follows that f is (PIX) and f is (PIM) to the same n(y,z). If n(y,z)f (z) > 0, then f(y) — f(z) > 0, which
means that f is (PIX). If n(y,z)f (z) > 0, then n(y,z)f (v) = (f(y) - f(a:))‘;;&% > 0, which means that § is

(PIM).

3 Generalized directional differential

Consider the optimization problem (P) and the following variational-like inequality problem
§ (zoin(y,20)) 2 0 (VLIP)

for y € C. Here C is compact convex in R™ and f isn’t necessarily continuous but satisfies Hypothesis (H),

where there exists a covering of C = U;C; such that f is locally Lipschizian on C; for any i. Under (H) we
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consider the Dini’s derivative to i for y, which is a generalized directional differential. Assume that the following
properties of f concerning some kind of smoothness.

Hypothesis (H) Assume that C is non-empty and compact in R™. Let  be a function from C x C to R.
The objectine function f satisfies the following condition (i) and (ii).

(i) There erists a convez covering {C; C C : convez,
i=1,2,-++,} such that U;C; = C and that f is locally Lipschizian on C; for each i. Denote by O;,i =
1,2, -, the mazimal open sets in C;. f is Cl-class on O; for each i. If x € O; for each i and y € C, then
f (@in(y,=)) 2 0.

(i) Letz,y € C andn:CxC — R™ If f(y) < fly—An(y,z)) for 0 < A < 1, then there exits u = p(A) € [0, 1]
such that p > X and f(y) > f(y — un(y, z)).

By the above (i), there exists the Dini’s derivative to 7 for y,z € C; by

7 (5 n(y,2)) = limsup LEF200:2)) = f()
Y A—0+ A

Then f (9(-,y)) : C; = RU {+00} for n and y € C; with z + M)(y, z) € C;. By the above (ii), it follows that

f (@, 2) = n(,2)T v £()
at 7 € O; for y € C. The following example illustrates two cases: a finite and an infinite number of covering of

C.

Definition 3 Assume that Hypothesis (H) holds. f' is called pseudo invex monotone(PIM) to n for
4,2 € C, if £ (g n(y>2)) 2 0 as long as f (z:1(y,z)) > 0 for 7 € C.

I’ is called strictly pseudo invex monotone(SPIM) ton fory,z € C withy # z, if f y;n(y,z)) >0 as
long as f’(z;n(y,z)) >0 fory,z €C.

f is called pseudo invex(PIX) atz € C ton fory € C, if f(y) — f(z) > 0 as long as f (z;n(y,z)) > 0 for
y,z € C.

f is called strictly pseudo invex(SPIX) atz € C ton fory € C withy # =z, if f(y) - f(z) > 0 as long
as f (z;n(y,x)) > 0 for y,z € C.

In case where f is (SPIM) to 7, it follows that f is (PIM). In Theorem 1 we show that (PIM) gives the
existence of solution for (VLIP). In Theorem 2 Property (PIM) guarantees the existence of optimal solutions
of (P) and (PIM) means (PIX) at the optimal solution to the same 7. In the theorem we need not to prove the
Property (PIX) of f at each z € C but to show the property concerning the solution zg € C of (VLIP). Finally

(SPIM) is significant for the uniqueness of solutions in Theorem 3.
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Example 2 (1) Denote C = [0,2], where c,d € R. Denote J, = {0 < z < 1} and J; = {1 < z < 2}. Denote

fual@) = { p(z) forzel;
g{z) forz ey

and fe,4(0) = ¢; fe,a(1) = 1; f,a(2) = d. Denote n(y,z) = y—z. Here p,q are Cl-class on Ji, Jo, respectively with
lirln 0p(z) <1< lixﬂ_oq(x) and lixﬁn Oq(:z:) < d. A covering {{0}, J1, {1}, J2, {2}} of C is finite. Ifc < p(1-0),

T+l T— Lt D

then (H) holds. Then f is (PIM) and f is (PIX) at = = 0 to the n. If c > p(1 — 0), then (H) isn’t satisfied

because f' (0;7(y,0)) = ~co.
1

(2) Letf:C=[0, = R with 0 < ¢ < 1. Denote a, = -2—1;, by, = P forn=1,2.--,
Let n(y,z) =y — z for y,x € C.
0 (z=0)
flz)= (a%/3—63)(z—bn) 3
Tmean  +0n (an <2< by, n=12-"")

Then we have the following observation as follows.
Consider a covering {{0}, (an,bn] : n =1,2,---} of C. Then f is Cl-class on Oy, = (an,b,) forn=1,2---

and

(@ + My = 7)) - f(z)
A— 0+ A

= (y-2)f (2)

(an/2 - b3

= —_—p)—
(y ) n — Qn

il

£ (z,n(y,))

for z € (an,b.),y € R. Then f'(a:) — 0+ as n — +oo. It can be seen that x = 0 € Oy for any n and
F(0,7(y,0)) = 0. If £ (z,n(y,z)) > 0, then f (y,n(y,z)) > 0 fory # z. f is (SPIM) and f is (SPIX) at
z=0ton for y,z € C. f (z,n(y,z)) is upper semi-continuous in x to 1 and y € C. There ezists a unique

minimal point z = 0 and min f(z) = 0.
In the following theorem we get a main result for the existence theorem of solutions for (VLIP).
Theorem 1 The following conditions (i)-(iv) hold:
(i) C is non-empty, compact and convex in R™;
(ii) n(y,z) is linear in y and n(z,z) =0 for x € C;

(iii) (H) holds and f is (PIM) to 5(y,z) fory € C;



84

(iv) f (z;n(y,z)) is upper semi-continuous in z € C forn and y € C.
Then there exists a solution 9 € C of (VLIP).

Invex properties of f guarantees that solutions of non-continuous (VLIP) to n(y,z) = y — z will become

optimal solutions of non-continuous (P).

Theorem 2 Assume that the same conditions (i)-(iv) in Theorem 1. Moreover Conditions (ii)-(iv) are
satisfied for n(y,z) =y - z.
Then there ezists a solution zg € C of (VLIP) ton and zo is an optimal solution of (P).

In order to guarantee the existence and uniqueness of solutions of non-continuous (VLIP) and (P) we introduce

new definitions of (SPIM) and (SPIX) at some point under Hypothesis (H).

Theorem 3 In replacing Property (PIM) of Condition (iii) in Theorem 2 with (SPIM) of f, the following
conclusions (1)-(III) hold.

(I) There ezists a unique solution zy € C of (VLIP) to n;
(I) f is (SPIX) at zo ton for y,z € C;

(III) zp is a unigue optimal solution of (P).

4 KKM-functions

At first we show the existence of solutions of (VLIP) to 5 provided with the compactness of C in the similar

way of [4]. See [5].
Definition 4 Let a function V be from a subset C C R™ to the power set 2R". If, for every finite subset
A={z1,29, -, zm} CC
and every m is positive integer, it follows that the convez hull
conv(A) C U{V(z;) : z; € A},

then V is called a KKM-function.
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See [4, 5].
Lemma F  Let C be non-empty and V : C — 2R" o KKM-function. If V(z) is compact for = € C, then
N{V(z):z € C}#0.

The following lemma is an extension of Lemma 2 of [5].

Lemma 1 Under the same Conditions (i)-(iv) of Theorem 1 without assuming the compaciness of C the
following statements (I) and (II) are mutually equivalent for y € C.

(I) zo € C is a solution of (VLIP) ton.

(1) zo € C satisfies f (y;n(y,20)) 2 0.

In the following lemma Hypothesis (H) shows the set of solutions for non-continuous (VLIP) to  will become

a KKM-function.

Lemma 2 Assume that the same Conditions (i)-(iv) of Theorem 1 hold without assuming the compactness
of C. Denote
Se(y) ={z € C: f (y;m(y, ) 2 0}
foryeC.
Then S.(y) is a KKM-functions fory € C.

Compact KKM-functions play an important role in discussing the existence of non-continuous (VLIP) to .
By the above lemmas we can prove Theorem 1.
When f is (PIM) to n(y,z) = y — z, it can be seen that f is (PIX) at the solution zo of (VLIP) to the 7 as

in the following lemma.

Lemma 3 Assume that Conditions (i)-(iv) of Theorem 1 and the following condition (v) hold.
(v} Conditions (ii)-(iv) are satisfied for n(y,z) =y — z.
Then there exists at least one solution zo € C of (VLIP) and f is (PIX) at zo to n(y,zo) for y € C.

From the above lemma we get Theorem 2 immediately.
When § is (SPIM) to 7, it can be proved that f is (SPIX) at the (VLIP)-solution zq to the 7(y, zo) in the

similar way as Lemma 3.

Lemma 4 Assume that Conditions (i)-(v) of Theorem 3 hold.
Then there ezists a unique solution zo € C of (VLIP) and f is (SPIX) at zg to n(y,zo) for y € C.

From the above lemma, we get the proof of Theorem3.
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