Distributions of exponential growth with support in a proper convex cone

諏訪 将範[†] Masanori Suwa

上智大学理工学研究科数学専攻 Department of Mathematics, Sophia University

1 Introduction

In this talk we treated the space $H'(\mathbb{R}^n, K)$ of distributions of exponential growth. The spaces of distributions of exponential growth for the 1-dimensional case, direct product case or global case were investigated by many authors ([3], [5], [6], [10], [11], [12], [13], [15], [17]). In [3] M.Hasumi studied the space $H(\mathbb{R}^n, \mathbb{R}^n)$ and the dual space $H'(\mathbb{R}^n, \mathbb{R}^n)$ (see Definition 3.2 and Definition 3.5). In [10] M.Morimoto studied the space $H(\mathbb{R}^n, K)$ and the dual space $H'(\mathbb{R}^n, K)$ (see Definition 3.2 and Definition 3.5). The purpose of this talk was to treat the space of distributions of exponential growth supported by a proper convex cone $\overline{\Gamma} \subset \mathbb{R}^n$, (denote by $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$).

In §3 we shall state the base space $H(\mathbb{R}^n, K)$ and its dual space $H'(\mathbb{R}^n, K)$. The main purpose in this section is to introduce the structure theorem for $H'_{\overline{A}}(\mathbb{R}^n, K)$, the space of distributions of exponential growth supported by a set $\overline{A} \subset \mathbb{R}^n$ (Theorem 3.7). Therefore as corollary we obtain the structure theorem for $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, where $\overline{\Gamma} \subset \mathbb{R}^n$ is a proper convex cone, (Corollary 3.8), and the result which G.Lysik obtained for the case of direct product support of half lines ([6]). Furthermore we have the decomposition theorem for distributions of exponential growth with support in $\overline{\Gamma}_+ \cup \overline{\Gamma}_-$, (Corollary 3.10).

In §4 we shall characterize the space $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ by the heat kernel method (Theorem 4.1), which T.Matsuzawa introduced for the spaces of distributions, ultradistributions and hyperfunctions [2], [7], [8], [9].

In §5 we shall introduce the Paley-Wiener theorem for $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then we showed that the Fourier-Laplace transform of $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ is a holomorphic function constructed by a finite sum of functions which are holomorphic on the domains whose imaginary parts are proper convex cones with

[†]E-mail address: m-suwa@mm.sophia.ac.jp

vertex at the elements of K and with some polynomial growth conditions and conversely such a holomorphic function can be represented by the Fourier-Laplace transform of a distribution of exponential growth $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then we can see that T is constructed by a finite sum of distributions of exponential growth supported by a proper convex cone $\overline{\Gamma}$ (Theorem 5.5). As corollary we have the result which M.Morimoto showed for the 1-dimensional case [10].

In §6 we shall state the space of the image by the Fourier-Laplace transform of $T \in H'_{\Gamma}(\mathbb{R}^n, K)$. Then by using the Paley-Wiener theorem given in §5, we can obtain the Edge-of-the-Wedge theorem for this space (Theorem 6.10). These results are generalizations of the work which M.Morimoto showed for the case of direct product ([11], Theorem 2).

2 Preliminaries

Definition 2.1. We define some notations:

$$x = (x_1, \dots, x_n) \in \mathbb{R}^n, \ \langle x, \xi \rangle = \sum_{j=1}^n x_j \xi_j \quad \text{for } x, \xi \in \mathbb{R}^n, \ x^2 = \langle x, x \rangle.$$

$$z = (z_1, \dots, z_n) \in \mathbb{C}^n, \quad z_j = x_j + iy_j, \quad j = 1, \dots, n.$$

$$\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n, \ D^{\alpha} = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}, \quad \Delta = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}.$$

$$E(x, t) = (4\pi t)^{-\frac{n}{2}} \exp(-x^2/4t), \quad t > 0.$$
For $\zeta \in \mathbb{C}^n, \ \zeta = (\zeta_1, \dots, \zeta_n)$, we put $|\zeta| = \sqrt{|\zeta_1|^2 + \dots + |\zeta_n|^2}.$

Definition 2.2. Let K be a convex compact set in \mathbb{R}^n . Then we define supporting function of K by $h_K(x) = \sup_{\xi \in K} \langle x, \xi \rangle$.

Definition 2.3. Let Ω be an open set in \mathbb{C}^n . We denote by $\mathcal{H}(\Omega)$ the space of holomorphic functions on Ω and by $\mathcal{C}(\Omega)$ the space of continuous functions on Ω .

Definition 2.4. $\mathcal{S}(\mathbb{R}^n)$ is the space of rapidly decreasing \mathcal{C}^{∞} functions and $\mathcal{S}'(\mathbb{R}^n)$ is the space of tempered distributions.

Definition 2.5. Let A be a set in \mathbb{R}^n . Then we denote by A° the interior of A, \overline{A} the closure of A, for $\varepsilon > 0$, $A_{\varepsilon} = \{x \in \mathbb{R}^n; \operatorname{dis}(x, A) \leq \varepsilon\}$ and by $\operatorname{ch}(A)$ convex hull of A.

Definition 2.6. Let Γ be a cone with vertex at 0. If $\overline{\operatorname{ch}\Gamma}$ contains no straight line, then we call Γ proper cone.

Definition 2.7 ([4],[16]). Let Γ be a cone. We put

$$\Gamma' := \{ \xi \in \mathbb{R}^n; \langle y, \xi \rangle \ge 0 \text{ for all } y \in \Gamma \}.$$

Then we call Γ' dual cone of Γ .

Definition 2.8. Let Γ be a cone. Then we denote by $\operatorname{pr}\Gamma$ the intersection of Γ and the unit sphere. The cone Γ_1 is said to be a compact cone in the cone Γ_2 if $\operatorname{pr}\overline{\Gamma}_1 \subset \operatorname{pr}\Gamma_2$ and we write $\Gamma_1 \subseteq \Gamma_2$.

Proposition 2.9 ([16]). Following conditions are equivalent:

- 1. Γ is proper cone.
- 2. $(\Gamma')^{\circ} \neq \emptyset$.
- 3. For any $C \in (\Gamma')^{\circ}$, there exists a number $\sigma = \sigma(C) > 0$ such that $\langle \xi, x \rangle \geq \sigma |\xi| |x|, \ \xi \in C, \ x \in \operatorname{ch}\overline{\Gamma}.$

Proposition 2.10 ([16]). $(\Gamma')' = \overline{\operatorname{ch}\Gamma}$ and $(\Gamma_1 \cap \Gamma_2)' = \operatorname{ch}(\Gamma'_1 \cup \Gamma'_2)$. Furthermore for a convex cone Γ , we have $\Gamma = \Gamma + \Gamma$.

Definition 2.11. Let Γ_+ be a cone with vertex at 0. Then we put $\Gamma_- = -\Gamma_+$.

Definition 2.12. Let A be a set in \mathbb{R}^n . We put $\mathcal{S}'_{\overline{A}} := \{T \in \mathcal{S}'(\mathbb{R}^n); \operatorname{supp} T \subset \overline{A}\}.$

3 Distributions of exponential growth

In this section, we shall introduce $H'(\mathbb{R}^n, K)$, the space of distributions of exponential growth, and give the structure theorem of $H'(\mathbb{R}^n, K)$.

Definition 3.1. Let K be a convex compact set in \mathbb{R}^n and $\varepsilon > 0$. Then we define $H_b(\mathbb{R}^n, K_{\varepsilon})$ as follows:

$$H_b(\mathbb{R}^n, K_{\varepsilon}) := \{ \varphi \in C^{\infty}(\mathbb{R}^n); \sup_{x \in \mathbb{R}^n} |D^p \varphi(x) e^{h_K(x) + \varepsilon |x|} | < +\infty, \text{ for } \forall p \in \mathbb{N}^n \}.$$

Definition 3.2. We define the spaces $H(\mathbb{R}^n, \mathbb{R}^n)$ and $H(\mathbb{R}^n, K)$ as follows:

$$H(\mathbb{R}^n,\mathbb{R}^n):=\varprojlim_{\varepsilon>0}H_b(\mathbb{R}^n,K_\varepsilon),\quad H(\mathbb{R}^n,K):=\varinjlim_{\varepsilon>0}H_b(\mathbb{R}^n,K_\varepsilon),$$

where $\lim_{\epsilon \to 0}$ means projective limit and $\lim_{\epsilon \to 0}$ means inductive limit.

Remark 3.3. Now we give the relations of $H(\mathbb{R}^n, K)$ and the other function spaces:

- (i) If $\{0\} \subset K$, then $H(\mathbb{R}^n, K) \subset \mathcal{S}$.
- (ii) Let $r \geq 0$, $s \geq 0$, $\mathcal{S}_r^s(\mathbb{R}^n)$ be Gel'fand-Shilov space and $\mathcal{S}_r(\mathbb{R}^n) = \varinjlim_{s \to \infty} \mathcal{S}_r^s(\mathbb{R}^n)$. Then it is known that

$$\mathcal{S}_1(\mathbb{R}^n) = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}^n); \exists \delta > 0 \ \forall \alpha \sup_{x \in \mathbb{R}^n} |D_x^{\alpha} f(x)| e^{\delta |x|} < \infty \},$$

(for details we refer the reader [12]). Therefore

- (a) If $K = \{0\}$, then $H(\mathbb{R}^n, K) = \mathcal{S}_1(\mathbb{R}^n)$.
- (b) If $\{0\} \subset K$, then $H(\mathbb{R}^n, K) \subset \mathcal{S}_1(\mathbb{R}^n)$.
- (iii) The space $H(\mathbb{R}^n, K)$ is slightly different from \mathfrak{L}_E in [1]. In fact

$$\varphi(x) \in H(\mathbb{R}^n, K) \Leftrightarrow \exists \varepsilon > 0 \ \forall p \in \mathbb{N}^n \ s.t. \ \sup_{x \in \mathbb{R}^n} |D^p \varphi(x) e^{h_K(x) + \varepsilon |x|}| < \infty.$$

$$\varphi(x) \in \mathfrak{A}_E \Leftrightarrow \forall p \in \mathbb{N}^n \ \exists k > 0 \ s.t. \ \sup_{x \in \mathbb{R}^n} |D^p \varphi(x)| e^{k|x|} < \infty.$$

Therefore if $\{0\} \subset K$, then $H(\mathbb{R}^n, K) \subset \mathfrak{A}_E$.

Remark 3.4. L.Hörmander treated the base space S_f so that $\mathcal{D} \subset S_f \subset H(\mathbb{R}^n, K)$ and the Fourier-Laplace transform of S_f . For the details we refer the reader to [5].

Definition 3.5. We denote by $H'(\mathbb{R}^n, \mathbb{R}^n)$ the dual space of $H(\mathbb{R}^n, \mathbb{R}^n)$ and by $H'(\mathbb{R}^n, K)$ the dual space of $H(\mathbb{R}^n, K)$. The elements of $H'(\mathbb{R}^n, \mathbb{R}^n)$ and $H'(\mathbb{R}^n, K)$ are called distributions of exponential growth.

Definition 3.6. We put $H'_{\overline{A}}(\mathbb{R}^n, K) := \{T \in H'(\mathbb{R}^n, K); \text{supp } T \subset \overline{A}\}.$

Now we have the structure theorem for distributions of exponential growth with support $\overline{A} \subset \mathbb{R}^n$:

Theorem 3.7 ([14]). Let A be a set in \mathbb{R}^n and $T \in H'_{\overline{A}}(\mathbb{R}^n, K)$. Then for every $\varepsilon > 0$ there exist $S(x) \in \mathcal{S}'_{\overline{A}}$, $n_0 \in \mathbb{N}$ and $t_j \in K$, $j = 1, 2, \dots, n_0$ such that

$$T = S(x)e^{\varepsilon\sqrt{1+x^2}}\sum_{1\leq j\leq n_0}e^{t_jx}.$$

For $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, we have the following corollaries:

Corollary 3.8 ([14]). Let Γ be a proper open convex cone in \mathbb{R}^n and let $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then for any $\varepsilon > 0$ there exist $m_{\varepsilon} \in \mathbb{N}$ and bounded continuous functions $F_{\varepsilon,\alpha}(x)$, $|\alpha| \leq m_{\varepsilon}$, supp $(F_{\varepsilon,\alpha}(x)) \subset \overline{\Gamma}$ such that

$$T = \sum_{|\alpha| \leq m_{\varepsilon}} \left(\frac{\partial}{\partial x} \right)^{\alpha} \{ e^{h_{K}(x) + \varepsilon |x|} F_{\varepsilon,\alpha}(x) \}.$$

Corollary 3.9 ([14]). Let Γ be a proper open convex cone in \mathbb{R}^n and let $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. Then for any $\varepsilon > 0$ there exist n_0 , a partial differential operator with finite order $P_{\varepsilon}(D)$ and a polynomially bounded continuous function $G_{\varepsilon}(x)$, supp $(G_{\varepsilon}(x)) \subset \overline{\Gamma}$ such that

$$T = P_{\varepsilon}(D)G_{\varepsilon}(x) \times F^{*}(x), \qquad F^{*}(x) = e^{\varepsilon\sqrt{1+x^{2}}} \sum_{1 \leq n \leq n_{0}} e^{t_{n}x},$$

where $t_n \in K$, $(n = 1, \dots, n_0)$.

Corollary 3.10 ([14]). Let $T \in H'_{\overline{\Gamma}_+ \cup \overline{\Gamma}_-}(\mathbb{R}^n, K)$. Then there exist $T_+ \in H'_{\overline{\Gamma}_+}(\mathbb{R}^n, K)$ and $T_- \in H'_{\overline{\Gamma}_-}(\mathbb{R}^n, K)$ such that

$$T = T_+ + T_-.$$

Remark 3.11. M.Morimoto obtained this result for the 1-dimensional case in [10].

Example 3.12 (Example for Corollary 3.8). Let n = 2, $K = \{(x_1, x_2) \in \mathbb{R}^2; |x| \leq 1\}$ and $\Gamma := \{(x_1, x_2) \in \mathbb{R}^2; x_1^2 - x_2^2 > 0, x_1 > 0\}$. We define T(x) by

$$T(x) = \left\{ egin{array}{ll} \sqrt{x_1^2 - x_2^2} e^{|x|}, & x_1^2 - x_2^2 > 0, \; x_1 > 0, \\ 0, & otherwise. \end{array}
ight.$$

Then $h_K(x)=|x|,\, T(x)\in H'_{\overline{\Gamma}}(\mathbb{R}^2,K)$ and for $\varepsilon>0,$

$$T(x) = \sqrt{x_1^2 - x_2^2} e^{-\varepsilon |x|} e^{|x|} e^{\varepsilon |x|} = F_{\varepsilon}(x) e^{h_K(x) + \varepsilon |x|},$$

where

$$F_{arepsilon}(x) = \left\{ egin{array}{ll} \sqrt{x_1^2 - x_2^2} e^{-arepsilon |x|}, & x_1^2 - x_2^2 > 0, \; x_1 > 0, \\ 0, & otherwise. \end{array}
ight.$$

Then $F_{\varepsilon}(x)$ is a bounded continuous function and $\operatorname{supp}(F_{\varepsilon}) \subset \overline{\Gamma}$.

Example 3.13. Let $n=1, K=\{1\}$ and $\Gamma:=(0,\infty)$. We define T(x) by

$$T(x) = \left\{ \begin{array}{ll} e^x, & x \in \Gamma = (0, \infty), \\ 0, & x \in (-\infty, 0]. \end{array} \right.$$

Then $T \in H'_{\overline{\Gamma}}(\mathbb{R}, K)$ and for $\varepsilon > 0$

$$T = \sum_{k=0}^{1} \left(\frac{\partial}{\partial x} \right)^{k} \{ F_{\epsilon,k}(x) e^{x+\epsilon|x|} \},$$

where $F_{\epsilon,k}(x) = (-1)^{k+1} \chi_+(x) e^{-\epsilon |x|}$ and

$$\chi_{+}(x) = \begin{cases} x, & x \in \Gamma = (0, \infty), \\ 0, & x \in (-\infty, 0]. \end{cases}$$

Then $F_{\varepsilon,k}(x)$ is a bounded continuous function and $\operatorname{supp}(F_{\varepsilon,k}) \subset \overline{\Gamma}$.

4 Distributions of exponential growth supported by a proper convex cone

In this section, we shall characterize $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ by the heat kernel method.

Theorem 4.1 ([14]). Let $\Gamma \subset \mathbb{R}^n$ be a proper open convex cone, $T \in H'_{\Gamma}(\mathbb{R}^n, K)$ and $U(x,t) = \langle T_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying the following conditions:

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x, t) = 0, \tag{1}$$

$$U(x,t) \to T, (t \to 0_+), in H'(\mathbb{R}^n, K),$$
 (2)

 $\forall \varepsilon > 0 \ \exists N_{\varepsilon} > 0 \ \exists C_{\varepsilon} \geq 0$

$$s.t. |U(x,t)| \le C_{\varepsilon} t^{-N_{\varepsilon}} e^{-\frac{\operatorname{dis}(x,\overline{\Gamma})^2}{16t}} e^{h_K(x) + \varepsilon |x|}, \ 0 < t < 1, \ x \in \mathbb{R}^n.$$
 (3)

Conversely, for a function $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying (1) and (3), there exists a unique $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n,K)$ such that $\langle T_y, E(x-y,t) \rangle = U(x,t)$.

Corollary 4.2 ([14]). Let $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and $U(x,t) = \langle T_y, E(x-y,t) \rangle$. Then $U(x,t) \in C^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfies the following conditions:

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x, t) = 0, \tag{4}$$

$$U(x,t) \longrightarrow T, (t \to 0_+), in H'(\mathbb{R}^n, K),$$
 (5)

 $\forall \varepsilon > 0 \ \exists N \ \exists C \geq 0 \ s.t. \ |U(x,t)| \leq Ct^{-N}e^{h_K(x)+\varepsilon|x|}, \ 0 < t < 1, \ x \in \mathbb{R}^n$ and $U(x,t) \to 0, (t \to 0_+), \ uniformly for all compact sets in <math>\mathbb{R}^n \setminus \overline{\Gamma}$. (6)

Conversely, for a function $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^n \times (0,\infty))$ satisfying (4) and (6), there exists a unique $T \in H'_{\Gamma}(\mathbb{R}^n,K)$ such that $\langle T_y, E(x-y,t) \rangle = U(x,t)$.

5 Paley-Wiener theorem for $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$

In this section, we shall see the Paley-Wiener theorem for $H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. For the 1-dimentional case, it is given in [10].

Definition 5.1. Let Γ be a proper open convex cone, K be a compact set and $\varepsilon' > 0$. Then we denote L by

$$L = \left\{ \bigcap_{u \in K} (\{u\} + (\overline{\Gamma}')^{\circ}) \right\}^{\circ}.$$

Proposition 5.2. $L \neq \emptyset$.

Definition 5.3 ([10], [16]). For $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$, we define the Fourier-Laplace transform $\mathcal{LF}(T)$ of T by

$$\mathcal{LF}(T)(\zeta) := \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle, \quad \zeta \in \mathbb{C}^n.$$

The right hand side means

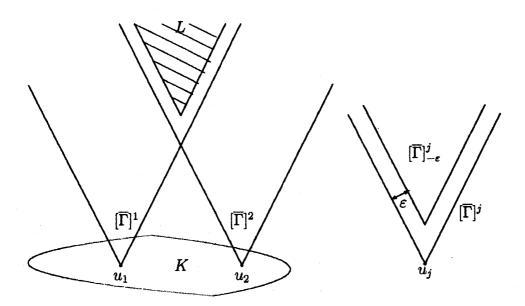
$$\langle T_x, e^{i\zeta x} \rangle = \langle T_x, \chi(x)e^{i\zeta x} \rangle,$$

where $\chi(x) \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ which satisfies

$$\chi(x) = \left\{ egin{array}{ll} 1 & , x \in \overline{\Gamma}_{arepsilon} \ 0 & , x
otin \overline{\Gamma}_{2arepsilon}, & arepsilon > 0. \end{array}
ight.$$

Definition 5.4. Let Γ be a proper open convex cone and K be a compact set. For $\varepsilon > 0$ and $u_j \in K$, $j = 1, \dots, j_0$, we set the following notations:

$$\left[\overline{\Gamma}\right]^{j} = (\{u_{j}\} + \overline{\Gamma})^{\circ}, \quad \left[\overline{\Gamma}\right]_{-\varepsilon}^{j} = \mathbb{R}^{n} \backslash (\mathbb{R}^{n} \backslash \left[\overline{\Gamma}\right]^{j})_{\varepsilon}.$$



Theorem 5.5 ([14]). Let Γ be a proper open convex cone, K be a convex compact set, $T \in H'_{\Gamma}(\mathbb{R}^n, K)$ and $f(\zeta) = \mathcal{LF}(T)(\xi + i\eta)$. Then for every $\varepsilon > 0$ there exist $j_0 \in \mathbb{N}$, $l_{\varepsilon} \geq 0$ and the families $\{u_j\}_{j=1}^{j_0} \subset K$, $\{f_j(\zeta)\}_{j=1}^{j_0}$ satisfying the conditions (7), (8), (9):

$$f_j(\zeta) \in \mathcal{H}(\mathbb{R}^n + \imath[\overline{\Gamma}']^j).$$
 (7)

 $\forall \ \overline{\Gamma}_C \Subset (\overline{\Gamma}')^\circ \ \exists M_{\epsilon,\overline{\Gamma}_C} \geq 0 \ such \ that$

$$|f_j(\zeta)| \le M(1+|\zeta|)^l, \quad \zeta \in \mathbb{R}^n + i[\overline{\Gamma}_C]_{-2\varepsilon}^j.$$
 (8)

$$f(\zeta) = \sum_{1 \le j \le j_0} f_j(\zeta). \tag{9}$$

In particular, $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$.

Conversely if $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$ satisfies the conditions (7), (8) and (9), then there exists a unique $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ such that $f(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle$. Furthermore T is given by the following formula:

$$T = \sum_{1 \le j \le j_0} T_j, \quad T_j \in H'_{\overline{\Gamma}}(\mathbb{R}^n, \{u_j\}), \tag{10}$$

$$f_j(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_{j_x}, e^{i\zeta x} \rangle. \tag{11}$$

Corollary 5.6 ([14]). Let Γ be a proper open convex cone, $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, \{0\})$ and $f(\zeta) = \mathcal{LF}(T)(\xi + i\eta)$. Then for $\varepsilon > 0$ there exists $l_{\varepsilon} \geq 0$ satisfying the conditions (12), (13):

$$f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL).$$
 (12)

 $\forall \overline{\Gamma}_C \in (\overline{\Gamma}')^{\circ} \ \exists M_{\varepsilon,\overline{\Gamma}_C} \geq 0 \ such \ that$

$$|f(\zeta)| \leq M(1+|\zeta|)^l, \quad \zeta \in \mathbb{R}^n + i[\overline{\Gamma}_C]_{-2\varepsilon}.$$
 (13)

Conversely if $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$ satisfies the conditions (12) and (13), then there exists a unique $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, \{0\})$ such that $f(\zeta) = \frac{1}{(2\pi)^{\frac{n}{2}}} \langle T_x, e^{i\zeta x} \rangle$.

Remark 5.7 (Remark for Corollary 5.6). Now we consider more general Fourier-Laplace transforms. That is, if $T \in \mathcal{D}'$ and $e^{-\eta x}T \in \mathcal{S}'$, then we can define the Fourier-Laplace transform $\mathcal{LF}(T)(\zeta)$ of T. Furthermore it is known that we can obtain the Paley-Wiener theorem for $T \in \mathcal{D}'$ if Γ_T° is not empty where $\Gamma_T := \{ \eta \in \mathbb{R}^n ; e^{-\langle \cdot, \eta \rangle}T \in \mathcal{S}' \}$ (see Theorem 7.4.2 in [4]).

So we can assert that for the Paley-Wiener theorem for $T \in \mathcal{D}'$ (that is, for Theorem 7.4.2 in [4]) we can take the element of the space $H'_{\overline{\Gamma}}(\mathbb{R}^n, \{0\})$ as $T \in \mathcal{D}'$ if and only if the conditions of Corollary 5.6 are satisfied.

Example 5.8 (Example for Theorem 5.5). Let n = 2, $K = \{0\} \times [-1, 1]$ and $\Gamma := \{x = (x_1, x_2) \in \mathbb{R}^2; x_1^2 - x_2^2 > 0, x_1 > 0\} (= (\overline{\Gamma}')^\circ)$. We define T(x) by

$$T(x) = \left\{ egin{array}{ll} e^{|x_2|}, & x_1^2 - x_2^2 > 0, \; x_1 > 0, \\ 0, & otherwise. \end{array}
ight.$$

We can see $T \in H'_{\overline{\Gamma}}(\mathbb{R}^2, K)$ and if $\eta \in L := \{ \eta = (\eta_1, \eta_2); \{(1, 0)\} + (\overline{\Gamma}')^{\circ} \}$, then

$$\langle T_x, e^{i\zeta x} \rangle = \frac{1}{i\zeta_1(i\zeta_1 + i\zeta_2 + 1)} - \frac{1}{i\zeta_1(i\zeta_1 - i\zeta_2 + 1)}$$
$$= f_1(\zeta) + f_2(\zeta).$$

Then we can see $f_1(\zeta) \in \mathcal{H}(\mathbb{R}^2 + iL_1)$ and $f_2(\zeta) \in \mathcal{H}(\mathbb{R}^2 + iL_2)$, where

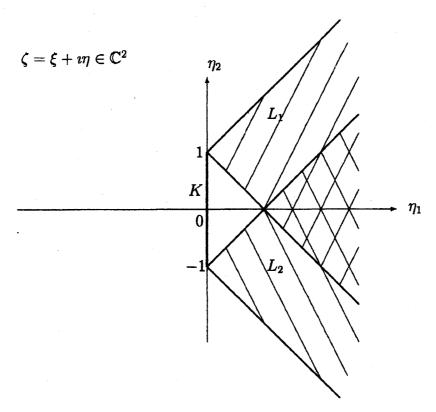
$$L_1:=\{\eta=(\eta_1,\eta_2);\{(0,1)\}+(\overline{\Gamma}')^\circ\}, \quad L_2:=\{\eta=(\eta_1,\eta_2);\{(0,-1)\}+(\overline{\Gamma}')^\circ\},$$

and $L = L_1 \cap L_2$. Now we define

$$T_1 = \left\{ egin{array}{ll} e^{x_2}, & x_1 > x_2, & x_2 > 0, \\ 0, & otherwise, \end{array}
ight. \quad T_2 = \left\{ egin{array}{ll} e^{-x_2}, & x_1 > -x_2, & x_2 < 0, \\ 0, & otherwise. \end{array}
ight.$$

Then we have $T_1 \in H'_{\overline{\Gamma}}(\mathbb{R}^2, \{(0,1)\}), T_2 \in H'_{\overline{\Gamma}}(\mathbb{R}^2, \{(0,-1)\})$ and

$$\langle T_{1_x}, e^{i\zeta x} \rangle = f_1(\zeta), \quad \langle T_{2_x}, e^{i\zeta x} \rangle = f_2(\zeta), \quad T = T_1 + T_2.$$



6 Edge-of-the-Wedge theorem

In this section we shall see the Edge-of-the-Wedge theorem for the space of the image by the Fourier-Laplace transform of $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$. First we introduce some spaces of holomorphic functions. For details we refer the reader to [10], [11].

Definition 6.1. For a subset A of \mathbb{R}^n , we define a set $\mathcal{T}(A)$ by $\mathcal{T}(A) = \mathbb{R}^n \times iA$.

Definition 6.2. For a convex compact set K of \mathbb{R}^n and $\varepsilon > 0$,

$$\mathcal{Q}_b(\mathcal{T}(K_{\varepsilon})) \\ := \{ \varphi(\zeta) \in \mathcal{H}(\mathcal{T}(K_{\varepsilon}^{\circ})) \cap \mathcal{C}(\mathcal{T}(K_{\varepsilon})); \sup_{\zeta \in \mathcal{T}(K_{\varepsilon})} |\zeta^{\alpha} \varphi(\zeta)| < \infty \text{ for } \forall \alpha \in \mathbb{N}^n \},$$

$$\mathcal{Q}(\mathcal{T}(K)) := \varinjlim_{\varepsilon > 0} \mathcal{Q}_b(\mathcal{T}(K_{\varepsilon})).$$

Definition 6.3. The dual space Q'(T(K)) of Q(T(K)) is called tempered ultrahyperfunctions [10], [11].

We have the following theorem for the spaces $H(\mathbb{R}^n, K)$ and $\mathcal{Q}(\mathcal{T}(K))$:

Theorem 6.4 ([10]). Let $\varphi(x) \in H(\mathbb{R}^n, K)$. The Fourier inverse transform

$$\mathcal{F}^{-1}(arphi)(\zeta) := rac{1}{(2\pi)^{rac{n}{2}}} \int_{\mathbb{R}^n} arphi(x) e^{-\imath \zeta x} dx$$

establishes a topological isomorphism of $H(\mathbb{R}^n, K)$ onto $\mathcal{Q}(\mathcal{T}(K))$. The inverse mapping \mathcal{F} is given by

$$\mathcal{F}(\psi)(x) := rac{1}{(2\pi)^{rac{n}{2}}} \int_{\mathbb{R}^n} \psi(\xi + \imath \eta) e^{\imath (\xi + \imath \eta) x} d\xi, \quad \eta \in K_{arepsilon}^{\circ}, \quad \psi \in \mathcal{Q}_b(\mathcal{T}(K_{arepsilon})).$$
 (14)

Remark 6.5. In (14), we notice that $\mathcal{F}(\psi)(x)$ is independent of $\eta \in K_{\varepsilon}^{\circ}$ by Cauchy's integral theorem.

Definition 6.6 ([10]). For $T \in H'(\mathbb{R}^n, K)$, we define the dual Fourier transform $\mathcal{F}(T)$ as a continuous linear functional on $\mathcal{Q}(\mathcal{T}(K))$ by the formula

$$\langle \mathcal{F}(T), \psi \rangle = \langle T, \mathcal{F}(\psi) \rangle, \quad \text{for } \psi \in \mathcal{Q}(\mathcal{T}(K)).$$
 (15)

As a consequence of Theorem 6.4, we have the following theorem:

Theorem 6.7 ([10]). The dual Fourier transform (15) gives topological isomorphisms

$$\mathcal{F}: H'(\mathbb{R}^n, K) \to \mathcal{Q}'(\mathcal{T}(K)).$$

Definition 6.8. Let $K = \{u\}$, $\psi \in \mathcal{Q}_b(\mathcal{T}(K_{\varepsilon_1}))$ and assume that $f(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL)$ satisfies

$$\forall \varepsilon > 0 \ \exists l_{\varepsilon} \geq 0 \ \forall \overline{\Gamma}_{C} \in (\overline{\Gamma}')^{\circ} \ \exists M_{\varepsilon, \overline{\Gamma}_{C}} \geq 0 \ s.t.$$

$$|f(\zeta)| \le M(1+|\zeta|)^l, \quad \zeta \in \mathbb{R}^n + i[\overline{\Gamma}_C]_{-\epsilon}.$$

Then we define $\langle f(\zeta), \psi(\zeta) \rangle$ by

$$\langle f(\zeta), \psi(\zeta) \rangle := \langle f(\xi + \imath \eta_0), \psi(\xi + \imath \eta_0) \rangle$$

$$= \int_{\mathbb{R}^n} f(\xi + \imath \eta_0) \psi(\xi + \imath \eta_0) d\xi,$$

where $\eta_0 \in (\{u\} + (\overline{\Gamma}')^{\circ}) \cap (K_{\varepsilon_1}^{\circ}).$

Definition 6.9. Let $K = \{u\}$, $T \in H'_{\overline{\Gamma}}(\mathbb{R}^n, K)$ and $\psi \in \mathcal{Q}(\mathcal{T}(K))$, $\psi \in \mathcal{Q}_b(\mathcal{T}(K_{\varepsilon_1}))$. By Theorem 5.5 and Definition 6.8, we define $\langle \mathcal{LF}(T)(\zeta), \psi(\zeta) \rangle$ by

$$\langle \mathcal{LF}(T)(\zeta), \psi(\zeta) \rangle := \langle \mathcal{LF}(T)(\xi + i\eta_0), \psi(\xi + i\eta_0) \rangle, \tag{16}$$

where $\eta_0 \in (\{u\} + (\overline{\Gamma}')^{\circ}) \cap (K_{\varepsilon_1}^{\circ})$.

Now we can show Edge-of-the-Wedge theorem. For the direct product case, it is given in [11].

Theorem 6.10 (Edge-of-the-Wedge Theorem [14]). Let Γ_1 , Γ_2 be proper open convex cones in \mathbb{R}^n ,

$$L_m = \{u_m\} + (\overline{\Gamma}'_m)^{\circ}, \quad m = 1, 2.$$

Assume that $F_1(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL_1)$ and $F_2(\zeta) \in \mathcal{H}(\mathbb{R}^n + iL_2)$ satisfy

$$\forall \varepsilon > 0 \ \exists l_{m_\varepsilon} \geq 0 \ \forall \overline{\Gamma}_{C_m} \Subset (\overline{\Gamma}'_m)^\circ \ \exists M_{\varepsilon,\overline{\Gamma}_{C_m}} \geq 0 \ s.t.$$

$$|F_m(\zeta)| \le M_{\varepsilon,\overline{\Gamma}_{C_m}} (1+|\zeta|)^{l_{m_\varepsilon}}, \quad \zeta \in \mathbb{R}^n + i[\overline{\Gamma}_{C_m}]_{-2\varepsilon}, \quad m = 1, 2, \quad (17)$$

where $[\overline{\Gamma}_{C_m}]_{-\varepsilon} = \mathbb{R}^n \setminus (\mathbb{R}^n \setminus (\{u_m\} + \overline{\Gamma}_{C_m})^\circ)_{\varepsilon}$.

Let K be a convex compact set which contains the segment with $\{u_1\}$ and $\{u_2\}$ as extremal point. Assume that

$$\langle F_1(\zeta), \psi(\zeta) \rangle = \langle F_2(\zeta), \psi(\zeta) \rangle \quad \forall \psi(\zeta) \in \mathcal{Q}(\mathcal{T}(K)).$$
 (18)

Then there exists $F(\zeta) \in \mathcal{H}(\mathbb{R}^n + i(L'_1 \cup L'_2))$ such that

$$F(\zeta)|_{(\mathbb{R}^n+\imath L_1)}=F_1(\zeta), \quad F(\zeta)|_{(\mathbb{R}^n+\imath L_2)}=F_2(\zeta),$$

where $L_1' = \{u_1\} + (\overline{\Gamma}_1' \cup \overline{\Gamma}_2')^{\circ}$ and $L_2' = \{u_2\} + (\overline{\Gamma}_1' \cup \overline{\Gamma}_2')^{\circ}$. Furthermore

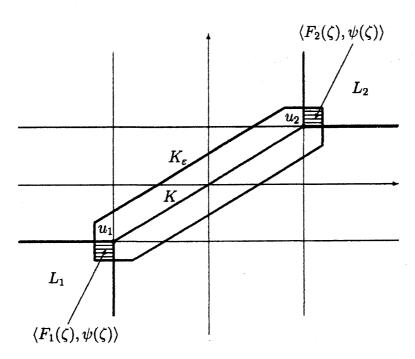
- (i) if $\overline{\Gamma}_1 \cap \overline{\Gamma}_2 = \{0\}$, then $F(\zeta)$ is polynomial,
- (ii) if $\{u_1\} = \{u_2\} (=: \{u\})$, then we have.

$$F(\zeta) \in \mathcal{H}(\mathbb{R}^n + \imath(\{u\} + (\overline{\Gamma}'_1 \cup \overline{\Gamma}'_2)^\circ)) \tag{19}$$

and

$$\forall \varepsilon > 0 \ \exists l_{\varepsilon} \ge 0 \ \forall \overline{\Gamma}_{C} \in (\overline{\Gamma}'_{1} \cup \overline{\Gamma}'_{2})^{\circ} \ \exists M_{\varepsilon, \overline{\Gamma}_{C}} \ge 0$$
$$|F(\zeta)| \le M(1 + |\zeta|)^{l}, \quad \zeta \in \mathbb{R}^{n} + \imath[\overline{\Gamma}_{C}]_{-\varepsilon}, \tag{20}$$

where $[\overline{\Gamma}_C]_{-\varepsilon} = \mathbb{R}^n \backslash (\mathbb{R}^n \backslash (\{u\} + \overline{\Gamma}_C)^\circ)_{\varepsilon}$.



Acknowledgment: The author expresses his thanks to Professor K. Yoshino for many valuable suggestions.

References

- [1] S.-Y.Chung and D.Kim: Distributions with exponential growth and Bochner-Schwartz theorem for Fourier hyperfunctions, Publ. RIMS. Kyoto Univ. 31, (1995), 829-845.
- [2] C.Dong and T.Matsuzawa: S-spaces of Gel'fand-Shilov and differential equations, Japan. J. Math. Vol.19, No.2, 1994.
- [3] M.Hasumi: Note on the n-dimensional ultradistributions, Tôhoku Math. J. 13, (1961), 94-104.
- [4] L.Hörmander: The Analysis of Linear Partial Differntial Operators I, Springer-Verlag, (1983).
- [5] L.Hörmander: Notions of Convexity, Birkhäuser, (1994).

- [6] G.Lysik: On the structure of Mellin distributions, Ann. Polon. Math. 51, (1990), 219-228.
- [7] T.Matsuzawa: A calculus approach to the hyperfunctions I, Nagoya Math. J. Vol.108, (1987), 53-66.
- [8] T.Matsuzawa: A calculus approach to the hyperfunctions II, Trans. Amer. Math. Soc. 313 (1989), 619-654.
- [9] T.Matsuzawa: An introduction to the theory of partial differential equations, JSPS-DOST Lecture Notes in Mathematics, Vol.4, (1997).
- [10] M.Morimoto: Theory of tempered ultrahyperfunctions I, II, Proc. Japan Acad. Vol.51, (1975), 87-91, 213-218.
- [11] M.Morimoto: Convolutors for ultrahyperfunctions, Lecture Notes in Physics, 39, Springer-Verlag, (1975).
- [12] A.U.Schmidt Asymptotische Hyperfunktionen, temperierte Hyperfunktionen und asymptotische Entwicklungen, Logos Verlag Berlin, 1999.
- [13] S.e.Silva: Les fonctions analytiques commes ultra-distributions dans le calcul opérationnel, Math.Ann. 136, (1958), 58-96.
- [14] M.Suwa: Distributions of exponential growth with support in a proper convex cone, accepted for publication in Publ. RIMS, Kyoto Univ..
- [15] S.Szmydt and B.Ziemian: Laplace distributions and hyperfunctions on \mathbb{R}^n_+ , J. Math. Sci. Univ. Tokyo 5, (1998), 41-74.
- [16] V.S.Vladimirov : Generalized Functions in Mathematical Physics, Nauka Moscow, (1976).
- [17] Z.Zieleźny: On the space of convolution operators in \mathcal{K}'_1 , Studia Math., 31, 111-124, (1968).