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Distributions of exponential growth with
support 1n a proper convex cone
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1 Introduction

In this talk we treated the space H'(R",K) of distributions of exponen-
tial growth. The spaces of distributions of exponential growth for the 1-
dimensional case, direct product case or global case were investigated by
many authors ([3], {5], [6], [10], [11], [12], [13], [15], [17]). In [3] M.Hasumi
studied the space H(R",R") and the dual space H’(R™,R") (see Definition
3.2 and Definition 3.5). In {10] M.Morimoto studied the space H(R", K) and
the dual space H'(R™, K') (see Definition 3.2 and Definition 3.5). The pur-
pose of this talk was to treat the space of distributions of exponential growth
supported by a proper conver cone T C R", (denote by HL(R", K)).

In §3 we shall state the base space H(R", K) and its dual space H'(R", K).
The main purpose in this section is to introduce the structure theorem for
HZ(R", K), the space of distributions of exponential growth supported by a

set A C R™ (Theorem 3.7). Therefore as corollary we obtain the structure
theorem for H(R", K), where T c R" is a proper convex cone, (Corollary
3.8), and the result which G.Lysik obtained for the case of direct product
support of half lines ([6]). Furthermore we have the decomposition theorem
for distributions of exponential growth with support in T, UT_, (Corollary
3.10).

In §4 we shall characterize the space HL(R"™, K) by the heat kernel method
(Theorem 4.1), which T.Matsuzawa introduced for the spaces of distribu-
tions, ultradistributions and hyperfunctions [2], [7], (8], [9].

In §5 we shall introduce the Paley-Wiener theorem for HL(R", K). Then
we showed that the Fourier-Laplace transform of T' € HL(R", K) is a holo-
morphic function constructed by a finite sum of functions which are holo-
morphic on the domains whose imaginary parts are proper convex cones with
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vertex at the elements of K and with some polynomial growth conditions and
conversely such a holomorphic function can be represented by the Fourier-
Laplace transform of a distribution of exponential growth 7' € HL(R", K).
Then we can see that T is constructed by a finite sum of distributions of
exponential growth supported by a proper convex cone I' (Theorem 5.5). As
corollary we have the result which M.Morimoto showed for the 1-dimensional
case [10].

In §6 we shall state the space of the image by the Fourier-Laplace trans-
form of T € HL(R",K). Then by using the Paley-Wiener theorem given
in §5, we can obtam the Edge-of-the-Wedge theorem for this space (Theo-
rem 6.10). These results are generalizations of the work which M.Morimoto
showed for the case of direct product ([11], Theorem 2).

2 Preliminaries

Definition 2.1. We define some notations:

z = (x1,"-,2.) €ER", Z“J@ for z,§ € R*, 2° = (z,x).

J=1
z = (2, ,2)€C, zi=xz;+wy;, j=1,-,n

N F; L3t oon n 62
a = (ay, - ,a,) EN" D —-azgl----az?, A—Z—'.

E(z,t) = (4nt)”Texp(—z?/4t), t> 0.
For ( € C", { = (C1,+++ 1 6a)s we put €] = V/[GI2 + -+ [Ga]2

Definition 2.2. Let K be a convex compact set in R®. Then we define
supporting function of K by hg(z) = sup(z, £).
tek

Definition 2.3. Let Q be an open set in C*. We denote by H({2) the space
of holomorphic functions on Q and by C(§2) the space of continuous functions
on €.

Definition 2.4. S(R™) is the space of rapidly decreasing C* functions and
S'(R") is the space of tempered distributions.
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Definition 2.5. Let A be a set in R". Then we denote by A° the interior of
A, A the closure of A, for € > 0, A, = {z € R*;dis(z, A) < €} and by ch(A)
convex hull of A.

Definition 2.6. Let I be a cone with vertex at 0. If chT’ contains no straight
line, then we call I' proper cone.

Definition 2.7 ([4],[16]). Let I be a cone. We put
I":={¢€R*(y,&) >0forallyel}.
Then we call IV dual cone of T'.

Definition 2.8. Let I be a cone. Then we denote by prI" the intersection
of ' and the unit sphere. The cone I'; is said to be a compact cone in the
cone I'y if prI'; C prl'; and we write I'; € I's.

Proposition 2.9 ([16]). Following conditions are equivalent:
1. T is proper cone.
2. (I')° #£0.

3. For any C € (I')°, there exists a number ¢ = o(C) > 0 such that
(€, z) > ol€llz|, €€ C, z € chl.

Proposition 2.10 ([16]). (I")' = chT and (['; NTy)' = ch(I'; UT;). Fur-
thermore for a convez cone I', we have I'=I" +I'.

Definition 2.11. Let I',. be a cone with vertex at 0. Then we put I'_ =
=

Definition 2.12. Let Abeasetin R*. Weput 8% := {T € S'(R");suppT C
A}
3 Distributions of exponential growth

In this section, we shall introduce H'(R", K), the space of distributions of
exponential growth, and give the structure theorem of H'(R", K).



Definition 3.1. Let K be a convex compact set in R™ and € > 0. Then we
define H,(R™, K,) as follows:

Hy(R", K.) = {p € C®(R); sup |DPp(z)e«@)*el| < too,for Vp € N*}.
EER"

Definition 3.2. We define the spaces H(R",R") and H(R", K) as follows:
HR"R") == lmHy(R", K,), H(R", K) = lim Hy(R", K.),
>0 >0

where M} means projective limit and lim means inductive limit.
e>0 e>0

Remark 3.3. Now we give the relations of H(R", K') and the other function
spaces:

(i) If {0} C K, then H(R",K) C S.

(ii) Let r > 0, s > 0, S}(R") be Gel’fand-Shilov space and S,.(R") =
lim S(R"™). Then it is known that '

8300

Si(R™) = {f € C*(R™);36 > 0 Va sup | D2 f(z)|e’™ < oo},
zERM

(for details we refer the reader [12]). Therefore
(a) If K = {0}, then H(R", K) = §;(R").
(b) If {0} C K, then H(R", K) C &1(R™).
(iii) The space H(R"?, K) is slightly different from 3¢ in [1]. In fact

o(zr) € HR™" K) < 3¢ > 0Vp e N" s.t. sup | DPp(z)ehx @l < oo,
zER"

o(z) € g & Vpe N* 3k > 0 s.t. sup |DPo(z)|ek® < co.
zER™

Therefore if {0} C K, then H(R", K) C 3.

Remark 3.4. L.Hormander treated the base space Sy so that D C §f C
H(R", K) and the Fourier-Laplace transform of S;. For the details we refer

the reader to [5].
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Definition 3.5. We denote by H’'(R",R") the dual space of H(R",R") and
by H'(R", K) the dual space of H(R™, K'). The elements of H'(R",R") and
H'(R™, K) are called distributions of exponential growth.

Definition 3.6. We put H,(R", K) := {T € H'(R*, K);supp T C A}.

Now we have the structure theorem for distributions of exponential growth
with support A C R™:

Theorem 3.7 ([14]). Let A be a set in R* and T € HL(R",K). Then for
every € > 0 there exist S(z) € S, no € N andt; € K, j =1,2,--- ,ng such
that

T = 8S(z)evVit® Z eli®,

1<ji<no
For HL(R", K), we have the following corollaries:

Corollary 3.8 ([14]). Let ' be a proper open convez cone in R™ and let
T € Hy(R",K). Then for any € > 0 there ezist m¢ € N and bounded

continuous functions F, o(z), |a| < m., supp(F.(z)) CT such that

T = Y () @)

laj<m,

Corollary 3.9 ([14]). Let I' be a proper open conver cone in R* and let
T € HHR",K). Then for any e > 0 there exist ng, a partial differen-
tial operator with finite order P.(D) and a polynomially bounded continuous
function G(z), supp (Ge(z)) C T such that

T = P/(D)G.(z)x F*(z), F*(z) = V1t Z etn?,
1<n<ng
wheret, € K, (n=1,--- ,ng). »
Corollary 3.10 ([14]). Let T € H§+UF_(R",K ). Then there exist T, €
Hy, (R*,K) and T_ € Hy (R", K) such that
T = T, +T..

Remark 3.11. M.Morimoto obtained this result for the 1-dimensional case
in [10].



Example 3.12 (Example for Corollary 3.8). Letn =2, K = {(21,22) €
R? |z| < 1} and T == {(z1,7,) € R% 2% — 22 > 0,2, > 0}. We define T(z)
by

0, otherwise.

T(z) = { VI — 23, 2t —12}>0, 1 >0,
Then hg(z) = |z|, T(z) € H(R? K) and for £ > 0,

where

F.(z) = { o — e, 2} -3 >0, ;1 >0,

0, otherwise.

Then F,(z) is a bounded continuous function and supp(F,) C T.

Example 3.13. Let n =1, K = {1} and T := (0,00). We define T'(x) by

_ [ €, el =(0,00),
T(z) = { 0, ze¢€(—o0,0].

Then T € Hi(R, K) and for e > 0

r = 3 (2) tRa@e,

k=0
where F, ;(z) = (=1)*+!x, (z)e~* and

x+(z) = { g: wféﬂ'(ig:gi)’

Then F. 4(z) is a bounded continuous function and supp(Fex) C T.

4 Distributions of exponential growth sup-
ported by a proper convex cone

In this section, we shall characterize Hi(R", K') by the heat kernel method.
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Theorem 4.1 ([14]). Let ' C R" be a proper open convex cone, T €
HL(R™, K) and U(z,t) = (T, E(z — y,t)). Then U(z,t) € C*(R" x (0,00))
satisfying the following conditions:

(% - A) Uz, t) =0, (1)
Uw,t) > T, (= 0,), in HR"K), @)

Ve>03N,>203C. >0
s(z,T)?
st |U(z,t)| < CutNee P ghx@tell 0 <t <1, z €R" (3)
Conversely, for a function U(z,t) € C®(R"™ x (0, 00)) satisfying (1) and (3),
there ezists a unique T € HL(R", K) such that (T, E(z — y,t)) = U(z, ).

Corollary 4.2 ([14]). Let T € Hx(R",K) and U(z,t) = (T, E(z - y,1)).
Then U(x,t) € C°(R™ x (0,00)) satisfies the following conditions:

(% - A) U(z,t) =0, ' (4)
U(z,t) — T, (t = 0), in H'(R", K), (5)

Ve >0 3N 3C >0 st. |[U(z, )] < Ot Vetx@tell 0 <t <1, zeR
and U(z,t) —= 0, (t = 04), uniformly for all compact sets in R*\T. (6)

Conversely, for a function U(z,t) € C*(R" x (0,00)) satisfying (4) and (6),
there exists a unique T € HL(R", K) such that (T, E(z — y,t)) = U(z,?).

5 Paley-Wiener theorem for H;(R", K)

In this section, we shall see the Paley-Wiener theorem for Hi',-(R", K). For
the 1-dimentional case, it is given in [10].

Definition 5.1. Let I' be a proper open convex cone, K be a compact set
and ¢ > 0. Then we denote L by

L - {ﬂ({u}+(‘f’)°>} .

uweK
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Proposition 5.2. L # {.

Definition 5.3 ([10], [16]). For T € H(R", K), we define the Fourier-
Laplace transform LF(T) of T by

LFT)C) = (T, e%%), ¢ eCm

1
(2m)%
The right hand side means '

(T, €%) = (To, x(2)e),
where x(z) € C>(R") which satisfies

(z) = 1 ,zeif_,
X 0 ,z¢Th, £>0.

Definition 5.4. Let ' be a proper open convex cone and K be a compact
set. Fore >0and u; € K, j=1,---,jo, we set the following notations:

I = {u;} +T)°, [, = R\R"\[])..
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Theorem 5.5 ([14]). Let T be a proper open convez cone, K be a convez
compact set, T € HL{(R", K) and f(¢) = LF(T)(€ + ). Then for every
€ > 0 there eist jo € N, l. > 0 and the families {u;}2, C K, {f;({)}2,
satisfying the conditions (7), (8), (9):

£(¢) € HR™ +4[TT). (7)

VT € (T')° 3M, 5, > 0 such that
151 < MO+ ), ¢ €R® +oTol . 8)
f©) = Z (s} (9)

In particular, f(¢) € H(R™ +:1L).

Conversely if f(¢) € H(R™ +1L) satisfies the conditions (7), (8) and (9),
then there ezists a unique T € H(R™, K) such that f(¢) = (—2—15)—,{(Tm,e'<").

Furthermore T is given by the following formula:

T = Y. T, T;€HKR{w}) (10)
1<ji<jo
1 | (T
5Hi©) = ————(zﬂgmx,ew. | (11)

Corollary 5.6 ([14]). LetT be a proper open conver cone, T € HL(R", {0})
and f(¢) = LF(T)(& +m). Then for e > 0 there erists I, > 0 satisfying the
conditions (12), (13):

FO) € H(R™ +1L). (12)
Ve € (T')° 3M, > 0 such that
17O < MO+, ¢eR*+al¢) 2. (13)

Conversely if f(¢) € H(R" +1L) satisfies the conditions (12) and (13), then

there exists a unique T € He(R", {0}) such that f({) = a:lﬁr(Tm, ex®).
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Remark 5.7 (Remark for Corollary 5.6). Now we consider more gen-
eral Fourier-Laplace transforms. That is, if T € D’ and e™"T € &', then we
can define the Fourier-Laplace transform LF(T)(¢) of T. Furthermore it is
known that we can obtain the Paley-Wiener theorem for T € D’ if I'7. is not
empty where 'y := {n € R* e~ T € S’} (see Theorem 7.4.2 in [4]).

So we can assert that for the Paley-Wiener theorem for T' € D’ (that is,
for Theorem 7.4.2 in [4]) we can take the element of the space HL(R", {0})
as T € D' if and only if the conditions of Corollary 5.6 are satisfied.

Example 5.8 (Example for Theorem 5.5). Letn =2, K = {0}x[-1,1]
and I := {z = (z1,7;) € R} 2? — 23 > 0, z, > O}(= (T')°). We define T(z)
by

el g2 —22>0, 2, >0,
T(z) = { 0, otherwise.

We can see T € Hx(R%, K) and if n € L := {n = (m,m); {(1,0)} + ')},
then

1 1
WGl +ila+1) (6 — G +1)

= fi(C) + f2(0)-
Then we can see fi(¢) € H(R? +1L,) and f5(¢) € H(R? + 1L,), where
Ly = {n=(n,m); {(O,D} + @)} L2i={n=(n,m){(0,-1)}+ T’}

and L = L; N Ly;. Now we define

(Toy €7)

i

T, = e*?, x> I3, Ty > 0, T, = e 1> —Ty T2< 0,
0, otherwise, 0 otherwise.
?

Then we have T} € HL(R?,{(0,1)}), Tz € HL(R? {(0,-1)}) and

(le,ez(z> = fl(C)’ <T22,ezqa:) = f2(€)? T= Tl + Tg.
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6 Edge-of-the-Wedge theorem

In this section we shall see the Edge-of-the-Wedge theorem for the space of
the image by the Fourier-Laplace transform of T € HL(R", K). First we
introduce some spaces of holomorphic functions. For details we refer the
reader to [10}, [11].

Definition 6.1. For a subset A of R", we define a set T(A) by T(4) =
R"™ x 1A.

Definition 6.2. For a convex compact set K of R® and £ > 0,

(T (K.))
= {e({) € H(T(K?)) ﬂC(T(K,));Ces;}t% | I€*¢0(¢)| < oo for Vo € N},

QT (K)) := lim @u(T (Ke)).

e>0



Definition 6.3. The dual space Q'(T(K)) of Q(T(K)) is called tempered
ultrahyperfunctions [10], [11].

We have the following theorem for the spaces H(R", K) and Q(T(K )):
Theorem 6.4 ([10]). Let p(z) € H(R", K). The Fourier inverse transform

FHe)Q) = g [ ol@ee

establishes a topological isomorphism of H(R™, K) onto Q(T(K)). The in-
verse mapping F is given by

FW)(@) = / BE+m)eCHsde, e Ko, € Q(T(K.)). (14)

Remark 6.5. In (14), we notice that F(¢)(z) is independent of n € K by
Cauchy’s integral theorem.

Definition 6.6 ([10]). For T € H'(R", K), we define the dual Fourier trans-
form F(T) as a continuous linear functional on Q(7(K)) by the formula

(F(T), ) = (T, F(¥)), for ¢ € QT(K)). (15)
As a consequence of Theorem 6.4, we have the following theorem:

Theorem 6.7 ([10]). The dual Fourier transform (15) gives topological iso-
morphisms

F:HR" K)— Q(T(K)).

Definition 6.8. Let K = {u}, ¥ € Q,(T(K.,)) and assume that f({) €
H(R™ + L) satisfies

Ve>03l. >0Vl € (T)° 3IM,r, 205t

IFOI S MO+, ¢ €R™ +1flc]-..
Then we define (f(¢), ¥(()) by
(F(O),¥(Q) = (F(€+wm0), ¥(§+ 1))
= | F(€ + o) (€ + 1mo)dE,

where 9o € ({u} + (T)°) N (K.,°).
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Definition 6.9. Let K = {u}, T € H(R",K) and ¢ € Q(T(K)), ¢ €
Q(T(K.,)). By Theorem 5.5 and Definition 6.8, we define (LF(T)({), ¥(¢))
by '

(LF(T)C),9(Q)) = {LF(T)(& + 1m0), ¥(& + vmo)), (16)
where mo € ({u} +(T')°) N (Ke,).

Now we can show Edge-of-the-Wedge theorem. For the direct product
case, it is given in [11]. _

Theorem 6.10 (Edge-of-the-Wedge Theorem [14]). LetI'y, I'y be proper
open convez cones in R",

L = {un} + (T,)°, m=12
Assume that F1(¢) € H(R™ +1L1) and F5(¢) € H(R" +2Ls) satisfy
Ve > 0 Jl, > 0VTg, € (T,,)° IM, 5, >0 st
|Fn(Q)l < M5, (1+ ¢, (eR*+4lc,) 5, m=12 (17)
where [To,]_, = R"\(R™\({um} +Tc,.)°)e.

Let K be a convex compact set which contains the segment with {v,} and
{uy} as extremal point. Assume that

(F(0),¥(Q)) = (F(Q),¥()) V¥({) € T(K)). (18)
Then there ezists F({) € H(R™ + +(L} U L})) such that
FOl@rsizyy = F1(€),  F(Olmrtaza) = F2(C),
where L, = {u1} + (T, UT,)° and L, = {us} + (T, UT,)°. Purthermore
(i) if Ty NT; = {0}, then F(C) is polynomial,
(i) #f {wa} = {u2}(=: {u}), then we have .
F(Q) € HR™ +({u} + (T UT)?) (19)
and

IFOI < M+ [C]), ¢eR*+1lc], (20)
where [T¢]-. = R™\(R™\({u} + T¢)°)..

Ve >0 3, 2 0VTg € (T, UT,)° 3IM,r_ >0
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(F2(¢), ¥(<))

e
P
g/K//

L,

(F1(€), ¥(<))
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