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ON UNIVALENCE CRITERIA FOR MEROMORPHIC FUNCTIONS

Al #= TOSHIYUKI SUGAWA

LB RERERBZETIERL HIROSHIMA UNIVERSITY

ABSTRACT. We propose a way of deduction of various univalence criteria for meromor-
phic functions on the outside of the unit circle in terms of the range of their derivatives.
This is a summary of the forthcoming joint paper [15] of S. Ponnusamy and the author.

1. INTRODUCTION

Let A denote the set of analytic functions f in the unit disk D = {z € C: |2| < 1}
normalized so that f(0) = 0 and f'(0) = 1. The set S of univalent functions in A has
been intensively studied by many authors. Let ¥ denote the set of univalent functions ¥
in the domain A = {¢: |¢| > 1} of the form

(L1) F(Q=C(+) bl

Note that the function 1/f(1/¢) belongs to X for each f € S. The converse is, however,
not true in general. More precisely, for F' € ¥, the function f(z) = 1/F(1/z) belongs to
S if and only if F omits 0, namely, F({) # 0 for { € A.

In parallel with the analytic case, we consider the set M of meromorphic functions in
A with the expansion (1.1) around ¢ = oo. For some technical reason, we also consider
the sets A, = {f € A: f™M(0)=0form=2,...,n}and M, ={FeEM:py=--=
br = O}. Note that A4, = A and M_; = M.

Practically, it is an important problem to determine univalence of a given function in
A, or in M,. The best known conditions for univalence are probably those involving
pre-Schwarzian or Schwarzian derivatives, which are defined by
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We define quantities for functions f € A and F € M by

— 142 zf"(2)
B(f)_,sz?ﬁ(l |2[%) ) |
_ 2 1y |[SF"(C)
B(F) = s~ [
N(f) = 1?3(1 — 21?185 (2)1
N(F) = sup(|¢[* — 1)*|SF({)] -
i¢1>1

Note that these quantities may take co as their values. For example, if F' has a pole at a
finite point, then B(F') = oo.
If f € Aand F € M have the relation f(z) =1/F(1/z), then we can easily see that

(1~ 121*)25¢(2) = (I<1* = 1)*Sr(0)
holds for z = 1/¢. In particular, we have N(f) = N(F).

Theorem A (Nehari [14]). Every f € S satisfies N(f) < 6. Conversely, if f € A satisfies
N(f) < 2 then f must be univalent. The constants 6 and 2 are best possible. The same 1s
true for meromorphic F.

Though z f'(2)/ f(z) = CF'(¢)/F((), there is no such a simple relation between z f"(2)/f'(2)
and (F"(¢)/F'(¢), and thus, between B(f) and B(F) for f(z) = 1/F(1/z), { = 1/2. Nev-
ertheless, it is rather surprising that the formally same conclusions can be deduced for f
and F. Compare Theorem B with Theorem C.

Theorem B. Every f € S satisfies B(f) < 6. Conversely, if f € A satisfies B(f) < 1
then f € S. Moreover, if B(f) < k < 1, then f extends to a k-quasiconformal mapping of
the extended plane. The constants 6 and 1 are best possible.

Here and hereafter, a quasiconformal mapping g is called k-quasiconformal if its Bel-
trami coefficient u = g;/g, satisfies ||l < k.

The sufficiency of univalence and quasiconformal extendibility are due to Becker [6].
The sharpness of the constant 1 is due to Becker and Pommerenke [8]. The sharp inequal-
ity B(f) < 6 follows from a standard argument in the coefficient estimation (see, e.g., [9,
Theorem 2.4)).

Theorem C. Every F € ¥ satisfies B(F) < 6. Conversely, if F € M satisfies B(F) <1
then F € ©. Moreover, if B(F) < k < 1, then F extends to a k-quasiconformal mapping
of the extended plane. The constants 6 and 1 are best possible.

The sufficiency of univalence and quasiconformal extendibility are due to Becker [7].
The sharpness of the constant 1 is also due to Becker and Pommerenke [8]. On the other
hand, the estimate B(F) < 6 lies deeper. Avhadiev [3] first showed the sharp inequality
B(F) < 6 by appealing to Goluzin's inequality (see [10, p. 139]).
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Note that many authors use a different norm for the pre-Schwarzian derivative of f € A,
namely,

I T7ll = sup (1 — |2[*)|Ty(2)|.

|z]<1

By definition, we observe B(f) < ||T%||.
Recall that a plane domain 2 C C is called hyperbolic if 02 contains at least two points.
Let § be a hyperbolic plain domain such that 1 € Q but 0 ¢ Q and set

) ={FeM:F'({)eQforall ( € A}.

Set also I1,(Q) = II(Q) N My, for n = —1,0,2,.... One of our main results in the present
paper is an estimate of B(F') for F' € II(Q?). The proof is given in [15].

Theorem 1. Let () be a domain such that 1 € Q but 0 ¢ Q. For every F € I1,,(), n > 0,
the inequality

B(F) < C,W(Q)
holds, where C, is the constant given by

(n+2)(1 = r)r"
1 — r2n+4

(1.2) Cn = sup

0<r<1
and W(Q) is the circular width of Q0 with respect to the origin, namely,
p'(2)
p(2)

for an analytic universal covering projection p of D onto Q.

W(Q) = sup(1 - |2[*)
zeD

Note that W () does not depend on the particular choice of p. For more details on
circular width, see [12]. As one sees easily, Co =2 and 1 < C,, < (n+2)/(n+1). If we
write F* € I1(2) in the form F = F + by, where Fyy € Ip(§2), the relation B(F) = B(F)
holds. Therefore, the above theorem can be applicable to the whole family II(Q2). We note
that the analytic counterpart of this theorem is known and much simpler to prove (see
[11, Theorem 4.1})); B(f) < ||T¢|| < W(Q) holds for f € A with f'(D) C Q.

As is well known, if f € A satisfles Re f' > 0 then f is necessarily univalent (cf. [9,
Theorem 2.16]). However, the meromorphic counterpart does not hold (see, for instance,
the example given in Section 3). The following univalence criterion is due to Aksent’ev
(1] (see also [5, Theorem 11]). Later, Krzyz [13] gave quasiconformal extensions for the

functions.
Theorem D (Aksent’ev, Krzyz). Let 0 < k < 1. If F € M satisfies the inequality
(1.3) IF'(Q) -1 <k, [CI>1,

then F' is univalent. Furthermore, if k < 1, then I extends to a k-quasiconformal mapping
of the extended plane. The radit 1 and k are best possible.

Note that the range of F’ cannot be enlarged to {w : lw—1| < a}, a > 1, for univalence

2].
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2. EXAMPLES
The following examples can be found in [12].

Example 1 (sectors). For S(8) = {w: |argw| < 78/2}, 0 < 8 < 2, we have W(S(8)) =
28.
Example 2 (annuli). For the annulus A(r,R) = {w:r < |w| < R}, 0 <7 < R < o0,
we have W(A(r, R)) = (2/7) log(R/r).
Example 3 (disks). Let D(a,r) = {w: |w —a| <7} for 0 <7 < a. Then
2r/a
Ve
Example 4 (parallel strips). Let P(a,b) = {w:a < Rew < b} for 0 < a <b < oco. Then
max 2tcosf
o<o<n/e 1 — 6’

where ¢ is a number with 0 < ¢t < 2/7 determined by

W(D(a,r)

W(P(a,b)) =

m_b-a
2 b+a
Example 5 (truncated wedges). Let S(3,7, R) = {w : |argw| < 7B/2,r < |w| <
R}, 0<$8<2,0<r<R<oo. Then

log(R/T)
W(S(8,r, R)) = m,

where

! dz
K = |
W= V—on -
is the complete elliptic integral of the first kind and 0 < ¢t < 1 is a number such that

KWVI=®) 2B
K(t) " log(R/r)’

3. APPLICATIONS

We apply Theorem 1 and Theorem C to the above examples to obtain several results
on univalence of meromorphic functions. As samples, we state a few theorems. Note that
the univalence criteria in Theorems 2 and 3 were first given by Avhadiev and Aksent’ev

[4]

Let 24 ~ 0.4198 denote the unique zero of the equation

Vzlog((1+vz)/(1= Vi) =1

ml<zr<l
Theorem 2. Let 0 < k < 1. Suppose that a function F' € M satisfies the condition

g FOI< S, 1>1,
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then F' must be univalent. Furthermore, if k < 1, then F' extends to a k-quasiconformal
mapping of the ertended plane. As for univalence, the constant w/8 cannot be replaced by
any smaller number than (4/7) arctan z,.

Note that (4/7) arctan zs &~ 0.506057 = 1.28866(7/8). The number z, appears in the
following example.
We consider the function F, € M given by

= (2RO, -51-5¢")-1), K>,

for each integer n > 2, where 5 F(a, b; c; z) stands for the hypergeometric function. Note
that F), has the n-fold symmetry

Fn(em/"g) — ezm'/nFn(O
and belongs to the class M, _,. Since the function h, defined by
hn(x) = 22F1(11 _'71;; 1- ;1{)3:) -1 (.’L‘ € (O’ 1))
has the properties that A, is monotone decreasing, h,(0) = 1 and lim, ;- h,(z) = —o00,
there is the unique point z, such that A(z,) = 0 in the interval 0 < z < 1. Hence, the

function F, has the n zeros €2™i/mg /™ j=10,1,....n—1,in A and, in particular, is
not univalent in A. On the other hand, we have

o0
Fi(Q)=1+2) (™ =p(C™,
7j=1
where p(z) is the function given by p(z) = (1 + 2)/(1 — 2). It is a standard fact that p
maps the unit disk onto the right half-plane H = {w € C : Rew > 0}. Therefore, F,
maps A onto H in an n-to-1 way and thus Re F, > 0 holds.
In the next criterion, F' may take values with negative real part.

Theorem 3. Let 0 < k < 1. Suppose that a function FF € M satisfies the condition

og | F/(Q)ll < 7, 11> 1,

then F' must be univalent. Furthermore, if k < 1, then F extends to a k-quasiconformal
mapping of the extended plane. As for univalence, the constant /8 cannot be replaced by
any smaller number than log((1 + z3)/(1 — z5)).

Note that log((1 + z2)/(1 — z3)) ~ 0.894894 =~ 2.27883(~/8). In these results, if we
~ assume F to be in M,, for larger n, then we can make the involved constants better.
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