Notes on Sakaguchi functions

Shigeyoshi Owa, Tadayuki Sekine and Rikuo Yamakawa

Abstract

By using the definition for certain univalent functions f(z) in the open unit disk \mathbb{U} given by K.Sakaguchi(J.Math.Soc.Japan, 11(1959)), two classes $S(\alpha)$ and $T(\alpha)$ of analytic functions in \mathbb{U} are introduced. The object of the present paper is to discuss some properties of functions f(z) belonging to the classes $S(\alpha)$ and $T(\alpha)$.

1 Introduction

Let A be the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

that are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} \mid |z| < 1\}$. A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}(\alpha)$ if it satisfies

Re
$$\left\{ \frac{zf'(z)}{f(z) - f(-z)} \right\} > \alpha$$
 (1.2)

for some $\alpha(0 \leq \alpha < \frac{1}{2})$ and for all $z \in \mathbb{U}$. The class $\mathcal{S}(0)$ when $\alpha = 0$ was introduced by Sakaguchi [2]. Therefore, a function $f(z) \in \mathcal{S}(\alpha)$ is called Sakaguchi function of order α . We also denote by $\mathcal{T}(\alpha)$ the subclass of \mathcal{A} consisting of all functions f(z) such that $zf'(z) \in \mathcal{S}(\alpha)$.

For f(z) belonging to $S(\alpha)$ and $T(\alpha)$, Cho, Kwon and Owa [1] have given

Lemma 1 If $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \{2(n-1)|a_{2n-2}| + (2n-1-2\alpha)|a_{2n-1}|\} \le 1 - 2\alpha \tag{1.3}$$

for some $\alpha(0 \le \alpha < \frac{1}{2})$, then $f(z) \in \mathcal{S}(\alpha)$.

Lemma 2 If $f(z) \in A$ satisfies

²⁰⁰⁴ Mathematics Subject Classification: Primary 30C45.

Kew Words and Phrases: Sakaguchi function, coefficient inequality, distortion inequality.

$$\sum_{n=2}^{\infty} \left\{ 4(n-1)^2 |a_{2n-2}| + (2n-1)(2n-1-2\alpha)|a_{2n-1}| \right\} \le 1 - 2\alpha \tag{1.4}$$

for some $\alpha(0 \leq \alpha < \frac{1}{2})$, then $f(z) \in \mathcal{T}(\alpha)$.

In view of the abobe lemmas, we see

Example 1.1 Let us consider a function f(z) given by

$$f(z) = z + \frac{1}{3}\delta_2 z^2 + \left(1 - \frac{8}{3(3 - 2\alpha)}\right)\delta_3 z^3$$
 (1.5)

with $|\delta_2| = |\delta_3| = 1$. Then, since

$$\sum_{n=2}^{\infty} \left\{ 2(n-1)|a_{2n-2}| + (2n-1-2\alpha)|a_{2n-1}| \right\} < 1 - 2\alpha$$

we see that $f(z) \in \mathcal{S}(\alpha)$.

Example 1.2 Let us consider a function f(z) given by

$$f(z) = z + \frac{1}{6}\delta_2 z^2 + \frac{1}{3}\left(1 - \frac{8}{3(3 - 2\alpha)}\right)\delta_3 z^3$$
 (1.6)

with $|\delta_2| = |\delta_3| = 1$. Then, since

$$zf'(z) = z + \frac{1}{3}\delta_2 z^2 + \left(1 - \frac{8}{3(3-2\alpha)}\right)\delta_3 z^3 \in \mathcal{S}(\alpha),$$

we have that $f(z) \in \mathcal{T}(\alpha)$.

2 Coefficient inequalities

Applying Carathéodory function

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \tag{2.1}$$

in \mathbb{U} , we first discuss the coefficient inequalities for functions f(z) in $\mathcal{S}(\alpha)$ and $\mathcal{T}(\alpha)$.

Theorem 2.1 If $f(z) \in S(\alpha)$, then

$$|a_{2n}| \le \frac{\prod_{j=1}^{n+1} (j-2\alpha)}{n(n!)} \quad (n \ge 1)$$
 (2.2)

and

$$|a_{2n+1}| \le \frac{\prod_{j=1}^{n} (j-2\alpha)}{n!} \quad (n \ge 1).$$
 (2.3)

Proof We define the function p(z) by

$$p(z) = \frac{1}{1 - 2\alpha} \left(\frac{2zf'(z)}{f(z) - f(-z)} - 2\alpha \right) = 1 + \sum_{n=1}^{\infty} p_n z^n$$
 (2.4)

for $f(z) \in \mathcal{S}(\alpha)$. Then p(z) is a Carathéodory function and satisfies $|p_n| \leq 2$ $(n \geq 1)$. Since

$$2zf'(z) = (f(z) - f(-z))((1 - 2\alpha)p(z) + 2\alpha),$$

we obtain that

$$a_{2n} = \frac{1 - 2\alpha}{2n} \left(p_{2n+1} + a_3 p_{2n-1} + \dots + a_{2n+1} p_1 \right) \tag{2.5}$$

and

$$a_{2n+1} = \frac{1 - 2\alpha}{2n} \left(p_{2n} + a_3 p_{2n-2} + \dots + a_{2n-1} p_2 \right). \tag{2.6}$$

Taking n = 1, we see that

$$|a_3| \le 1 - 2\alpha \tag{2.7}$$

and

$$|a_2| = \frac{1 - 2\alpha}{1 + |a_2|} \le (1 - 2\alpha)(2 - 2\alpha). \tag{2.8}$$

Thus, using the mathematical induction, we complete the proof of the theorem.

Remark 2.1 Equalities in Theorem 2.1 are attended for f(z) given by

$$\frac{zf'(z)}{f(z) - f(-z)} = \frac{1 + (1 - 4\alpha)z}{2(1 - z)}.$$

Theorem 2.2 If $f(z) \in \mathcal{T}(\alpha)$, then

$$|a_{2n}| \le \frac{\prod_{j=1}^{n+1} (j-2\alpha)}{2n^2(n!)} \quad (n \ge 1)$$
 (2.9)

and

$$|a_{2n+1}| \le \frac{\prod_{j=1}^{n} (j-2\alpha)}{(2n+1)(n!)} \quad (n \ge 1).$$
 (2.10)

3 Distortion inequalities

In view of Lemma 1 and Lemma 2, we introduce the subclasses $S_0(\alpha)$ and $T_0(\alpha)$. If $f(z) \in S(\alpha)$ satisfies the coefficient inequalities (1.3), then we say that $f(z) \in S_0(\alpha)$. Also, if $f(z) \in T(\alpha)$ satisfies the coefficient inequalities (1.4), then we say that $f(z) \in T_0(\alpha)$. For f(z) belonging to $S_0(\alpha)$ and $T_0(\alpha)$, Cho, Kwon and Owa [1] have shown that

Theorem A If $f(z) \in S_0(\alpha)$, then

$$|z| - \frac{1 - 2\alpha}{2}|z|^2 - \frac{1 - 2\alpha}{3 - 2\alpha}|z|^3 \le |f(z)| \le |z| + \frac{1 - 2\alpha}{2}|z|^2 + \frac{1 - 2\alpha}{3 - 2\alpha}|z|^3 \tag{3.1}$$

and

$$1 - (1 - 2\alpha)|z| - \frac{3(1 - 2\alpha)}{3 - 2\alpha}|z|^2 \le |f'(z)| \le 1 + (1 - 2\alpha)|z| + \frac{3(1 - 2\alpha)}{3 - 2\alpha}|z|^2$$
 (3.2)

for $z \in \mathbb{U}$.

Theorem B If $f(z) \in \mathcal{T}_0(\alpha)$, then

$$|z| - \frac{1 - 2\alpha}{4}|z|^2 - \frac{1 - 2\alpha}{3(3 - 2\alpha)}|z|^3 \le |f(z)| \le |z| + \frac{1 - 2\alpha}{4}|z|^2 + \frac{1 - 2\alpha}{3(3 - 2\alpha)}|z|^3$$
 (3.3)

and

$$1 - \frac{1 - 2\alpha}{2}|z| - \frac{1 - 2\alpha}{3 - 2\alpha}|z|^2 \le |f'(z)| \le 1 + \frac{1 - 2\alpha}{2}|z| + \frac{1 - 2\alpha}{3 - 2\alpha}|z|^2 \tag{3.4}$$

for $z \in \mathbb{U}$.

Now, we show

Theorem 3.1 If $f(z) \in S_0(\alpha)$, then

$$|z| - \sum_{n=2}^{j} |a_n||z|^n - A_j|z|^{j+1} \le |f(z)| \le |z| + \sum_{n=2}^{j} |a_n||z|^n + A_j|z|^{j+1}$$
(3.5)

and

$$1 - \sum_{n=2}^{2j-2} n|a_n||z|^{n-1} - B_j|z|^{2j-2} \le |f'(z)| \le 1 + \sum_{n=2}^{2j-2} n|a_n||z|^{n-1} + B_j|z|^{2j-2}$$
 (3.6)

where

$$A_{j} = \frac{1 - 2\alpha - \sum_{n=2}^{j} \{n - (1 + (-1)^{n+1})\alpha\} |a_{n}|}{j + 1 - (1 + (-1)^{j})^{\alpha}} \quad (j \ge 2)$$
(3.7)

and

$$B_{j} = (2j-1)\frac{1-2\alpha - \sum_{n=2}^{2j-2} \{n - (1+(-1)^{n+1})\alpha\} |a_{n}|}{2j-1-2\alpha} \quad (j \ge 2).$$
 (3.8)

Proof Note that the coefficient inequalities (1.3) can be written as

$$\sum_{n=2}^{\infty} \{ n - (1 + (-1)^{n+1}) \alpha \} |a_n| \le 1 - 2\alpha.$$
 (3.9)

This gives us that

$$\sum_{n=2}^{j} \{n - (1 + (-1)^{n+1}) \alpha\} |a_n| + \{j + 1 - (1 + (-1)^j) \alpha\} \sum_{n=j+1}^{\infty} |a_n| \le 1 - 2\alpha$$
 (3.10)

and

$$\sum_{n=2}^{2j-2} \{n - (1 + (-1)^{n+1}) \alpha\} |a_n| + \left(1 - \frac{2\alpha}{2j-1}\right) \sum_{n=2j-1}^{\infty} n|a_n| \le 1 - 2\alpha.$$
 (3.11)

Therefore, $f(z) \in \mathcal{S}_0(\alpha)$ satisfies

$$\sum_{n=j+1}^{\infty} |a_n| \le A_j \tag{3.12}$$

and

$$\sum_{n=2j-1}^{\infty} n|a_n| \le B_j. \tag{3.13}$$

Thus, the distortion inequality (3.5) follows from (3.12) and the distortion inequality (3.6) follows from (3.13).

Remark 3.1 If we take j = 2 in Theorem 3.1, then we have Theorem A due to Cho, Kwon and Owa [1].

Furthermore, we also have

Theorem 3.2 If $f(z) \in \mathcal{T}_0(\alpha)$, then

$$|z| - \sum_{n=2}^{j} |a_n||z|^n - C_j|z|^{j+1} \le |f(z)| \le |z| + \sum_{n=2}^{j} |a_n||z|^n + C_j|z|^{j+1}$$
(3.14)

and

$$1 - \sum_{n=2}^{j} n|a_n||z|^{n-1} - D_j|z|^j \le |f'(z)| \le 1 + \sum_{n=2}^{j} n|a_n||z|^{n-1} + D_j|z|^j$$
(3.15)

for $z \in \mathbb{U}$ where

$$C_{j} = \frac{1 - 2\alpha - \sum_{n=2}^{j} n\{n - (1 + (-1)^{n+1})\alpha\} |a_{n}|}{(j+1)\{j+1 - (1 + (-1)^{j})\alpha\}} \quad (j \ge 2)$$
(3.16)

and

$$Dj = \frac{1 - 2\alpha - \sum_{n=2}^{j} n\{n - (1 + (-1)^{n+1})\alpha\} |a_n|}{j + 1 - (1 + (-1)^j)\alpha} \quad (j \ge 2).$$
 (3.17)

Proof Noting that the coefficient inequalities (1.4) satisfy

$$\sum_{n=2}^{\infty} n\{n - (1 + (-1)^{n+1}) \alpha\} |a_n| \le 1 - 2\alpha, \tag{3.18}$$

we have that

$$\sum_{n=2}^{j} n\{n - (1 + (-1)^{n+1}) \alpha\} |a_n|$$

$$+(j+1)\{j+1-(1+(-1)^{j+2})\alpha\}\sum_{n=j+1}^{\infty}|a_n| \le 1-2\alpha, \tag{3.19}$$

which implies that

$$\sum_{n=j+1}^{\infty} |a_n| \le C_j. \tag{3.20}$$

Further, by virtue of (3.18), we see that

$$\sum_{n=2}^{j} n\{n - (1 + (-1)^{n+1})\alpha\}|a_n| + \{j + 1 - (1 + (-1)^{j+2})\alpha\} \sum_{n=j+1}^{\infty} |a_n| \le 1 - 2\alpha, \quad (3.21)$$

which derives

$$\sum_{n=j+1}^{\infty} |a_n| \le D_j. \tag{3.22}$$

Therefore, the proof of the theorem follows from (3.21) and (3.22).

Remark 3.2 If we let j = 2 in Theorem 3.2, then we have Theorem B by Cho, Kwon and Owa [1].

4 Relation between the classes

By the definitions for the classes $S_0(\alpha)$, and $T_0(\alpha)$, we know that

$$S_0(\alpha) \subset S_0(\beta) \subset S_0(0) \quad \left(0 \le \beta \le \alpha < \frac{1}{2}\right)$$

and

$$\mathcal{T}_0(\alpha) \subset \mathcal{T}_0(\beta) \subset \mathcal{T}_0(0) \quad \left(0 \leq \beta \leq \alpha < \frac{1}{2}\right).$$

Let us discuss a relation between $S_0(\beta)$ and $T_0(\alpha)$.

Theorem 4.1 If $f(z) \in \mathcal{T}_0(\alpha)$, then $f(z) \in \mathcal{S}_0\left(\frac{1+2\alpha}{4}\right)$.

Proof Let $f(z) \in \mathcal{T}_0(\alpha)$. Then, if f(z) satisfies

$$\frac{n - (1 + (-1)^{n+1})\beta}{1 - 2\beta} \le n \frac{n - (1 + (-1)^{n+1})\alpha}{1 - 2\alpha}$$
(4.1)

for all $n \geq 2$, we have that $f(z) \in \mathcal{S}_0(\beta)$. which satisfies the inequality (4.1). After calculation (4.1), we have that

$$\beta \le n \, \frac{n-1 + (3 + (-1)^{n+1}) \, \alpha}{2n^2 - (1 + (-1)^{n+1}) \, (2n\alpha - 2\alpha + 1)} \,. \tag{4.2}$$

If n is even, then (4.2) becomes

$$\beta \le \frac{n-1+2\alpha}{2n} \,. \tag{4.3}$$

This implies that

$$\beta \le \frac{1+2\alpha}{4} \quad \text{(for even } n\text{)} \,. \tag{4.4}$$

On the other hand, if n is odd, then (4.3) becomes

$$\beta \le \frac{n^2 - (1 - 4\alpha)n}{2n^2 - 4n\alpha + 4\alpha - 2}.$$
(4.5)

Since, for odd n and $0 \le \alpha < \frac{1}{2}$,

$$\frac{n^2 - (1 - 4\alpha)n}{2n^2 - 4n\alpha + 4\alpha - 2} - \frac{1 + 2\alpha}{4} = \frac{(1 - 2\alpha)(n - 1)(n - 1 - 2\alpha)}{4(n^2 - 2n\alpha + 2\alpha - 1)} > 0,$$
 (4.6)

we conclude that $\beta \leq \frac{1+2\alpha}{4}$ for all n. Thus we conclude that $\mathcal{T}_0(\alpha) \subset \mathcal{S}_0\left(\frac{1+2\alpha}{4}\right)$.

References

- [1] N. E. Cho, O. S. Kwon and S. Owa, Certain subclasses of Sakaguchi functions, SEA Bull. Math. 17(1993), 121 126.
- [2] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11(1959), 72 75.

S. Owa: Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502

Japan

 $e ext{-}mail:owa@math.kindai.ac.jp}$

T. Sekine: Office of Mathematics
College of Pharmacy

Nihon University

7-1 Narashinodai, Funabashi-city
Chiba 271-8555 Japan

Chiba, 274-8555, Japan e-mail:tsekine@pha.nihon-u.ac.jp

R. Yamakawa: Department of Mathematics Shibaura Institute of Technology Minuma, Saitama-city

Saitama 337-8570, Japan

e-mail: yamakawa@sic.shibaura-it.ac.jp