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On some subclasses of univalent functions

Mugur Acu!, Shigeyoshi Owa?

ABSTRACT. In 1999, S. Kanas and F. Ronning introduced the classes of functions starlike
and convex, wich are normalized whit f(w) = f'(w) —1 = 0 and w is a fixed point in /. In

this paper we continue the investigation of the univalent functions normalized with fw) =
f'(w) — 1 =0, where w is a fixed point in U.
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1 Introduction

Let H(U) be the set of functions which are regular in the unit disc U = {z € C: |2| < 1},
A={feHU): f0)=F0)-1=0}and S={f € A: fis univalent in U}.
We recall here the definitions of the well - known classes of starlike, convex, close to

convex and « - convex functions:

. _ . p 2l (2) i
S _{feA.Re e >0, ~€U},
c_ , 2f"(2) }
S —{feA.Re(1+ f’(z))>0’ zeU
fesaies pif
CC-—{fEA.ElgES,R O] >0, zEU},
J\ffas{feA:ﬂ—z—)L(z)%O, Re J(a,f:2) >0, zEU}
z
where J(a, f:2) = (1 — 2f'(2) ( 2f"(2)
here J(a, f;2) = (1 — ) ) +all+ ) )

Let w be a fixed point in U and A(w) ={f €HU): f(w) = f'(w) ~ 1 =0}
In [3] S. Kanas and F. Ronning introduced the following classes:

S(w)={f € A(w): f is univalent in U}

ST(w) = $*(w) = {f € S{w) : Regf-?}'—"()—')f(-z—)— >0, z€ U}

CV(w) = 8%(w) = {f € S(w):1+ Re—(f:—f%;i(—d >0, z¢€ U}.



The class $*(w) is defined by the geometric property that the image of any circular
arc centered at w is starlike with respect to f(w) and the corresponding class 5¢(w) is
defined by the property that the image of any circular arc centered at w is convex. We
observe that the definitions are somewhat similar to the ones for uniformly starlike and
convex functions introduced by A. W. Goodman in [1] and [2], except that in this case
the point w is fixed.

It is obvious that exists a natural ” Alexander relation” between the classes S*(w) and
S¢(w):

g € $¢(w) if and only if f(z) = (z — w)g'(2) € S*(w).
%
Let denote with P(w) the class of all functions p(z) =1+ Z B, - (z — w)" that are

n=i

regular in U and satisfy p(w) =1 and Re p{z) >0 for z € U.

2 Preliminary results
If is easy to see that a function f(,) € A(w) have the series expansions:
f(2) = (z — w) + aa(z — w)? + ...
In [7] J. K. Wald gives the sharp bounds for the coefficients B, of the function p €

P(w):

Teorema 2.1 If p(z) € P(w), p(2) =1+ ZBn (2 — w)", then

n=1

(1) |B,| <

, where d = |w| and n > 1.

2
T+dd-dr

Using the above result, S. Kanas and F. Ronning obtain in [3]:

Teorema 2.2 Let f € S*(w) and f(z) = (z — w) + az(z — w)? + ... Then

, 2 3+d
2 las] £ 1-2° las| < m ,
| | |<2 2+d(3+d) | |<l.(2+d)(3+d)(3d+5)
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where d = |w|.

Remark 2.1 It is clear that the above theorem also provides bounds for the coefficients

of functions in S¢(w), due to the relation between S°(w) and S*(w).



The next theorem is the result of the so called ”admissible functions method” intro-
duced by P. T. Mocanu and S. S. Miller ( see [4], [5], [6]).

Teorema 2.3 Let h convez in U and Re[fBh(z) +7] > 0, 5 € U. Ifp € H(U) with
p(0) = h(0) and p satisfied the Briot - Bouquet differential subordination

p(2) 22

Bp(5) +7 < h(z2), then p(z) < h(2).

3 Main results

Let consider the integral operator L, : A(w) — A(w) defined by

1+a
(z —w)e

-/F(t)-(t—w)“‘ldt, eceER, a>0.

w

(3) f(z) = L.F(2) =

We denote by D(w) = {z €U: Re [%] < landRe [(2 j(i))-l(-lzl ~)] > 0},with D(0) =
U, and s(w) = {f : D(w) — C} N S(w), where w is a fixed point in U.

Denoting s*(w) = $*(w) N s(w), where w is a fixed point in U, we obtain:

Teorema 3.1 Let w be a fized point in U and F(z2) € s*(w). Then f(2) = L F(z) €
S*(w), where the integral operator L, is defined by (3).

Proof. By differentiating (3) we obtain:

(4) (1+a)F(z) =a- f(z) + (s —w) - f'(2).
From (4) we have:

(5) (1+a)F'(z) = (1+a)f'(2) + (z — w)f"(2).
Using (4) and (5) we obtain:

A4a)-(z—w) L 4 ypf D)

o (- w)F() _ 7(2) 72
F(z) ot (s w)J;’((z)) '
With notation p(z) = E—;;-g:)/—)—ﬂa(-z—l, where p(z) € H(U) and p(0) = 1, we have:

() = (o) 4 (s — w2 T
(2 = w)p'(2) = p(e) + (2 = )7 - 2 [n(e)



and thus: )
7) u—wﬁ%%L=u—ww%ﬁ—Mdﬁ—MﬂL
Using (6) and (7) we obtain:
Z-w)F(z) . (-w)-p)
@ O AT

Using F(z) € s*(w) from (8) we have:

z=w , 1+z____
p(2)+ St () < o = AE)
ot 1 w
-, 142
~ z ‘I’
p(*’) a+p(z) p( ) 1___2‘

ihad 1——

Lt: o (G-u)f()
re (15

Definition 3.1 Let f € S(w) where w is a fited point in U. We say that f s w - close
(——giz—)—))i(—)— >0, z € U. We denote

From hypothesis we have Re { o - h(z)+ ¢ w:| > 0 and thus from Theorem 2.3

we obtain p(z) < ) > 0, z € U. This means f(z) € S*(w).

to conver if exists a function g € S*(w) such that Re

this class with CC(z).

Remark 3.1 If we consider f =g, g € S*(w), we have S*(w) C CC(w).

If we take w = 0 we obtain the well known close to conver functions.

with respect to the function g € S*(w), g(2) = (z — w) + Zan (z —w)". Then

9
7 < "
i< 2+ bl i
where d = |w|, n > 2 and a; = 1.

Proof. Let f € CC(w) with respect to the function g € S*(w). Then there exists a
function p € P(w) such that
(z=w)f'(z) _
— = p(z
) (2)



where p(z) =1+ Z B,(z — w)".
n=1

Using the hypothesis through identification of (z — w)" coefficients we obtain:

n—1

(9) 7Z'bnzan +Zak'Bn—k

k=1
where ¢y =1l and n > 2.

From (9) we have

ap=1, n>2.

bal < [lan|+§jxau Bl

Applying the above and the estimates (1) we obtain the result.

Remark 3.2 If we use the estimates (2) we obtain the same estimates for the coefficients
bpy, n =2,3,4,5.

Definition 3.2 Let o € R and w be a fized point in U. For f € S(w) we denote by

J(a, fw;z) = (1 - )E————-(-l;-—(-—l a[1+-§z—:ﬁ)zf)”ﬁ]. We say that f is w — o -

convez function if —————= ( ) ( ) # 0 and Re J(a, f,w;2) >0, 2 € U. We denote this class
with M, (w).

Remark 3.3 It is easy to observe that M,(0) is the well known class of o - convex

Junctions.

Teorema 3.3 Let w be a fized point in U, a € R, a > 0 and my(w) = M,(w) N s(w).
1. If f € my(w) then f € S*(w). This means mq(w) C S*(w).
2. Ifa,BEeR, with0 < g— < 1, then my(w) C mg(w).

Proof. From f € mq(w) we have Re J(a, f,w;z) > 0, z € U. Using the notation

p(z) = (—Z——%i—(i), with p € H(U) and p(0) = 1, we obtain:

Re J(a, f,w;z) = Re I:p(z)-}-a-—(z—_—%)—] >0, zeU or

p(z)
a 1—E .
p(z)+-—(p(z—)z) c2p'(2) < ii—; = h(z).
142

For oo = 0 we have p(z) < T



Using the hypothesis we have for o > 0, Re —(”‘l_w)‘ - h(z)| > 0 and from Theo=
a

1—-=
%

+
e

rem 2.3 we obtain p(z) <

I ~
This means that Re—————(L) >0,z€Uand a > 0or f € S*(w).

. /
Jand by B = Rc(i——w we have A > 0 and A+B-a >

If we denote by A = Rep( (z)

IS

0, where a > 0.
Using the geomietric interpretation of the equation y(z) = A+ B -z, z € [0,a] we
obtain
y(B)=A+B-B>0 forevery §€[0,a]
o o Yy
This means Re [p(z) + 8- g:_p‘z’:))ﬁ_(f_)_] >0,z€Uor f€mg(w).

Remark 3.4 From the above theorem we have:
ma(w) € $°(w) C ma(w) C 5*(w)

where 0 < o < 1 and $°(w) = S(w) N s(w).
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