ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

須川 敏幸 TOSHIYUKI SUGAWA

広島大学大学院理学研究科 HIROSHIMA UNIVERSITY

ABSTRACT. We propose a way of deduction of various univalence criteria for meromorphic functions on the outside of the unit circle in terms of the range of their derivatives. This is a summary of the forthcoming joint paper [15] of S. Ponnusamy and the author.

1. Introduction

Let \mathcal{A} denote the set of analytic functions f in the unit disk $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ normalized so that f(0)=0 and f'(0)=1. The set \mathcal{S} of univalent functions in \mathcal{A} has been intensively studied by many authors. Let Σ denote the set of univalent functions F in the domain $\Delta=\{\zeta:|\zeta|>1\}$ of the form

(1.1)
$$F(\zeta) = \zeta + \sum_{n=0}^{\infty} b_n \zeta^{-n}.$$

Note that the function $1/f(1/\zeta)$ belongs to Σ for each $f \in \mathcal{S}$. The converse is, however, not true in general. More precisely, for $F \in \Sigma$, the function f(z) = 1/F(1/z) belongs to \mathcal{S} if and only if F omits 0, namely, $F(\zeta) \neq 0$ for $\zeta \in \Delta$.

In parallel with the analytic case, we consider the set \mathcal{M} of meromorphic functions in Δ with the expansion (1.1) around $\zeta = \infty$. For some technical reason, we also consider the sets $\mathcal{A}_n = \{f \in \mathcal{A} : f^{(m)}(0) = 0 \text{ for } m = 2, \ldots, n\}$ and $\mathcal{M}_n = \{F \in \mathcal{M} : b_0 = \cdots = b_n = 0\}$. Note that $\mathcal{A}_1 = \mathcal{A}$ and $\mathcal{M}_{-1} = \mathcal{M}$.

Practically, it is an important problem to determine univalence of a given function in \mathcal{A}_n or in \mathcal{M}_n . The best known conditions for univalence are probably those involving pre-Schwarzian or Schwarzian derivatives, which are defined by

$$T_f = rac{f''}{f'}$$
 and $S_f = \left(rac{f''}{f'}
ight)' - rac{1}{2}\left(rac{f''}{f'}
ight)^2$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C55; Secondary 33C45.

Key words and phrases. univalent criterion, pre-Schwarzian derivative.

The second author was partially supported NBHM (DAE, India) grant.

T. SUGAWA

We define quantities for functions $f \in \mathcal{A}$ and $F \in \mathcal{M}$ by

$$B(f) = \sup_{|z|<1} (1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right|,$$

$$B(F) = \sup_{|\zeta|>1} (|\zeta|^2 - 1) \left| \frac{\zeta F''(\zeta)}{F'(\zeta)} \right|,$$

$$N(f) = \sup_{|z|<1} (1 - |z|^2)^2 |S_f(z)|,$$

$$N(F) = \sup_{|\zeta|>1} (|\zeta|^2 - 1)^2 |S_F(\zeta)|.$$

Note that these quantities may take ∞ as their values. For example, if F has a pole at a finite point, then $B(F) = \infty$.

If $f \in \mathcal{A}$ and $F \in \mathcal{M}$ have the relation f(z) = 1/F(1/z), then we can easily see that

$$(1-|z|^2)^2 S_f(z) = (|\zeta|^2 - 1)^2 S_F(\zeta)$$

holds for $z = 1/\zeta$. In particular, we have N(f) = N(F).

Theorem A (Nehari [14]). Every $f \in \mathcal{S}$ satisfies $N(f) \leq 6$. Conversely, if $f \in \mathcal{A}$ satisfies $N(f) \leq 2$ then f must be univalent. The constants 6 and 2 are best possible. The same is true for meromorphic F.

Though $zf'(z)/f(z) = \zeta F'(\zeta)/F(\zeta)$, there is no such a simple relation between zf''(z)/f'(z) and $\zeta F''(\zeta)/F'(\zeta)$, and thus, between B(f) and B(F) for f(z) = 1/F(1/z), $\zeta = 1/z$. Nevertheless, it is rather surprising that the formally same conclusions can be deduced for f and F. Compare Theorem B with Theorem C.

Theorem B. Every $f \in \mathcal{S}$ satisfies $B(f) \leq 6$. Conversely, if $f \in \mathcal{A}$ satisfies $B(f) \leq 1$ then $f \in \mathcal{S}$. Moreover, if $B(f) \leq k < 1$, then f extends to a k-quasiconformal mapping of the extended plane. The constants 6 and 1 are best possible.

Here and hereafter, a quasiconformal mapping g is called k-quasiconformal if its Beltrami coefficient $\mu = g_{\bar{z}}/g_z$ satisfies $||\mu||_{\infty} \leq k$.

The sufficiency of univalence and quasiconformal extendibility are due to Becker [6]. The sharpness of the constant 1 is due to Becker and Pommerenke [8]. The sharp inequality $B(f) \leq 6$ follows from a standard argument in the coefficient estimation (see, e.g., [9, Theorem 2.4]).

Theorem C. Every $F \in \Sigma$ satisfies $B(F) \leq 6$. Conversely, if $F \in \mathcal{M}$ satisfies $B(F) \leq 1$ then $F \in \Sigma$. Moreover, if $B(F) \leq k < 1$, then F extends to a k-quasiconformal mapping of the extended plane. The constants 6 and 1 are best possible.

The sufficiency of univalence and quasiconformal extendibility are due to Becker [7]. The sharpness of the constant 1 is also due to Becker and Pommerenke [8]. On the other hand, the estimate $B(F) \leq 6$ lies deeper. Avhadiev [3] first showed the sharp inequality $B(F) \leq 6$ by appealing to Goluzin's inequality (see [10, p. 139]).

ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

Note that many authors use a different norm for the pre-Schwarzian derivative of $f \in \mathcal{A}$, namely,

$$||T_f|| = \sup_{|z|<1} (1-|z|^2)|T_f(z)|.$$

By definition, we observe $B(f) \leq ||T_f||$.

Recall that a plane domain $\Omega \subset \mathbb{C}$ is called *hyperbolic* if $\partial \Omega$ contains at least two points. Let Ω be a hyperbolic plain domain such that $1 \in \Omega$ but $0 \notin \Omega$ and set

$$\Pi(\Omega) = \{ F \in \mathcal{M} : F'(\zeta) \in \Omega \text{ for all } \zeta \in \Delta \}.$$

Set also $\Pi_n(\Omega) = \Pi(\Omega) \cap \mathcal{M}_n$ for $n = -1, 0, 2, \ldots$ One of our main results in the present paper is an estimate of B(F) for $F \in \Pi(\Omega)$. The proof is given in [15].

Theorem 1. Let Ω be a domain such that $1 \in \Omega$ but $0 \notin \Omega$. For every $F \in \Pi_n(\Omega)$, $n \geq 0$, the inequality

$$B(F) \leq C_n W(\Omega)$$

holds, where C_n is the constant given by

(1.2)
$$C_n = \sup_{0 \le r \le 1} \frac{(n+2)(1-r^2)r^n}{1-r^{2n+4}}$$

and $W(\Omega)$ is the circular width of Ω with respect to the origin, namely,

$$W(\Omega) = \sup_{z \in \mathbb{D}} (1 - |z|^2) \left| \frac{p'(z)}{p(z)} \right|$$

for an analytic universal covering projection p of \mathbb{D} onto Ω .

Note that $W(\Omega)$ does not depend on the particular choice of p. For more details on circular width, see [12]. As one sees easily, $C_0 = 2$ and $1 \le C_n \le (n+2)/(n+1)$. If we write $F \in \Pi(\Omega)$ in the form $F = F_0 + b_0$, where $F_0 \in \Pi_0(\Omega)$, the relation $B(F) = B(F_0)$ holds. Therefore, the above theorem can be applicable to the whole family $\Pi(\Omega)$. We note that the analytic counterpart of this theorem is known and much simpler to prove (see [11, Theorem 4.1]); $B(f) \le ||T_f|| \le W(\Omega)$ holds for $f \in \mathcal{A}$ with $f'(\mathbb{D}) \subset \Omega$.

As is well known, if $f \in \mathcal{A}$ satisfies Re f' > 0 then f is necessarily univalent (cf. [9, Theorem 2.16]). However, the meromorphic counterpart does not hold (see, for instance, the example given in Section 3). The following univalence criterion is due to Aksent'ev [1] (see also [5, Theorem 11]). Later, Krzyż [13] gave quasiconformal extensions for the functions.

Theorem D (Aksent'ev, Krzyż). Let $0 \le k \le 1$. If $F \in \mathcal{M}$ satisfies the inequality

(1.3)
$$|F'(\zeta) - 1| \le k, \quad |\zeta| > 1,$$

then F is univalent. Furthermore, if k < 1, then F extends to a k-quasiconformal mapping of the extended plane. The radii 1 and k are best possible.

Note that the range of F' cannot be enlarged to $\{w : |w-1| < a\}$, a > 1, for univalence [2].

T. SUGAWA

2. Examples

The following examples can be found in [12].

Example 1 (sectors). For $S(\beta) = \{w : |\arg w| < \pi\beta/2\}, \ 0 < \beta \le 2$, we have $W(S(\beta)) = 2\beta$

Example 2 (annuli). For the annulus $A(r,R) = \{w : r < |w| < R\}, \ 0 < r < R < \infty$, we have $W(A(r,R)) = (2/\pi) \log(R/r)$.

Example 3 (disks). Let $\mathbb{D}(a,r) = \{w : |w-a| < r\}$ for $0 < r \le a$. Then

$$W(\mathbb{D}(a,r)) = \frac{2r/a}{1 + \sqrt{1 - (r/a)^2}}.$$

Example 4 (parallel strips). Let $P(a,b) = \{w : a < \text{Re } w < b\}$ for $0 \le a < b < \infty$. Then

$$W(P(a,b)) = \max_{0 < \theta < \pi/2} \frac{2t \cos \theta}{1 - t\theta},$$

where t is a number with $0 < t \le 2/\pi$ determined by

$$\frac{\pi t}{2} = \frac{b-a}{b+a}.$$

Example 5 (truncated wedges). Let $S(\beta, r, R) = \{w : |\arg w| < \pi\beta/2, r < |w| < R\}, 0 < \beta \le 2, 0 < r < R < \infty$. Then

$$W(S(\beta, r, R)) = \frac{\log(R/r)}{(1+t)\mathcal{K}(t)},$$

where

$$\mathcal{K}(t) = \int_0^1 rac{dx}{\sqrt{(1-x^2)(1-t^2x^2)}}$$

is the complete elliptic integral of the first kind and 0 < t < 1 is a number such that

$$\frac{\mathcal{K}(\sqrt{1-t^2})}{\mathcal{K}(t)} = \frac{2\pi\beta}{\log(R/r)}.$$

3. Applications

We apply Theorem 1 and Theorem C to the above examples to obtain several results on univalence of meromorphic functions. As samples, we state a few theorems. Note that the univalence criteria in Theorems 2 and 3 were first given by Avhadiev and Aksent'ev [4].

Let $x_2 \approx 0.4198$ denote the unique zero of the equation

$$\sqrt{x}\log((1+\sqrt{x})/(1-\sqrt{x})) = 1$$

in 0 < x < 1.

Theorem 2. Let $0 \le k \le 1$. Suppose that a function $F \in \mathcal{M}$ satisfies the condition

$$|\arg F'(\zeta)| \le \frac{k\pi}{8}, \quad |\zeta| > 1,$$

ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

then F must be univalent. Furthermore, if k < 1, then F extends to a k-quasiconformal mapping of the extended plane. As for univalence, the constant $\pi/8$ cannot be replaced by any smaller number than $(4/\pi)$ arctan x_2 .

Note that $(4/\pi) \arctan x_2 \approx 0.506057 \approx 1.28866(\pi/8)$. The number x_2 appears in the following example.

We consider the function $F_n \in \mathcal{M}$ given by

$$F_n(\zeta) = \zeta - 2\sum_{j=1}^{\infty} \frac{\zeta^{1-nj}}{nj-1}$$

= $\zeta \left(2{}_2F_1(1, -\frac{1}{n}; 1 - \frac{1}{n}; \zeta^{-n}) - 1 \right), \quad |\zeta| > 1,$

for each integer $n \ge 2$, where ${}_2F_1(a, b; c; x)$ stands for the hypergeometric function. Note that F_n has the n-fold symmetry

$$F_n(e^{2\pi i/n}\zeta) = e^{2\pi i/n}F_n(\zeta)$$

and belongs to the class \mathcal{M}_{n-2} . Since the function h_n defined by

$$h_n(x) = 2{}_2F_1(1, -\frac{1}{n}; 1 - \frac{1}{n}; x) - 1 \quad (x \in (0, 1))$$

has the properties that h_n is monotone decreasing, $h_n(0) = 1$ and $\lim_{x \to 1^-} h_n(x) = -\infty$, there is the unique point x_n such that $h(x_n) = 0$ in the interval 0 < x < 1. Hence, the function F_n has the n zeros $e^{2\pi i j/n} x_n^{-1/n}$, $j = 0, 1, \ldots, n-1$, in Δ and, in particular, is not univalent in Δ . On the other hand, we have

$$F'_n(\zeta) = 1 + 2\sum_{j=1}^{\infty} \zeta^{-nj} = p(\zeta^{-n}),$$

where p(z) is the function given by p(z)=(1+z)/(1-z). It is a standard fact that p maps the unit disk onto the right half-plane $\mathbb{H}=\{w\in\mathbb{C}:\operatorname{Re}w>0\}$. Therefore, F'_n maps Δ onto \mathbb{H} in an n-to-1 way and thus $\operatorname{Re}F'_n>0$ holds.

In the next criterion, F' may take values with negative real part.

Theorem 3. Let $0 \le k \le 1$. Suppose that a function $F \in \mathcal{M}$ satisfies the condition

$$|\log |F'(\zeta)|| \le \frac{k\pi}{8}, \quad |\zeta| > 1,$$

then F must be univalent. Furthermore, if k < 1, then F extends to a k-quasiconformal mapping of the extended plane. As for univalence, the constant $\pi/8$ cannot be replaced by any smaller number than $\log((1+x_2)/(1-x_2))$.

Note that $\log((1+x_2)/(1-x_2)) \approx 0.894894 \approx 2.27883(\pi/8)$. In these results, if we assume F to be in \mathcal{M}_n for larger n, then we can make the involved constants better.

REFERENCES

- 1. L. A. Aksent'ev, Sufficient conditions for univalence of regular functions (Russian), Izv. Vysš. Učebn. Zaved. Matematika 1958 (1958), no. 3 (4), 3-7.
- 2. L. A. Aksent'ev and F. G. Avhadiev, A certain class of univalent functions (Russian), Izv. Vysš. Učebn. Zaved. Matematika 1970 (1970), no. 10, 12-20.

T. SUGAWA

- 3. F. G. Avhadiev, Conditions for the univalence of analytic functions (Russian), Izv. Vysš. Učebn. Zaved. Matematika 1970 (1970), no. 11 (102), 3-13.
- 4. F. G. Avhadiev and L. A. Aksent'ev, Sufficient conditions for the univalence of analytic functions (Russian), Dokl. Akad. Nauk SSSR 198 (1971), 743-746, English translation in Soviet Math. Dokl. 12 (1971), 859-863.
- 5. _____, Fundamental results on sufficient conditions for the univalence of analytic functions (Russian), Uspehi Mat. Nauk 30 (1975), no. 4 (184), 3-60, English translation in Russian Math. Surveys 30 (1975), 1-64.
- 6. J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43.
- 7. _____, Löwnersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321-335.
- 8. J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math. 354 (1984), 74-94.
- 9. P. L. Duren, Univalent Functions, Springer-Verlag, 1983.
- 10. G. M. Goluzin, Geometric theory of functions of a complex variable, American Mathematical Society, Providence, R.I., 1969, Translations of Mathematical Monographs, Vol. 26.
- 11. Y. C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math. 32 (2002), 179-200.
- 12. _____, A conformal invariant for non-vanishing analytic functions and its applications, Preprint (2004).
- 13. J. G. Krzyż, Convolution and quasiconformal extension, Comment. Math. Helv. 51 (1976), 99-104.
- 14. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
- 15. S. Ponnusamy and T. Sugawa, Norm estimates and univalence criteria for meromorphic functions, Preprint (2004).

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Japan

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp