On the homomorphisms between scalar generalized Verma modules

松本久義 (Hisayosi Matumoto) 東京大学大学院数理科学研究科 Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Tokyo 153-8914, JAPAN e-mail: hisayosi@ms.u-tokyo.ac.jp

§ 0. Introduction

In this article, we consider the existence problem of homomorphisms between generalized Verma modules, which are induced from one dimensional representations (such generalized Verma modules are called scalar, cf. [Boe 1985]). In [Matumoto 2003], we classified the homomorphisms between scalar generalized Verma modules with respect to the maximal parabolic subalgebras.

Here, we announce a classification of homomorphisms between scaler generalized Verma modules for cccertain non-maximal paraboplic subalgebras. The proof will appear elsewhere.

§ 1. Notations and Preliminaries

Let $\mathfrak g$ be a complex reductive Lie algebra, $U(\mathfrak g)$ the universal enveloping algebra of $\mathfrak g$, and $\mathfrak h$ a Cartan subalgebra of $\mathfrak g$. We denote by Δ the root system with respect to $(\mathfrak g,\mathfrak h)$. We fix some positive root system Δ^+ and let Π be the set of simple roots. Let W be the Weyl group of the pair $(\mathfrak g,\mathfrak h)$ and let $\langle\ ,\ \rangle$ be a non-degenerate invariant bilinear form on $\mathfrak g$. For $w\in W$, we denote by $\ell(w)$ the length of w as usuall. We also denote the inner product on $\mathfrak h^*$ which is induced from the above form by the same symbols $\langle\ ,\ \rangle$. For $\alpha\in\Delta$, we denote by s_α the reflection in W with respect to α . We denote by w_0 the longest element of W. For $\alpha\in\Delta$, we define the coroot $\check\alpha$ by $\check\alpha=\frac{2\alpha}{\langle\alpha,\alpha\rangle}$, as usual. We call $\lambda\in\mathfrak h^*$ is dominant (resp. anti-dominant), if $\langle\lambda,\check\alpha\rangle$ is not a negative (resp. positive) integer, for each $\alpha\in\Delta^+$. We call $\lambda\in\mathfrak h^*$ regular, if $\langle\lambda,\alpha\rangle\neq0$, for each $\alpha\in\Delta$. We denote by P the integral weight lattice, namely $P=\{\lambda\in\mathfrak h^*\mid \langle\lambda,\check\alpha\rangle\in\mathbb Z$ for all $\alpha\in\Delta\}$. If $\lambda\in\mathfrak h^*$ is contained in P, we call λ an integral weight. We define $\rho\in P$ by $\rho=\frac12\sum_{\alpha\in\Delta^+}\alpha$. Put $\mathfrak g_\alpha=\{X\in\mathfrak g\mid \forall H\in\mathfrak h\ [H,X]=\alpha(H)X\}$, $\mathfrak u=\sum_{\alpha\in\Delta^+}\mathfrak g_\alpha$, $\mathfrak b=\mathfrak h+\mathfrak u$. Then $\mathfrak b$ is a Borel subalgebra of $\mathfrak g$. We denote by $\mathbb Q$ the root lattice, namely $\mathbb Z$ -linear span of Δ . We

also denote by Q^+ the linear combination of Π with non-negative integral coefficients. For $\lambda \in \mathfrak{h}^*$, we denote by W_{λ} the integral Weyl group. Namely,

$$W_{\lambda} = \{ w \in W \mid w\lambda - \lambda \in \mathsf{Q} \}.$$

We denote by Δ_{λ} the set of integral roots.

$$\Delta_{\lambda} = \{ \alpha \in \Delta \mid \langle \lambda, \check{\alpha} \rangle \in \mathbb{Z} \}.$$

It is well-known that W_{λ} is the Weyl group for Δ_{λ} . We put $\Delta_{\lambda}^{+} = \Delta^{+} \cap \Delta_{\lambda}$. This is a positive system of Δ_{λ} . We denote by Π_{λ} the set of simple roots for Δ_{λ}^{+} and denote by Φ_{λ} the set of reflection corresponding to the elements in Π_{λ} . So, $(W_{\lambda}, \Phi_{\lambda})$ is a Coxeter system. We denote by Q_{λ} the integral root lattice, namely $Q_{\lambda} = \mathbf{Z}\Delta_{\lambda}^{+}$ and put $Q_{\lambda}^{+} = N\Pi_{\lambda}$.

Next, we fix notations for a parabolic subalgebra (which contains \mathfrak{b}). Hereafter, through this article we fix an arbitrary subset Θ of Π . Let $\bar{\Theta}$ be the set of the elements of Δ which are written by linear combinations of elements of Θ over \mathbb{Z} . Put $\mathfrak{a}_{\Theta} = \{H \in \mathfrak{h} \mid \forall \alpha \in \Theta \ \alpha(H) = 0\}$, $\mathfrak{l}_{\Theta} = \mathfrak{h} + \sum_{\alpha \in \bar{\Theta}} \mathfrak{g}_{\alpha}$, $\mathfrak{n}_{\Theta} = \sum_{\alpha \in \Delta^{+} \setminus \bar{\Theta}} \mathfrak{g}_{\alpha}$, $\mathfrak{p}_{\Theta} = \mathfrak{l}_{\Theta} + \mathfrak{n}_{\Theta}$. Then \mathfrak{p}_{Θ} is a parabolic subalgebra of \mathfrak{g} which contains \mathfrak{b} . Conversely, for an arbitrary parabolic subalgebra $\mathfrak{p} \supseteq \mathfrak{b}$, there exists some $\Theta \subseteq \Pi$ such that $\mathfrak{p} = \mathfrak{p}_{\Theta}$. We denote by W_{Θ} the Weyl group for $(\mathfrak{l}_{\Theta}, \mathfrak{h})$. W_{Θ} is identified with a subgroup of W generated by $\{s_{\alpha} \mid \alpha \in \Theta\}$. We denote by w_{Θ} the longest element of W_{Θ} . Using the invariant non-degenerate bilinear form $\langle \ , \ \rangle$, we regard \mathfrak{a}_{Θ}^* as a subspace of \mathfrak{h}^* . It is known that there is a unique nilpotent (adjoint) orbit (say $\mathcal{O}_{\mathfrak{p}_{\Theta}}$) whose intersection with \mathfrak{n}_{Θ} is Zariski dense in \mathfrak{n}_{Θ} . $\mathcal{O}_{\mathfrak{p}_{\Theta}}$ is called the Richardson orbit with respect to \mathfrak{p}_{Θ} . We denote by $\bar{\mathcal{O}}_{\mathfrak{p}_{\Theta}}$ the closure of $\mathcal{O}_{\mathfrak{p}_{\Theta}}$ in \mathfrak{g} . Put $\rho_{\Theta} = \frac{1}{2}(\rho - w_{\Theta}\rho)$ and $\rho^{\Theta} = \frac{1}{2}(\rho + w_{\Theta}\rho)$. Then, $\rho^{\Theta} \in \mathfrak{a}_{\Theta}^*$.

Define

$$\begin{split} \mathsf{P}_{\Theta}^{++} &= \{\lambda \in \mathfrak{h}^* \mid \forall \alpha \in \Theta \quad \langle \lambda, \check{\alpha} \rangle \in \{1, 2, \ldots \} \} \\ ^{\circ} \mathsf{P}_{\Theta}^{++} &= \{\lambda \in \mathfrak{h}^* \mid \forall \alpha \in \Theta \quad \langle \lambda, \check{\alpha} \rangle = 1 \} \end{split}$$

We easily have

$${}^{\circ}\mathsf{P}_{\Theta}^{++} = \{ \rho_{\Theta} + \mu \mid \mu \in \mathfrak{a}_{\Theta}^* \}.$$

For $\mu \in \mathfrak{h}^*$ such that $\mu + \rho \in \mathsf{P}_\Theta^{++}$, we denote by $\sigma_\Theta(\mu)$ the irreducible finite-dimensional \mathfrak{l}_Θ -representation whose highest weight is μ . Let $E_\Theta(\mu)$ be the representation space of $\sigma_\Theta(\mu)$. We define a left action of \mathfrak{n}_Θ on $E_\Theta(\mu)$ by $X \cdot v = 0$ for all $X \in \mathfrak{n}_\Theta$ and $v \in E_\Theta(\mu)$. So, we regard $E_\Theta(\mu)$ as a $U(\mathfrak{p}_\Theta)$ -module.

For $\mu \in \mathsf{P}_{\Theta}^{++}$, we define a generalized Verma module ([Lepowsky 1977]) as follows.

$$M_{\Theta}(\mu) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_{\Theta})} E_{\Theta}(\mu - \rho).$$

For all $\lambda \in \mathfrak{h}^*$, we write $M(\lambda) = M_{\emptyset}(\lambda)$. $M(\lambda)$ is called a Verma module. For $\mu \in \mathsf{P}_{\Theta}^{++}$, $M_{\Theta}(\mu)$ is a quotient module of $M(\mu)$. Let $L(\mu)$ be the unique highest weight $U(\mathfrak{g})$ -module with the highest weight $\mu - \rho$. Namely, $L(\mu)$ is a unique irreducible quotient of $M(\mu)$. For $\mu \in \mathsf{P}_{\Theta}^{++}$, the canonical projection of $M(\mu)$ to $L(\mu)$ is factored by $M_{\Theta}(\mu)$.

 $\mu \in \mathsf{P}_{\Theta}^{++}$, the canonical projection of $M(\mu)$ to $L(\mu)$ is factored by $M_{\Theta}(\mu)$. dim $E_{\Theta}(\mu - \rho) = 1$ if and only if $\mu \in {}^{\circ}\mathsf{P}_{\Theta}^{++}$. If $\mu \in {}^{\circ}\mathsf{P}_{\Theta}^{++}$, we call $M_{\Theta}(\mu)$ a scalar generalized Verma module.

§ 2. Reductions of the problem

We retain the notation of §1. In particular, Θ is a subset of Π .

2.1 Basic results of Lepowsky

The following result is one of the fundamental results on the existence problem of homomorphisms between scalar generalized Verma modules.

Theorem 2.1.1. ([Lepowsky 1976])

Let $\mu, \nu \in {}^{\circ}\mathsf{P}_{\Theta}^{++}$.

(1) dim $Hom_{U(\mathfrak{g})}(M_{\Theta}(\mu), M_{\Theta}(\nu)) \leq 1$.

(2) Any non-zero homomorphism of $M_{\Theta}(\mu)$ to $M_{\Theta}(\nu)$ is injective.

Hence, the existence problem of homomorphisms between scalar generalized Verma modules is reduce to the following problem.

Problem 1 Let $\mu, \nu \in {}^{\circ}P_{\Theta}^{++}$. When is $M_{\Theta}(\mu) \subseteq M_{\Theta}(\nu)$?

2.2 Reduction to the integral infinitesimal character setting

Since the both $\nu \in W\mu$ and $\nu - \mu \in Q^+$ are necessary condition for the above problem, we can reformulate our problem as follows.

Problem 2 Let $\lambda \in {}^{\circ}\mathsf{P}_{\Theta}^{++}$ be dominant. Let $x, y \in W_{\lambda}$ be such that $x\lambda, y\lambda \in {}^{\circ}\mathsf{P}_{\Theta}^{++}$. When is $M_{\Theta}(x\lambda) \subseteq M_{\Theta}(y\lambda)$?

We fix $\lambda \in {}^{\circ}\mathsf{P}_{\Theta}^{++}$. Then, we can construct a suralgebra \mathfrak{g}' of \mathfrak{h} such that the corresponding Coxter system is $(W_{\lambda}, \Phi_{\lambda})$. Since $\Theta \subseteq \Pi_{\lambda}$ holds, we can construct corresponding parabolic subalgebra \mathfrak{p}'_{Θ} of \mathfrak{g}' . For $\mu \in \mathsf{P}_{\Theta}^{++}$, we denote by $M'_{\Theta}(\mu)$ the corresponding generalized Verma module of \mathfrak{g}' . We consider the category \mathcal{O} in the sense of [Bernstein-Gelfand-Gelfand 1976] corresponding to our particular choice of positive root system. More precisely, we denote by \mathcal{O} (respectively \mathcal{O}') "the category \mathcal{O} " for \mathfrak{g} (respectively \mathfrak{g}'). We denote by \mathcal{O}_{λ} (respectively, \mathcal{O}'_{λ}) the full subcategory of \mathcal{O} (respectively \mathcal{O}') consisting of the objects with a generalized infinitesimal character λ . Soegel's celebrated theorem ([Soegel 1990] Theorem 11) says that there is a Category equivalence between \mathcal{O}_{λ} and \mathcal{O}'_{λ} . Under the equivalence a Verma module $M(x\lambda)$ ($x \in W_{\lambda}$) corresponds to $M'(x\lambda)$. From Lepowsky's generalized BGG resolutions of the generalized Verma modules and their rigidity, we easily see $M_{\Theta}(x\lambda)$ corresponds to $M'_{\Theta}(x\lambda)$ under Soegel's category equivalence. So, we have the following lemma as a corollary of Soergel's theorem.

Lemma 2.2.1. Let $\lambda \in \mathfrak{h}^*$ be dominant. Let $x, y \in W_{\lambda}$ be such that $x\lambda, y\lambda \in {}^{\circ}P_{\Theta}^{++}$. Then, the following two conditions are equivalent.

- (1) $M_{\Theta}(x\lambda) \subseteq M_{\Theta}(y\lambda)$.
- $(2) \quad M'_{\Theta}(x\lambda) \subseteq M'_{\Theta}(y\lambda).$

This lemma tells us that we may reduce Problem 2 to the case that λ is integral. We put

$$W(\Theta) = \{ w \in W \mid w\Theta = \Theta \}.$$

§ 3. Excellent parabolic subalgebras

3.1 θ -accepable positive roots

Hereafter, we fix a subset Θ of Π . For $\alpha \in \Delta$, we put

$$\Delta(\alpha) = \{ \beta \in \Delta \mid \exists c \in \mathbb{R} \ \beta|_{\mathbf{a}_{\Theta}} = c\alpha|_{\mathbf{a}_{\Theta}} \},$$

$$\Delta^+(\alpha) = \Delta(\alpha) \cap \Delta^+,$$

$$U_{\alpha} = \mathbb{C}S + \mathbb{C}\alpha \subseteq \mathfrak{h}^*.$$

Then $(U_{\alpha}, \Delta(\alpha), \langle \ , \ \rangle)$ is a subroot system of $(\mathfrak{h}^*, \Delta, \langle \ , \ \rangle)$. The set of simple roots for $\Delta^+(\alpha)$ is denoted by $\Pi(\alpha)$. If $\alpha|_{\mathfrak{a}_{\Theta}} = 0$, then $S = \Pi(\alpha)$. If $\alpha|_{\mathfrak{a}_{\Theta}} \neq 0$, then $\Pi(\alpha)$ is written as $S \cup \{\tilde{\alpha}\}$. If $\alpha \in \Delta$ satisfies $\alpha|_{\mathfrak{a}_{\Theta}} \neq 0$ and $\alpha = \tilde{\alpha}$, then we call α Θ -reduced. For $\alpha \in \Delta^+$, we denote by $W_{\Theta}(\alpha)$ the Weyl group of $(\mathfrak{h}^*, \Delta(\alpha))$. Clearly, $W_{\Theta} \subseteq W_{\Theta}(\alpha) \subseteq W$. We denote by w^{α} the longest element of $W_{\Theta}(\alpha)$. We call $\alpha \in \Delta$ Θ -acceptable iff $w^{\alpha}w_{\Theta} = w_{\Theta}w^{\alpha}$. We denote by Δ^{Θ} (resp. Δ^{Θ}_r) the set of Θ -acceptable roots (resp. Θ -reduced Θ -acceptable roots). Put $(\Delta^{\Theta})^+ = \Delta^+ \cap \Delta^{\Theta}$ and $(\Delta^{\Theta}_r)^+ = \Delta^+ \cap \Delta^{\Theta}_r$. For $\alpha \in \Delta^{\Theta}$, we define

$$\sigma_{\alpha} = w^{\alpha}w_{\Theta} = w_{\Theta}w^{\alpha}.$$

Clearly, $\sigma_{\alpha}^2 = 1$, $\sigma_{\alpha} = \sigma_{\tilde{\alpha}}$. If $\alpha|_{a_{\Theta}} = 0$, then $\sigma_{\alpha} = 1$. If $\alpha \in \Delta$ is orthogonal to all the elements in Θ , then we can easily see α is Θ -reduced and $s_{\alpha} = \sigma_{\alpha}$. For $\alpha \in \Delta$, we put

$$V_{\alpha} = \{ \lambda \in \mathfrak{a}_{\Theta}^* \mid \langle \lambda, \alpha \rangle = 0 \}.$$

For $\alpha \in \Delta^{\Theta}$, we put $\hat{\alpha} = \tilde{\alpha}|_{\mathfrak{a}_{\Theta}} \in \mathfrak{a}_{\Theta}^*$. We can easily see:

Lemma 3.1.1. Let $\alpha \in \Delta_r^{\Theta}$. Then, we have

- (1) σ_{α} preserves \mathfrak{a}_{Θ}^* .
- (2) $\sigma_{\alpha} \in W(\Theta)$. In particular, $\sigma_{\alpha} \rho_{\Theta} = \rho_{\Theta}$.
- (3) $\sigma_{\alpha}\hat{\alpha} = -\hat{\alpha}$.
- (4) $\sigma_{\alpha}|_{\mathfrak{a}_{\alpha}^{\bullet}}$ is the reflection with respect to V_{α} .

3.2 Excellent parabolic subalgebras

We retain the notations in the previous section.

Let $\Theta \subset \Pi$.

A parabolic subalgebra \mathfrak{p}_{Θ} is called excellent, if all the roots are Θ -acceptable.

Remark If \mathfrak{p}_{Θ} is a complexified minimal parabolic subalgebra of a real form of \mathfrak{g} such that the *m*-part of the Langlands decomposition of \mathfrak{p}_{Θ} is semisimple, then all the roots are Θ -acceptable and σ_{α} is a reflection with respect to a restricted root $\hat{\alpha}$ for each $\alpha \in \Delta_{\Phi}^{\Theta}$.

If g is a classical algebra, we can classify excellent parabolic subalgebras of g as follows.

(1) Let $\mathfrak{g} = \mathfrak{gl}(n,\mathbb{C})$ (the case of $\mathfrak{g} = \mathfrak{sl}(n,\mathbb{C})$ is similar) and let k be a positive integer dividing n. We consider the following parabolic subalgebras.

 $\mathfrak{p}(A_{n-1,k})$: a parabolic subalgebra of \mathfrak{g} whose Levi part is isomorphic to

$$\overbrace{\mathfrak{gl}(k,\mathbb{C})\oplus\cdots\oplus\mathfrak{gl}(k,\mathbb{C})}^{n/k}$$
.

Then, $\mathfrak{p}(A_{n-1,k})$ is excellent. Conversely any excellent parabolic subalgebra is conjugate to $A_{n,k}$ for some k.

(2) Let \mathfrak{g} be a complex simple Lie algebra of the type X_n . Here, X means one of B, C, and D. Let k and ℓ be positive integers such that k divides $n - \ell$.

We consider the following parabolic subalgebras.

 $\mathfrak{p}(X_{n,k,\ell})$: a parabolic subalgebra of \mathfrak{g} whose Levi part is isomorphic to

$$\overbrace{\mathfrak{gl}(k,\mathbb{C})\oplus\cdots\oplus\mathfrak{gl}(k,\mathbb{C})}^{(n-\ell)/k}\oplus X_{\ell}.$$

Here, X_{ℓ} means that the complex simple Lie algebra of the type X_{ℓ} . X_0 means the zero Lie algebra.

 $\mathfrak{p}(X_{n,k,\ell})$ is excellent unless $X=D,\ \ell=0,$ and k is an odd number greater than 1. Any excellent parabolic subalgebra is conjugate to one of such $\mathfrak{p}(X_{n,k,\ell})$ s.

§ 4. Main result

4.1 Elementary homomorphisms

Here, we review some notion in [Matumoto 1993] §3. Hereafter, $\mathfrak g$ means a reductive Lie algebra over $\mathbb C$ and retain the notations in §1-3. We fix a subset Θ of Π and $\alpha \in \Delta$.

We denote by $\omega_{\alpha} \in \mathfrak{a}_{\Theta}^{*} \subseteq \mathfrak{h}^{*}$ the fundamental weight for α with respect to the basis $\Pi(\alpha) = \Theta \cup \{\alpha\}$. Namely ω_{α} satisfies that $\langle \omega_{\alpha}, \beta \rangle = 0$ for $\beta \in \Theta$, $\langle \beta, \check{\alpha} \rangle = 1$, and $\omega_{\alpha}|_{\mathfrak{h}\cap\mathfrak{c}(\mathfrak{g}(\alpha))} = 0$. Here, $\mathfrak{c}(\mathfrak{g}(\alpha))$ is the center of $\mathfrak{g}(\alpha)$. We see that there is some positive real number a such that $\omega_{\alpha} = a\alpha|_{\mathfrak{a}_{\Theta}}$, since $\alpha|_{\mathfrak{h}\cap\mathfrak{c}(\mathfrak{g}(\alpha))} = 0$. Hence, we have $V_{\alpha} = \{\lambda \in \mathfrak{a}_{\Theta}^{*} \mid \langle \lambda, \omega_{\alpha} \rangle = 0\}$.

For $\alpha \in (\Delta_r^{\Theta})^+$, we define

$$\mathfrak{g}(lpha)=\mathfrak{h}+\sum_{eta\in\Delta(lpha)}\mathfrak{g}_eta, \hspace{0.5cm} \mathfrak{p}_\Theta(lpha)=\mathfrak{g}(lpha)\cap\mathfrak{p}_\Theta.$$

Then, $\mathfrak{g}(\alpha)$ is a reductive Lie subalgebra of \mathfrak{g} whose root system is $\Delta(\alpha)$ and $\mathfrak{p}_{\Theta}(\alpha)$ is a maximal parabolic subalgebra of $\mathfrak{g}(\alpha)$.

Put $\rho(\alpha) = \frac{1}{2} \sum_{\beta \in \Delta^+(\alpha)} \beta$, For $\nu \in \mathfrak{a}_{\Theta}^*$, we denote by \mathbb{C}_{ν} the one-dimensional $U(\mathfrak{p}_{\Theta}(\alpha))$ -module corresponding to ν . For $\nu \in \mathfrak{a}_{\Theta}^*$ we define a generalized Verma module for $\mathfrak{g}(\alpha)$ as follows.

$$M^{\mathfrak{g}(lpha)}_{\Theta}(
ho_{\Theta}+
u)=U(\mathfrak{g}(lpha))\otimes_{U(\mathfrak{p}_{\Theta}(lpha))}\mathbb{C}_{
u-
ho(lpha)}.$$

Then, we have:

Theorem 4.1.1. ([Matumoto 2003]) Let ν be an arbitrary element in V_{α} and let c be either 1 or $\frac{1}{2}$. Assume that $M_{\Theta}^{\mathfrak{g}(\alpha)}(\rho_{\Theta} - nc\omega_{\alpha}) \subseteq M_{\Theta}^{\mathfrak{g}(\alpha)}(\rho_{\Theta} + nc\omega_{\alpha})$ for all $n \in \mathbb{N}$. Then, we have $M_{\Theta}(\rho_{\Theta} + \nu - nc\omega_{\alpha}) \subseteq M_{\Theta}(\rho_{\Theta} + \nu + nc\omega_{\alpha})$ for all $n \in \mathbb{N}$.

We call the above homomorphism of $M_{\Theta}(\rho_{\Theta} + \nu - nc\omega_{\alpha})$ into $M_{\Theta}(\rho_{\Theta} + \nu + nc\omega_{\alpha})$ an elementary homomorphism.

The following working hypothesis is proposed in [Matumoto 2003].

Working Hypothesis An arbitrary nontrivial homomorphism between scalar generalized Verma modules is a composition of elementary homomorphisms.

The working hypothesis in the case of the Verma modules is nothing but the result of Bernstein-Gelfand-Gelfand.

I would like to propose:

Conjecture For an excellent parabolic subalgebra, the above working hypothesis is affirmative.

4.2 Main result

Now, we state our main result.

Theorem 4.2.1. Let \mathfrak{g} be a classical Lie algebra and let \mathfrak{p}_{Θ} be one of the following cases.

- (a) $\mathfrak{p}(A_{n-1,k})$ (k|n),
- (b) $\mathfrak{p}(B_{n,2k,m})$ $(k \leqslant m),$
- (c) $\mathfrak{p}(B_{n,2k+1,m})$ $(k \geqslant m)$,
- (d) $\mathfrak{p}(C_{n,2k,m})$ $(k \leqslant m),$
- (e) $\mathfrak{p}(C_{n,2k+1,m})$ $(k \geqslant m)$,
- (f) $\mathfrak{p}(D_{n,2k-1,m})$ $(k \leqslant m),$
- (g) $\mathfrak{p}(D_{n,2k,m})$ $(k \geqslant m)$.

Then, any homomorphism between scalar generalized Verma modules with integral infinitesimal characters is a composition of elementary homomorphisms.

References

- J. Bernstein, I. M. Gelfand, and S. I. Gelfand, Structure of representations generated by vectors of highest weight, *Funct. Anal. Appl.* 5 (1971), 1-8.
- B. Boe, Homomorphism between generalized Verma modules, *Trans. Amer. Math. Soc.* **288** (1985), 791-799.
- J. Lepowsky, Conical vectors in induced modules, Trans. Amer. Math. Soc. 208 (1975), 219-272.
- J. Lepowsky, Existence of conical vectors in induced modules, Ann. of Math. 102 (1975), 17-40.
- H. Matumoto, On the existence of homomorphisms between scalar generalized Verma modules, in: Contemporary Mathematics, 145, 259-274, Amer. Math. Soc., Providence, RI, 1993.

- H. Matumoto, The homomorphisms between scalar generalized Verma modules associated to maximal parabolic subalgebras, preprint 2003, arXive math.RT/0309454.
- W. Soergel, Kategorie \mathcal{O} , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421-445.