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The role of local energy decay in
I?-estimates for the wave equation with

time-dependent dissipation!

RIERZE - B2H U BERX (Tokio Matsuyama)
' Department of Mathematics
‘ Tokai University

1. INTRODUCTION

This paper is the résumé of papers [4, 5]. Some of proofs of theorems,
propositions and lemmas are omitted.

Let ©Q be an unbounded domain having the compact and smooth
boundary 012, and let R™ \ 2 be star-shaped with respect to the origin
such that R® \ Q C B, for some py > 0, where we set B,, = {z €
R™ |z] < po}. We consider LP-estimates and scattering rates for the
following initial-boundary value preblem in odd space dimension n with
n>3:

U — Au + a(z, t)u; =0, (z,t) € 2 x (0, 00),
(P) ¢ u(z,0) =uo(z), u(z,0)=w(z), z€Q,
u(z,t) =0, (z,t) € 00 x (0,00).

We make the following assumption on a(z,t) :

Assumption A. (i) a(z,t) is nonnegative on Q x [0, 00).
(i) a(z, t) belongs to B> (2 x [0,00)).
(iii) The support of a(z,t) is contained in a time-dependent domain

Qt) = {z €Q; |z] < (R+1)*}

for some R > py and a with 0 < a < . If a = 0, we assume that the
support of a(z,t) is contained uniformly in QN Br, Bg being the ball
centered at the origin with radius R.

The condition 0 < a < ; means that the support of a(z,t) ex-
pands at a speed strictly less than the wave speed. The equation of

“this kind was first treated by Tamura (see [14]), and it was proved

that if the data have compact supports, then the local energy decays
exponentially. Since then, there is no work of asymptotic behaviour
for the problem (P). The difficulty of analysis lies in the fact that
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the coefficient a in the dissipative term depends on space-time vari-
ables. For example, Wirth (see [16]) has treated delicately the equa-
tion Ou + (1 +t)~'u, = 0 (1 > 0) through the Fourier representation
formulae and obtained L*-L%-estimates.

Recently, the present author obtained LP-estimates and scattering
rates for the problem (P) (see [4, 5]). In deriving LP-estimates we used
the time-dependent cut-off method, which gives an extention of Shibata
(see [11]) and Shibata and Tsutsumi (see [12]). As is well-known, the
local energy decay plays a crucial role in this cut-off method. We
provide this estimate in Proposition 2.2 which the integral region is
given by time-dependent domain €2(t), and apply it to cut-off method.

In order to state results we introduce the notation of Sobolev norms :
for s > 1, we set

I, = ||uollao(@) + llwalla-10),
I,(") = ne"'uonga(g) + ||e|'|u1||H.—1(g), e = the Napier number,
IO = ||(-Y uollms@y + 1) vl -1y

where (z) = /1 + |z|?, H*(Q) is the fractional order Sobolev space,
and

Du=(8]V*u; j+|ul <1), Du=(8{V*u; j+|ul =1),

QL) =QnBy (L>0).

Then we proved

Theorem 1 ([4]). Assume that Assumption A is satisfied with 0 <
a < 3. Let m be a nonnegative integer and set M = [3] +1, 3] being
the integer part of 5. Let the data uo, u; satisfy

ug € H3M+m(ﬂ), uy € H3M+m—1(ﬂ), I§;21+m < 00,

and the compatibility condition of order 3M +m—1. Then the solution
u of problem (P) satisfies the following estimates : Let p be a number
with 2 < p < co. Then there ezxists a constant C such that

— . i a2
"DU(t)”Wm,P(Q) < CIQA?I—ZEM‘U_H"(]‘ +1)7 2 (-2
) 4

Theorem 1 imposes the exponential weight on the initial data uo,
u;. This condition is too restrictive. For the case of a = 0, i.e., the
support of a(z,t) is contained uniformly in £ N Bg, we can relax it to
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polynomially weighted condition.
Our result reads as follows :

Theorem 2 ([5]). Assume that Assumption A is satisfied with a = 0.
Let m be a nonnegative integer. Let the data ug, u; satisfy

up € H¥M+™(Q), w € B*M+™1(Q), L., <oo

for some -y with v > n — 1, and the compatibility condition of order
3M +m—1. Then the solution u of problem (P) satisfies the following
estimates : Let p be a number with 2 < p < co. Then there exists a

" constant C such that

—_ e
"Du(t)”Wmm(n)SCI7 e (1+t) 7 (1-3)

Based on Theorems 1 and 2, we can argue the existence of scattering
states and determine its asymptotic rates.

Theorem 3 ([4, 5]). Let u be the solution in Theorems 1 and 2. Then
there exists a free wave w* in Q with finite energy such that

0O t‘ii—”ﬂ"fﬁ), ifl<d<n,
lu()) —w*@)lle = { O (T logh(2+7)),  ifd=n,
o (t*%), if 6 >n,

as t — oo, where || - ||z is energy norm defined by

@)l =5 [ (Vul)F + ey’ de

Here, we say that wt is free wave in Q if wt satisfies the following
initial-boundary value problem :

{ wy — Aw =0, (z,t) € Q x (0,00),
w(z,0) = wo(z), wi(z,0)=wi(z), z€Q,
w(z,t) =0, (z,t) € 0Q % (0, 00).

It is well-known in Mochizuki {7, 8] (cf. Mochizuki and Nakazawa, [9])
that the energy does in general not decay. Thus the scattering problem
is meaningful. The proof of the last theorem depends deeply on L*-
estimate. For the proof, see [4, 5]. ‘



2. LOCAL ENERGY DECAY AND L2-BOUND

Let 7 > 0 be fixed, and let v(z,t;7) be a finite energy solution of
the following problem

{ v — Av+a(z,t)v: =0, (z,t) € QX (1,00), (2.1)
v(z,t;7) =0, (z,t) € 00 x (T, 00) '

with the initial data fi(z,7), fa(z,7) of compact supports in (7).

If we reconsider the proof of [14, Tamura] for 0 < a < ; and [8,

Mochizuki] for o = 0 carefully, the following proposition can be ob-
tained.

Proposition 2.1. Suppose that Assumption A is satisfied. Letv(z,t;T)
be the finite energy solution of problem (2.1), and let L, L > py, be fized.
Then there ezist constants C > 0 and A > 0, independent of R, L and
T, such that fort > T,

Jél afy _ —r)8
(2:2) 1Dv(t; )32y < CXEHEF D21 f(7)|| g,

where f(7) = {f1(-,7), fo(-,7)}. If @ = 0, the right-hand side of (2.2)
should be replaced by

CeA(L+R)e——>\(t—'r) ".f(T)”E

Remark. The constant 3 can be taken so that 8 = (p+ 1)~ with
p>a(2+9)(1 —a(2+7)), where a(2+v) <1 and 0 <y < 1. For
details, see [14]. Therefore we must assume that 0 < a < 3.

Based on Proposition 2.1, we consider the following problem with
forcing term :

U — Au + a(.’l), t)ut = f(fL',t), (27, t) € x (01 00),
(P); § uz,0) =uo(z), w(z,0)=wu(z), z€,
u(z,t) =0, (z,t) € 90 % (0,00).

Proposition 2.2. Suppose that Assumption A is satisfied. Let m be
a nonnegative integer, and let u be the solution of problem (P)f with
data {ug,uy, f(-,£)} € H™(Q) x H™(Q) x H™(Y) such that up ,u1,
f(-,0) satisfy the compatibility condition of order m and the supports of
ug, uy and f(-,t) are contained in Q(R) and (2@), respectively, where
Q)= {z€Q; |z| < (R+1)*+1}. Ifa=0, Q(t) should be replaced
by Q(R +1). Assume further that

LI Ae™>* f0<a<l
m—j < 2’
5 et ol o< {ir pess
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for some constants A > 0 and v > 0. Then there ezist constants C,
), independent of the diameters of supports of uo, us, f(:,0), such that
fort >0, '

I DU grem @igy) < CePFP L e + CAeP P e if0<a <],
|| Du(t) |l am@r+)) < PRI e+ CAePR(1+8)7  ifa=0.

For the probf see [4, 5].

The following local energy decay estimate of free waves in odd space
dimensions plays an important role in later discussion.

Proposition 2.3. Let v be the smooth solution of the following Cauchy
problem in odd space dimensionn =2p+1 (p=1,2,...) :

vy — Av =0, (z,t) € R™ x (0, 00),
{ v(z,0) = v(z), w(z,0)=v(z), ze€R™

Let L > 0 be fired and m a nonnegative integer. Then we have the
following assrtions : (i) There ezist constants A, X' and C, independent
of L, such that for t > 0,

lo@lamgai<ry < CX Ifryme™,

”Dv(t)”H’"(IzKL) < CCA LJ2(;,)1+m ——)‘t)
where

p'—‘l-

2(;l)l+m—~1 Z Z z “el lakv Ul( )”HM(}R") y O = = v,

=0 0<|p,|<m k=0 |Z|

Tt im = Z Z (Z (R vvl()“HM(R")

=0 0<|u|<m k=0
p+l—i

+ Z "elilafvi‘”i(')”HM(Rn) )

k=0

(ii) Let v be a constant with v > n — 1. Then there ezist a constant
C(L) depending on L such that fort >0,

o) mai<y < CEL) Iy pmor (1 +8) 77T,
1Dt || rmgai<ry < CL)Ip (1 + )77
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where

I =3 T SO0 ey

i=0 0<|p|<m k=0

p—t

Bhm=3 3 (X160 I50)] uae

i=0 0<|ul<m k=0
p+1—i

+ 3 1680 ey )-

k=0

For the proof see [4, 5].

The final proposition is concerned with an L2-estimate.

Proposition 2.4. Let v be the smooth solution of the following Cauchy
problem :

{ Vg — Av =0, (z,t) € R® x (0, 00),
v(z,0) =vo(z), w(z,0)=w(z), =ze€R™

Let m be a nonnegative integer. Then there exists a constant C > 0
such that fort > 0,

23) D o®) @ < C (IO™0)O)lzame + o1l 2 oy )

For the proof see Ikehata [1] (cf. Ikehata and Matsuyama [2]).

3. LP-ESTIMATES

In this section we give an outline of proof of Theorems 1 and 2. The
existence theorem is well known in [6, Mizohata).

We use the cut-off method as in Shibata and Tsutsumi [12] and
Nakao [10]. Let L be any fixed number with L > R+ 1. Let us take
a smooth function u(z) so that u(z) = 0if |z] < L+ 1and =1 if
|z| > L + 2. Then the solution u of problem (P) can be expressed by
u = U + U, where % and % are solutions of the following problems (P)

and (?), respectively :
Uy — AU+ a(z,t)u: =0, (z,t) € Q x (0,00),

(P) { 6(z,0) = p(@)uo(z), T(z,0) = p)m(z), z€Q,
W(z,t) =0, (z,t)€ N x(0,00),



94

and
T — AT+ a(z, ) =0, (z,t) € Qx (0,00),
(P) { @(z,0) = (1 - p(@)) uo(2), T(z,0)=(1- p@)m(z), T
u(z,t) =0, (z,t) € N x (0,00).
We need the next estimates.

—~

Proposition 3.1. For the solution % of problem (P), there ezists a
constant C > 0 such that fort > 0,

— . Ca
IDE(E) lwmeo(y < CLSy (1 +1) 773 }
D) | ame) < CL s

-~ ’ _n=1
IDEE) lwmeey < Clifam(l+8)7" } Fao
| D) || i) < CLipyiman

For the proof of Proposition 3.1, we consider the following Cauchy
problem :

vg —Av=0, (z,t) €R" x (0,00),
(CP) {v(:z:, 0) = p(x)uo(z), u(z,0) = p(z)ui(z), z=eR™

Then it is known (cf. Klainerman [3] and W. von Wahl [15]) that if
n > 2, then the solution v to the problem (CP) satisfies

(3.1)
()|l L=@n) < C(1 +8)F (Ilo(0)|lwsa sy + [lve(0)|lwrr-11 ) -

Now let us take a smooth function so that ¢¥(z) =1if [z| > R+ 1
and = 0 if |z| £ R. Then 9w satisfies the following Cauchy problem :

{(wv)ﬁ — A(Yv) = g(z,t), (,t) €R" x (0,00),

) 1
.,f0<a<§,

(Y)(z,0) = p()uo(z), (Y)(2,0) = p(z)us(z), = €R?,

where we set g(z,t) = —2V- Vv — (A¢Y)v+ 290 +Yuv. Then, setting
w = u — v, we see that w satisfies the following initial-boundary value
problem :

{ wy — Aw + a(z, t)w, = —g(z,t), (z,t) € N x (0,00),
(P), ¢ w(z,0) =w(x,0) =0, z € Q,
w(z,t) =0, (z,t) € 09 x (0, 00).

For the local energy of w in the domains (t) and Q(R + 1), combin-
ing Propositions 2.2, 2.3, 2.4 with Poincare’s inequality, we have the
following estimates.



Proposition 3.2. Let w be a solution of problem (P),,. Then we have

the following assertions: (i) If0 < a < 3, there ezists a constant C > 0

such that fort > 0,
(Dw@)lwmeo@y < Cliprsme ™",
IDw®llam iy < Chirime ™
where Q(t) = {z € Q; |z| < (R+1)*+1}. (ii) Lety be a number with

v>mn—1. Ifa =0, then there ezists a constant C(R) depending on
R such that fort > 0,

| Dw(®)lwme@sr) < C(RI m(1+ 877+,
IDw(®) @iy < CRI (1 + )77
We must estimate w(t) outside of the domains Q(t) and QR + 1).

For this purpose, we set @ = w. Then w satisfies the following Cauchy
problem :

Wy — AW = g(z,t) + §(z,t), (z,t) € R* x (0, 00),
w(z,0) = W(z,0) = 0, z € R",

where g(z,t) = 2¢w; + Yuw — 2VY - Vw — (AY)w. It follows from
Duhamel’s principle and the decay estimate (3.1) that L* and L*-
norms of Dw(t) are estimated as follows :

Lemma 3.3. Let m be a nonnegative integer. Then we have the fol-
lowing assertions : (i) If 0 < a < %, there ezists a constant C such
that

_— e _n=1
ID@E)lwmee@n < Cligpm(1+8)7°7,
DBl m@m) < CLirimr-

(i) If a = 0, there ezists a constant C(R) depending on R such that
fort >0,

T~ _n-l
ID@()|lwmoomny < CLippim(l+87°T,

|ID@()| m(rny < CIS -

The following proposition is an immediate consequence of Lemma 3.3,
and we can obtain estimates of w(t) outside of the domains (t) and
Q(R + 1) as follows:

Proposition 3.4. Let m be a nonnegative integer. Then we have the
following assertions : (i) If 0 < a < 3, there ezists a constant C such
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that
_— L . i
”Dw(t)“W‘m.w(ﬁ(t)c S CIéI\)J+m(1 + t) 2 ;
”_D—ﬂ;(t)”;[m(ﬁ(t)c) < Cféi}_,_,n+1.

(ii) If a = 0, there exists a constant C(R) depending on R such that
fort >0,

_nz1
I D@ () |l wm.eo@rs1)s) < 013M+,,,(1 +t)7,
IDw ()| am @+ < C'IQM+m e

We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. It suffices for our purpose to prove the
case 0 < a < 1, since the case a = 0 can be handled in a similar way.
It follows from Propositions 3.2 and 3.3 that

[ Dw(t)|lwm.=(@) < ||Ew(t)||wmw(ﬁ(t)) + “-D—w(t)”W""“(ﬁ(t)c)

(3.2) R Y
(131+m(1 + t)
I Dw(t) || am@) < IDWE | g @igeyy + IDWE g gigeyey
(3.3) ©
S CIZM +m+-1-
Notice that

”Hu0||wM+m+1,1(Rn) + “}L’LL]_”WM+m,1(Rn) < CII(\;)-Fm+1’

1
“lm1||Ln2—fﬁ(Rn) <C (/ﬂ e’ dx) o ClleMu| zagey-
Then we see from the decay estimate (3.1) and Proposition 2.4 that
ID (%) (&)l wrmoo@n)
(34)  <C (||uuollwmsmiramey + ||t |lwaesmigny) (14+8)"°F
SCLD (14T,

35 D" @v)Olr@e < C (Iner + lleMull @) -

Since & = w + v, we combine (3.2) and (3.3) with (3.4) and (3. 5)
respectively, to complete the proof of Proposition 3.1.

Next, we introduce the decay for the solution % of problem @



Proposition 3.5. For a nonnegative integer m, there ezists a constant
C > 0 such that fort > 0,

B _n-1
| Du(t)|lwme @) < CIppmr(L+1)" 27,
”—Eﬂ(t)”H"'(Q) < Clyimir

The proof of this proposition can be given much easier than the
previous arguments, if we note that the supports of data @(0), %.(0)
are compact. Thus we may omit the details.

Proof of Theorems 1 and 2 completed. It follows from Proposi-
tions 3.1 and 3.5 that if 0 < & < 3, then

— e _n—1
(36) IDu(®) lwmeo@) < Lypam@ +87°T,

(3.7 I Du(®)|| ame@y < Lspsm-

Interpolating between L>®-estimate (3.6) and L2-estimate (3.7), we ob-
tain LP-estimate ‘

— .n=ley 2
IDu(®)lwms) < CIo) speyy, (14+8)77 075,
P

For more details see [4]. As to the case @ = 0, we can prove the
same argument as above (see [5]). The proofs of Theorems 1 and 2 are
complete.
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