oboooooOooo 14100 20050 106-112

106

On the homomorphisms between scalar generalized Verma
modules

AA S (Hisayosi Matumoto)

R KERFFERFH 7R
Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Tokyo
153-8914, JAPAN
e-mail: hisayosi@ms.u-tokyo.ac.jp

§ 0. Introduction

In this article, we consider the existence problem of homomorphisms between generalized
Verma modules, which are induced from one dimensional representations (such generalized
Verma modules are called scalar, cf. [Boe 1985]). In [Matumoto 2003], we classified the
homomorphisms between scalar generalized Verma modules with respect to the maximal
parabolic subalgebras.

Here, we announce a classification of homomorphisms between scaler generalized Verma
modules for cccertain non-maximal paraboplic subalgebras. The proof will appear else-
where.

§ 1. Notations and Preliminaries

Let g be a complex reductive Lie algebra, U(g) the universal enveloping algebra of g, and
b a Cartan subalgebra of g. We denote by A the root system with respect to (g,h). We
fix some positive root system AT and let II be the set of simple roots. Let W be the Weyl
group of the pair (g, ) and let (, ) be a non-degenerate invariant bilinear form on g. For
w € W, we denote by £(w) the length of w as usuall. We also denote the inner product
on h* which is induced from the above form by the same symbols {, ). For a € A, we
denote by s, the reflection in W with respect to «. We denote by wo the longest element
of W. For a € A, we define the coroot & by & = (3%;, as usual. We call A € h* is
dominant (resp. anti-dominant), if (A, &) is not a negative (resp. positive) integer, for
each & € At. We call A € h* regular, if (A\,a) # 0, for each & € A. We denote by P
the integral weight lattice, namely P = {A € b* | (\,&) € Z for all a € A}. If A € h* is
contained in P, we call X an integral weight. We define p € P by p = 33 ,ea+ @ Put
fo ={X €g|VH e b [HX]=0aH)X},u=7> ca+8ayb=0h+u Thenbisa
Borel subalgebra of g. We denote by Q the root lattice, namely Z-linear span of A. We
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also denote by QT the linear combination of IT with non-negative integral coefficients. For
A € b*, we denote by W), the integral Weyl group. Namely,

Wy={weW|wl-)eQ}.
We denote by Ay the set of integral roots.
Ay={aeA| () a)eZ}.

It is well-known that W) is the Weyl group for Ay. We put Af = A* N A,. Thisis a
positive system of Ay. We denote by II) the set of simple roots for Aj and denote by
®) the set of reflection corresponding to the elements in IIy. So, (W), ®,) is a Coxeter
system. We denote by Q) the integral root lattice, namely Q) = ZAi and put Qj" = NII,.
Next, we fix notations for a parabolic subalgebra (which contains b). Hereafter,
through this article we fix an arbitrary subset © of II. Let © be the set of the ele-
ments of A which are written by linear combinations of elements of © over Z. Put
ae ={H €h|Vae O a(H)=0},lo=h+ 3 ,c58a "0 = D ,ca+\6 fas Po = lo +To.
Then pe is a parabolic subalgebra of g which contains b. Conversely, for an arbitrary
parabolic subalgebra p D b, there exists some © C II such that p = pg. We denote
by We the Weyl group for (lg, ). We is identified with a subgroup of W generated by
{sa | @ € ©}. We denote by we the longest element of Wg. Using the invariant non-
degenerate bilinear form (, ), we regard ag* as a subspace of h*. It is known that there is
a unique nilpotent (adjoint) orbit (say Oy, ) whose intersection with ne is Zariski dense in
ng. Op, is called the Richardson orbit with respect to pg. We denote by Opg the closure
of Ope in g. Put pe = 3(p — wep) and p° = 1(p + wep). Then, p° € ae". .
Define

PEt={leb* |Vae® (\a)e{1,2..}}
PEt={rep"|VacO (\&)=1}

We easily have

P&t ={pe+ul|n€as}

For p € b* such that u + p € P$*, we denote by ge(u) the irreducible finite-dimensional
lo-representation whose highest weight is u. Let Eg(u) be the representation space of
oe(p). We define a left action of ng on Eg(u) by X -v =0 for all X € ng and v € Eg(u).
So, we regard Fe(u) as a U(pe)-module.

For p € PE™, we define a generalized Verma module ([Lepowsky 1977]) as follows.

Mo (1) = U(9) ®u(po) Eo(k - p)-

For all A € h*, we write M(\) = My()\). M(]) is called a Verma module. For u € P&,
Meg () is a quotient module of M (u). Let L(u) be the unique highest weight U(g)-module
with the highest weight p — p. Namely, L(u) is a unique irreducible quotient of M (y). For
p € PET, the canonical projection of M (k) to L(y) is factored by Mg (g).

dim Ee(u — p) = 1 if and only if 4 € °PE*. If p € °P§™, we call Mg (u) a scalar
generalized Verma module.
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§ 2. Reductions of the problem

We retain the notation of §1. In particular, © is a subset of II.

2.1 Basic results of Lepowsky

The following result is one of the fundamental results on the existence problem of homo-
morphisms between scalar generalized Verma modules.

Theorem 2.1.1. ([Lepowsky 1976])
Let u,v € °P$+.
(1) dim Homyg)(Me (1), Me(v)) < 1.
(2) Any non-zero homomorphism of Me (i) to Me(v) is injective.

Hence, the existence problem of homomorphisms between scalar generalized Verma

modules is reduce to the following problem.
Problem 1 Let p,v € °PE*. When is Me(u) C Mo(v) ?

2.2 Reduction to the integral infinitesimal character setting

Since the both » € Wy and v — u € Q1 are necessary condition for the above problem,
we can reformulate our problem as follows.

Problem 2 Let A € °P§* be dominant. Let z,y € W), be such that zA,yA € °pEt.
When is Mg (zA) C Me(yA) ? '

We fix A € °P§*. Then, we can construct a suralgebra g’ of b such that the corre-
sponding Coxter system is (W), ®,). Since © C II, holds, we can construct corresponding
parabolic subalgebra py of ¢’. For u € P&+, we denote by Mg(u) the corresponding
generalized Verma module of g’. We consider the category O in the sense of [Bernstein-
Gelfand-Gelfand 1976)] corresponding to our particular choice of positive root system.
More precisely, we denote by O (respectively () “the category O” for g (respectively g').
We denote by O, (respectively, O)) the full subcategory of O (respectively ') consisting
of the objects with a generalized infinitesimal character A. Soegel’s celebrated theorem
([Soegel 1990] Theorem 11) says that there is a Category equivalence between O and
O,. Under the equivalence a Verma module M(zA) (z € W)) corresponds to M'(z]).
From Lepowsky’s generalized BGG resolutions of the generalized Verma modules and their
rigidity, we easily see Mg (z)) corresponds to M4 (zA) under Soegel’s category equivalence.
So, we have the following lemma as a corollary of Soergel’s theorem.

Lemma 2.2.1. Let A € b* be dominant. Let z,y € W) be such that z\,yX € °PE*.
Then, the following two conditions are equivalent.

(1) Me(z)) C Me(yA).

() Mb(s)) C Mb().

This lemma tells us that we may reduce Problem 2 to the case that A is integral.
We put

W(©)={weW|wd =0}
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§ 3. Excellent parabolic subalgebras

3.1 #-accepable positive roots

Hereafter, we fix a subset @ of II. For @ € A, we put

A(@) ={B€A|3ceR Blag = calao }s
At(a) = A(a) N AT,

Uy = CS +Ca C b*.

Then (Ua, A(a@),( , )) is a subroot system of (h*,A,( , )). The set of simple roots for
A*(a) is denoted by II(a). If a|gy =0, then § = II(@). If o|qy # 0, then II(a) is written as
Su{a}. If a € A satisfies a|qy # 0 and @ = &, then we call @ O-reduced. For o € A, we
denote by Weg(a) the Weyl group of (§*, A(a)). Clearly, Wo C We(a) C W. We denote
by w* the longest element of W (). We call @ € A ©O-acceptable iff w*wg = wew®.
We denote by A® (resp. A®) the set of @-acceptable roots (resp. ©-reduced B-acceptable
roots). Put (A®)*t = AT N A® and (A®)*+ = A* N A®. For o € A®, we define

0o = wrwg = wew®.

Clearly, 6,2 =1, 04 = 05. If ¢lag = 0, then 0, = 1. If @ € A is orthogonal to all the
elements in 6, then we can easily see a is ©-reduced and s, = o,. For @ € A, we put

Va={A €ag | (A a)=0}
For o € A®, we put & = @4, € ag. We can easily see:

Lemma 3.1.1. Let o € A®. Then, we have
(1) o, preserves af.
(2) oo € W(B). In particular, oc.pe = pe-
(3) 0.6 =—d. :
(4)  oalay is the reflection with respect to V.

3.2 Excellent parabolic subalgebras

We retain the notations in the previous section.

Let © C II.

A parabolic subalgebra pg is called excellent, if all the roots are ©-acceptable.

Remark If pe is a complexified minimal parabolic subalgebra of a real form of g
such that the m-part of the Langlands decomposition of pe is semisimple, then all the
roots are ©-acceptable and o, is a reflection with respect to a restricted root & for each
a € A®.

If g is a classical algebra, we can classify excellent parabolic subalgebras of g as follows.
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(1) Let g = gl(n,C) (the case of g = 5{(n, C) is similar) and let k be a positive integer
dividing n. We consider the following parabolic subalgebras.
p(A,_14) : a parabolic subalgebra of g whose Levi part is isomorphic to

nfk
al(k,C) & --- @ gl(k,C).

Then, p(An-1) is excellent. Conversely any excellent parabolic subalgebra is conju-
gate to A,  for some k.

(2) Let g be a complex simple Lie algebra of the type X,. Here, X means one of B,
C, and D. Let k and £ be positive integers such that k divides n — £.

We consider the following parabolic subalgebras.

p(Xnke) : @ parabolic subalgebra of g whose Levi part is isomorphic to

(n=4)/k
ol(k,C) @ - @ gl(k, C) ®X,.
Here, X, means that the complex simple Lie algebra of the type X,. Xo means the
zero Lie algebra.

p(Xn k) is excellent unless X = D, £ = 0, and k is an odd number greater than 1.
Any excellent parabolic subalgebra is conjugate to one of such p(Xn k)8

§ 4. Main result

4.1 Elementary homomorphisms

Here, we review some notion in [Matumoto 1993] §3. Hereafter, g means a reductive Lie
algebra over C and retain the notations in §1-3. We fix a subset © of Il and & € A.

We denote by w, € af C h* the fundamental weight for o with respect to the basis
ll(a) = © U {a}. Namely w, satisfies that (wa,8) = 0 for g € ©, (8,&) = 1, and
Walpne(g(oy) = 0. Here, c(a()) is the center of g(a). We see that there is some positive
real number @ such that wa = a0|ag , Since ogne(g(a)) = 0. Hence, we have Vo = {A € ag |
(A wa) = 0}.

For o € (A®)*, we define

00 =b+ 3 85  Ppo(e)=g(e) Npe.
BeA(a)

Then, g(a) is a reductive Lie subalgebra of g whose root system is A(c) and pe(a) is a
maximal parabolic subalgebra of g(c).

Put p(a) = § ¥ pea+ (o) B> For v € ag, we denote by C, the one-dimensional U(pe(a))-
module corresponding to v. For v € a} we define a generalized Verma module for g(a) as
follows.

ME? (pe +v) = U(8()) ®Upe()) Co—p(a)-

Then, we have:



Theorem 4.1.1. ([Matumoto 2003]) Let v be an arbitrary element in V, and let c be
either 1 or % Assume that Mg(a) (pe — newy) C Mg(a) (po + necwy) for alln € N. Then,
we have Mg (pe + v — ncwy) C Me(pe + v + newy) for all n € N.

We call the above homomorphism of Mg (pe + v — naw,) into Me(pe + v + newy) an
elementary homomorphism.

The following working hypothesis is proposed in [Matumoto 2003].

Working Hypothesis An arbitrary nontrivial homomorphism between scalar gen-
eralized Verma modules is a composition of elementary homomorphisms.

The working hypothesis in the case of the Verma modules is nothing but the result of
Bernstein-Gelfand-Gelfand.

I would like to propose :

Conjecture For an ezcellent parabolic subalgebra,the above working hypothesis is
affirmative.

4.2 Main result

Now, we state our main result.

Theorem 4.2.1. Let g be a classical Lie algebra and let po be one of the following cases.

(a) p(A'n.—l,k) (kln’);

(b) p(Bn,Zk,m) (k < m);

(c) p(Bn,2k+1,m) (k 2 m);

(d) p(Cn,Wc,m) (k < m);

(e) p(Cn,2k+1,m) (k 2 m)}

(f) (Dpgk-1m) (k< m),

(g) p(Dn,Zk,m) (k 2 m)

Then, any homomorphism between scalar generalized Verma modules with integral in-
finitesimal characters is a composition of elementary homomorphisms.
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