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Finite-Difference Lattice Boltzmann Methods for Binary Fluids

Aiguo Xu
Department of Physics, Yoshida-South Campus,
Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan

In this proceeding we summarize our recent studies on two-fluid lattice Boltzmann methods for
binary Huids. We first clearify Sirovich’s kinetic theory, then based on which three multispeed
discrete velocity models are formulated, which are for the Euler equations, isothermal Navier-Stokes
equations and the complete Navier-Stokes equations, respectively. Each formulated discrete velocity
model, together with an appropriate finite-difference scheme, composes a finite-difference lattice
Boltzmann method. The validity of the methods is verified by investigating (i) the Couette flow
and (ii) the uniform relaxation process of the two components.

PACS numbers: 47.11.4j, 51.10.4+y, 05.20.Dd

I. INTRODUCTION

Lattice Boltzmann Method (LBM) is a numerical scheme to simulate kinetic systems. The
LBM recovers the hydrodynamic descriptions in the small Knudsen number limit. It has become
a viable and promising numerical scheme for simulating fluid flows. There are several options to
discretize the Boltzmann equation: (i) Standard LBM (SLBM)(1]; (ii) Finite-Difference LBM
(FDLBM){1-3]; (iii) Finite-Volume LBM(1, 4]; (iv) Finite-Element LBM[1, 5}; etc. These kinds
of schemes are expected to be complementary in the LBM studies.

Even though various LBMs for multicomponent fluids[6, 8-20] have been proposed and devel-
oped , (i) most existing methods belong to the SLBM[6, 8-17], and/or based on the single-fluid
theory[8-15, 17, 18, 21]; (ii) in Refs. [6, 7] two SLBMs are proposed, but these two models are
not convenient (if not impossible) to simulate thermal and compressible systems, even isother-
mal and incompressible systems only if the two components have different particle masses. In
this study we develop two-fluid FDLBMs for thermal and compressible binary fluids.

II. FORMULATION AND VERIFICATION OF THE FDLBMS

The formulation of a FDLBM consists of three steps: (i) select or design an appropriate
discrete velocity model (DVM), (ii) formulate the discrete local equilibrium distribution func-
tion, (iii) choose a finite-difference scheme. The continuous Boltzmann equation has infinite
velocities, so the rotational invariance is automatically satisfied. Recovering rotational invariant
macroscopic equations from a discrete finite velocity microscopic dynamics imposes constraints
on the isotropy of DVM used. In our studies, the proposed FDLBMs are based on the two
DVMs described below. )

DVM1 :vg =0, Vi3 = Vi {cos (%) ,sin (%)] ad=12,.:,12, (1)
where k indicates the k-th group of particle velocities and i indicates the direction of the particle
speed. It is easy find that (i) its odd rank tensors are zero, and (ii) its initial four even rank
tensors satisfy
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where a, 3, - - - indicate z or y component and
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It is clear that this DVM is isotropic up to, at least, its 9th rank tensor.

im

DVM2 :vo =0, Vg = ¥ [cos (%) ,sin (Z)] i=12,---8. (6)

Similarly, (i) its odd rank tensors are zero, and (ii) its initial three even rank tensors satisfy
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DVM 2 is isotropic up to its 7th rank tensor.

We consider a binary mixture with two components, A and B, where the masses and temper-
atures of the two components are not significantly different. The interparticle collisions can be
divided into two kinds: collisions within the same species (self-collision) and collisions among
different species (cross-collision)[22]. Based on the DVM (1), the 2-dimensional BGK[23] kinetic
equation for species A reads,
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fAQ© and fAB(O) are the corresponding Maxwellian distribution functions. n#, u®, T4 are
the local density, hydrodynamic velocity and temperature of species A. u“B, TAB are the
hydrodynamic velocity and temperature of the mixture after equilibration process. a# is the
acceleration of species A due to the effective external field.

For species A, we have
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where P4 (efl, ) is the local pressure (internal energy). For species B, we have similar relations.

For the mixture, we have
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where p% = n4m#, n = n4 + n® and p = p# + pP. Three sets of hydrodynamic quantities

(for the two components A, B and for the mixture) are involved, but only two sets of them are



independent. So this is a two-fluid model. Without lossing generality, we focus on hydrody-
namics of the two individual species. By expanding the local equilibrium distribution function
fABO) ground fA© to the first order in flow velocity and temperature, the BGK model (8-11)
becomes

] vi
3tf;f; + vﬁ- . Ef’fi —at. gk__)_fA(O) = QﬁiA + QﬁB (14)
1 A(O
QQ:A- (TAA TAB) l:flcz )] (15)
A(O)

(v,‘;—u )-(uA——uB)

Q‘I?iB = pAeA {#D

2 2
+#? [(vﬂt?—é:‘A) -1 (TA _ TB) _ MA [(vaz.e_:A) _ 1] (uA _ uB)2} (16)
where uf = pApB/(74Bp), u# = kpnAnB/(rABn), M4 = nApApB [(2r4Bnp).,

Now, we go to the second step: formulate f; A©®  The continuous Maxwellian f4(®) possesses
an infinite sequence of moment properties. The Chapman-Enskog analysis[24] shows that,
requiring the discrete fh(o) to follow the initial eight ones is sufficient to describe the same
Navier-Stokes equations,
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Recall that u# (u?) is a small quantxty By using Eq. (17), P = n“kgT4, and ne%lectmg
the second and higher order terms in u#, Eq. (18) shows that the diffusion velocity, u ul,
is related to the gradients of n4 and T4.
The first three requirements on f,“( ) are referred to Eq. (12) with f{ replaced by fk,(o) and
the remaining five are
Zm vk,avk,ﬂ A(o) = PAbos + phud uﬂ (21)
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The requirement equation (25) contains the fifth order of the flow velocity u®. So it is
sufficient to expand fA(o) in polynomial up to the fifth order of u#:
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The truncated ethbrlum distribution function f;; A©) (26) contains the fifth rank tensor of the
particle velocity v# and the requirement (22) contams its third rank tensor. Thus, a DVM being
isotropic up to its 8th rank tensors is enough to recover the physical isotropy of the continuous
Boltzmann equations to the Navier-Stokes level. So DVM (1) is an appropriate choice. To

calculate the discrete fk,( ), one first needs calculate the factor FA. F2 is determined by the
A© and the isotropic properties of the DVM (1). We finally obtain
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Once a zero speed, v§ = 0, and other five nonzero ones, v (k =1, 2, 3, 4, 5) are chosen, F#
(k=0,1,2,3, 4, 5) will be fixed.

We come to the third step: finite-difference implementation of the discrete kinetic method.
There are more than one choices(2, 18] available. One possibility is shown below,
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where the second superscripts n, n+ 1 indicate the consecutive two iteration steps, At the time
step; the spatial derivatives are calculated as
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where a = z,y, the third subscripts I —2, I —1, I, I +1, I +2 indicate consecutive mesh nodes
in the o direction.

If the kinetic numerical scheme is required to recover the hydrodynamics only up to the
isothermal Navier-Stokes level, Egs. (17)-(18) or the Euler level, Egs.(17)-(19) with n = k4 =
0, following the same procedures, it is easy to find that DVM 2 is enough. For the isothermal
Navier-Stokes equation, Eq. (28) is replaced by
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For the complete Euler equation, Eq. (28) is replaced by

SwFA=1, T, FA(wf) =8, YL FA ()" = (%),
Yo FA (v8)° =6 (64)°, ¥, FA (vf)® = 48 (64)". (32)

In summary, to recover the two-dimensional complete Navier-Stokes equations, a 2-
dimensional 61-velocity (D2V61) model is needed; a D2V33 model is sufficient to recover
the two-dimensional Euler equations; recovering the two-dimensional isothermal Navier-Stokes
equations can resort on a simpler D2V25 model. In principle, & DVM with lower isotropy can be
replaced by one with higher isotropy. But in practical simulations, one generally needs choose
the simplest one.

The validity of the formulated the FDLBMs is verified through two test examples. (The
Boltzmann constant kg = 1.) The first one is the isothermal and incompressible Couette flow
with a single component. In this case, A = B. The initial state of the fluid is static. The
distance between the two walls is D. At time t = 0 they start to move at velocities U, —U,
respectively. It is clear that all the three models (D2V25, D2V33, D2V61) work for such a
system. The horizontal velocity profiles of species A or B along a vertical line agree with the
following analytical solution,

.2 2 .
VR o PTe T a2 NN st ORI 3
u=ry ;( D (-~ 5 t)sin(=5-9), (33)

where v = 2U/D is the imposed the shear rate, j is an integer, the two walls locate at y = +D/2.
(For example, see Fig. 1.)

The second one is the uniform relaxation process, which is an ideal process to indicate the
equilibration behavior of the mixture. By neglecting the force terms and terms in spatial
derivatives, the Navier-Stokes equations (17)-(19) give

0 4
3 A
a (uB - ll.A) = —; (;EZ + ;-_E) (UB - UA) s (35)
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(The Euler equations play the same role as the Navier-Stokes equations in this case. Both the
D2V61 and D2V33 works. ) The flow velocities of the two components equilibrate exponentially
with time. (For example, see Fig. 2(a).) The equilibration of flow velocities also affects that
of the temperatures. When the flow velocity difference is zero, the temperatures equilibrate
exponentially with time. (For example, see Fig. 2(b).) The simulation results agree well with
Eqgs. (35) and (36).
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FIG. 1: Horizontal velocity profiles along a vertical line for the two species, A and B, at time ¢ = 8.
The symbols are for simulation results. The solid line corresponds to the theoretical result, Eq. (33).
Parameters used in the two-fluid FDLBM are m* = m? =1, T =1, n* = n® = 1, ¥ = 0.001,
A4 = BB = 7AB — 1 BA = 0.2, Parameters used in Eq. (33) arep =71 =0.1, p=p% = 1.
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FIG. 2: Uniform relaxation processes. (a) Equilibration of velocities; (b) Equilibration of tempera-
tures. The symbols are for simulation results. The solid lines possess the theoretical slopes. Common
parameters for the simulations in (a) and (b) are n* =10, n® =1, m* =1, m® =10, 744 = 758 = 1,
4B = 10, P4 = 1. In (a) the initial conditions are ur® = B0 = 03, u{,‘(o) = uf(o) =0, and
T4© = 1.3, T5©® = 0.7. The slope of the solid line in (a) is —11/20, which is consistent with Eq.
(35). In (b) the initial conditions are u*(® = u®® = 0, and T4© = 1.3, T3® = 0.7. The slope of
the solid line in (b) is —10.1/11, which is consistent with the first term of right-hand side of Eq.(36).
The second superscript “(0)” denotes the corresponding initial value. This figure shows an example
where the particle masses of the two species are significantly different.

III. CONCLUSIONS AND REMARKS

The Chapman-Enskog analysis shows what properties the discrete Maxwellian distribution

function f,;t“” should follow. Those requirements tell the lowest order of the flow velocity

u# in the Taylor expansion of f,‘:i(o). The highest rank of tensors of the particle velocity v4

in the requirements on the truncated f,ﬁ.(o) determines the needed isotropy of the DVM. The
incorporation of the force terms makes no additional requirement on the isotropy of the DVM.
The present approach works for binary neutral fluid mixtures. One possibility to introduce



interfacial tension is to modify the pressure tensors[14], which is implemented by changing
the force terms[3]. The specific force terms or pressure tensors depend on the system under
consideration, which are out of the scope of this Letter, but can be resolved under the same two-
dimensional 61-velocity model (D2V61). For binary fluids with disparate-mass components, say
mA <« mB, only if the total masses and temperatures of the two species are not significantly
different, Sirovich’s kinetic theory works, so do the corresponding FDLBMs. (See Fig. 2 for
an example.) When the masses and/or the temperatures of the two components are greatly
different, the two-fluid kinetic theory should be modified. In those cases, the Navier-Stokes
equations and the FDLBMs are not symmetric about the two components, but the FDLBMs
can still be resolved under the D2V61 model. The formulation procedure is straightforward.
A more detailed description is referred to [25, 26]. We finally emphasize that the numerical
errors from the finite-difference schemes result in artificial viscosities in the simulation. The
comparison of various finite-difference schemes, discussion on numerical accuracy and stability
are referred to Refs. [2, 3, 18].
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