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Abstract

Two aims of our study are follows: One is to prove that a complete metric space of fuzzy numbers becomes
a Banach space under a condition that the metric has a homogeneous property. Another is to give sufficient
conditions that a subset in the complete metric space and an into continuous mapping on the subset have at
least one fixed point by applying Schauder’s fixed point theorem.

1 Introduction

Fuzzy numbers are characterized by membership func-
tions which have three properties: normality , compact
convex support and upper semi-continuity. Member-
ship functions are described by a—cut sets, i.e., level
sets for 0 < a < 1, which are compact convex subsets in
R™ under the above assumptions of membership func-
tions hold. In [6] the author discussed an embedding
theorem where metric spaces of compact convex sets
are complete. There are so many results on complete-
ness of metric spaces of various kinds of fuzzy numbers
and metrics in [2, 4].

In analyzing qualitative properties of differential equa-

tions Schauder’s fixed point in complete linear spaces
is very useful, because it guarantees the existence of
solutions for integral equations corresponding to the
differential equations etc. Schauder’s fixed point is as
follows : let § be a bounded convex and closed sub-
set in a Banach space. If an into mapping V on § is
continuous and the closure (V' (S)) is compact, then
V has at least one fixed point in S. ( See e.g., [9]).
It can be easily seen that Various sets of fuzzy num-
hers are complete metric spaces with suitable metrics,
but it is not possible to discuss the qualitative prop-
erties of solutions in the complete metric spaces by
applying Schauder’s fixed point theorem rather than
the contraction principle and the comparison method(

eg.,[2,3,4,78).

In this paper we introduce a parametric representa-
tion of fuzzy numbers, which are strictly fuzzy convex,
then the fuzzy numbers can be identified by bounded
closed curves in the two-dimensional metric space. More-
over we show that the set of all the fuzzy numbers be-
comes a complete linear space and establish sufficient
conditions for fixed points to exist in the complete met-
ric space by applying Schauder’s fixed point in the in-
duced Banach space.

2 Complete Metric Space of Fuzzy
Numbers

Denote I = [0, 1]. The following definition means that
a fuzzy number can be identified with a membership
function.

Definition 1 Denote a set of fuzzy numbers with
bounded supports and strict fuzzy convexity by

Ft = {u: R — [ satisfying (1)-(iv) below}.

(i) p has a unigue number m € R such that p(m) =
1 (normality);

(it) supp(p) = cl({€ € R : u(&) > 0}) is bounded in
R (bounded support);



(iii) p is strictly fuzzy convex on supp(p) as follows:
(a) if supp(p) # {m}, then
A& + (1= N)&2) > minu(&), w(&2))

for &1,& € supp(p) with & # & and 0 <
A<l

(b) if supp(u
0 for€ 9& m;

= {m}, then pu(m) =1 and u(§) =

(iv) p'is upper semi-continuous on R (upper semi-
continuity).

It follows that R C F¥. Because m has a membership
function as follows:
pim)=1; wE)=0(E#m)
Then p satisfies the above (1)-(iv}.
In usual case a fuzzy number z satisfies fuzzy convez
on R, ie.,

(2.1)

W&+ (1= NE) > minfu() w6 (22)
for 0< A <1 and £;,& € R. Denote a—cut sets by
Lo(p) ={€ € R: p(§) > o}

for o € I. When the membership function is fuzzy
convex, then we have the following remarks.

Remark 1 The following statements (1) - (4) are
equivalent each other, provided with (i) of Definition 1.

(1) (2.2) holds;

(2) Lo(p) is convez with respect to o € I

(3)" e is non-decreasing in € € (—oo, ™), non-increasing

in £ € [, +oc0), respectively;
(4) La(p) C Lp(p) for a > B.

Remark 2 The above condition (iiia) is stronger than

(2.2). From (iiia) it follows that pu(€) is strictly monotonously
increasing in £ € [min supp(p), m]. Suppose that p(€1) >

u(€s) for & < & < m. From Remark 1(3), it follows
that u(&1) = p1(£2) for some & < &2, s0 we get p(§) =
p(&1) = p(&2) for € € [€1,€). This contradicts with
Definition 1 (iiia). Thus p is strictly monotonously in-
creasing. In the similar way p 1s strictly monotonously

decreasing in £ € [m, max supp()]. This condition plays

an important role tn Theorem 1.

111

We introduce the following parametric representa-
tion of p € FE¥ as

zi(a@) = minLy(p),
zo(a) = max La(p)
for 0 < a <1 and
z1(0) = minsupp{p),
z2(0) = maxsupp(y).

In the following example we illustrate typical types
of fuzzy numbers.

Example 1 Consider the following L — R fuzzy num-
ber x € FE' with a membership function as follows:

[ um esm)
“(5)"{ RIS, (6> m)

Here it is said that m € R s a center and £ > 0,r > 0
are spreads. L, R are I—valued functions. Let L{£), =
max(L(|€]),0) etc. We identify p with z = (1, 22). As
long as there exist L' and R™!, we have z;(a) =
m — L™ ()t and z2(a) = m + R~} (a)r.

Let L(€) = —c1£ + 1, where ¢; > 0 and |x; —m| < L
We illustrate the following cases (1)-(iv).

(i) Let R(€) = —caf+1, where 2 > 0. Then col{za—
m) = ¢r(m — z1).
(i) Let R(&) = —cﬁ\/—f + 1, where ¢o > 0. Then
cal(zs — m)? = crr?(m — z9).
(iii) Let R(€) = —c2€>+1, where c2 > 0. Then ci(*(ra—
m) = cir(zr; —m)?.

i

(iv) Let ¢ be a real number such that 0 < ¢ < 1. De-

note

{1 =0
L(g)_{ —egbe (0<£<)

and let R(€) = L(€). Then we have {(zo —m) =
r{m — z1) for |ty —m| < £ The representation
of & = (x1,x2) is as follows:

o3

r1{o)=m—(1- ?)f,
() =m+ (1 - %)r (0<a<c)
zi(a) =z(a)=m (c<all)

The membership function is gwen by as follows:

0 y (€ < 21(0),€ > z2(0))
g (@(0)L€<m)
s | T B0

1) (m < € < 2(0)
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Denote by C(I) the set of all the continuous func-
tions on J to R. The following theorem shows a mem-
bership function is characterized by 1, z2.

Theorem 1 Denote the left-, right-end points of the
a—cut set of € FE by z1(a), z2(a), respectively.
Here z1,z5 : I — R. The following properties (i)-(iii)
hold.

(1) z.22 € CI);

maxzy (@) = z; (1) = m = minzy (a) = z2(1);
acl el C
T1,29 are non-decreasing, mon-increasing on I,
respectively, as follows :

(a) there exists a positive number ¢ < 1 such
that () < z2(a) for o € [0,¢) and that
z1(a) =m = zy(a) for o € l¢, 1};

(b) z1(a) = z2(a) =m for e € I

Conversely, under the above conditions (i) -(iii), +f we
denote

w(&) =sup{a el zi(a) <E

for £ € R, then p € F£.

<o)} (23)

Remark 3 From the above Condition (1) a fuzzy num-
ber x = (x1,79) means a bounded continuous curve
over R? and 71{a) < zo(a) for a € I.

Proof. (i) Let £ = (z1,27) € R. Let lim o, = ap
n-—00
for ag € I. Denote A; = him igfxl(an). We shall prove

that 41 > zy(ag). Suppose that A; < z;(cw). Then
for any sufficiently small € > 0 there exist a number £
such that 4) — ¢ < z{af) < A1 + ¢ < z1{p). Denote

A/j =
S{e) =

{eel:zi{a)=
{ael z(a)=

za(a) = m},

There are the three cases as follows;
(a) ag € M; (b) ap € S(c) for some ¢ ; (¢) og &
M U S(c) for any c.
In case of {a) we consider two cases: (al) ag is an
interior point of M, 1.e., there exists a sufficiently small
number ¢ > such that the neighborhood Us(ap) C M,
{a2) ag is a isolated point. In (al) it follows that m <
Ay +e < m,which leads o a contradiction. In (a2) there
exist two integers p < ¢ such that
Al < 1/g < |zi(op) —

lz1(ag) — - A1l < 1/p.

¢ on some interval} for ¢ € Rl'herefore we bave Lg(u) =

Then min Lg, (p) = z1(0g) < z1(0p) = min Lo, (4) <
m and this means that Lo (1) C Lo, (1) and Lo, (p) #
Lo, (). On the other hand Lq, (1) 5 L, (1) because
ap < ag < 1. This leads to a contradlctlon

In case of (b) the point ap is an interior point of
S(e),i.e., there exists a sufficiently small number § >
such that the neighborhood Us{ag) C S(¢). Then ¢ =
z1(ag) < A1 + £ < ¢, which means a contradiction.

In case of (c), by Relation (3) of Remarkl, zi{a)
is strictly monotonously incerasing in «. Consider a
sequence {&, > 0} such that ¢, > g1 > 0 and that
&n — +0 as n — oo. Then

ar = p(z1(ag)) < p(Ar +e1) < pwi(ao)) = ao,

which contradicts with lim a,, = ag. Therefore A; >
n-—oc

71(ag) and 7z is lower semi-continuous. In the same
way z; is upper semi-continuous and z; is continuous
on I. It can be seen that z,(c) is continuous on [ by
the same discussion.

(i) It is clear that the uniquess of m and that z; (1) =
m = z,(1). Since the membership is fuzzy convey, it
follows that z;(a) < m < z5(a) for a € 1.

(iti) Let M be defined in (i). In case that M = (0,1],
we have 71 (a) = z2(a) = m for a € (0, 1]. This means
that (iiib) holds. In case that M # (0,1], because of
the continuity of z1, x4, denoting ¢ = inf 3, it follows
that 21 (@) = z2(a) = m for a € [¢, 1] and that (&) <
z2{a) for a € (0, ¢), which means that (iiia) holds.

Conversely ( 2.3) means that the upper level set
Lg(p) satisfies Lp{p) = [21(8),2z2(B8)] C R for 3 € 1.
From ( 2.3) it follows that if £ € {z1(a), z2()] then
1(€) > a and that € € [z1(u E) + ),z (p(€) + ¢)] for
each £ > 0. Then it can be seen that [z;(8), z2(3)] C
Ls(p). When u(€) = 3, from ( 2.3), it follows that a
¢ € [z1(B),z2(B)]. When pu(€) > 3, then there exists
an a € I such that & € [z1(a),z2(a)] and o > B,
which means that £ € [z1(@), za(a)] C [z1(8), z2(8)]
{le)a T2 /3)]

From ( 2.3) it is immediately seen that (i) and (ii)
of Definitionl hold. The a— cut set L, () is closed for
a €1, i.e., the function p is upper semi-continuous on
R. For a € I, L,(y) is convex, i.e., the function y is
fuzzy convex on R See, e.g., [10].

From (2.1), p(§) =@ means that £ = a(@) or £ =

b(@). If suppose that a(@) < & < b(@), which means
that p(§) > @ Suppose that there exist £,,&; € J
and A such that & # £2,0 < A < 1 and (&) = ,u(f)
where &5 = A +(1—A)&; and p(€) = min[p(61), p(&2)]-
Then we have &3 # £ and €3 = a(u( )) or £3 = b(u(€)),
ie., a= (&) = p(€) or b=1(&) = u(€). Thus we get,
b (213, & = a(u®) ~ alo 10 =

3 or §3 =



b(b~1(€)) = €. This leads to a contradiction. Therefor
jtz is strictly fuzzy convex.

Q.E.D.

In what follows we denote i = (1, z3) for u € Fgt.
The parametric representation of p is very useful in
caleulating binary operations of fuzzy numbers and an-
alyzing qualitative behaviors of fuzzy differential equa-
tions.

Let g: R x R — R be an R—valued function. The
corresponding binary operation of two fuzzy numbers
z,y € F&to gla,y) - FE x FSE — Fg is calculated
by the extension principle of Zadeh The membership
function gz 4y of g is as follows:

min(pz (&), py(£2))

sup
£=g(£1.£2)

Hg(z,y) (5) =

Here £, £1,&, € R and p;, p1y are membership functions
of z,y, respectively. From the extension principle, it
follows that, in case where g(z,y) =z + ¥,

P‘z+y(€)

max min
(Jax i L (pa(&i))

=max{a €] : =& +&, & € La(p)i=1,2}
=max{a €] : £ € [z1(a) + y1 (), z2(a) + y2(@)]}.
Thus we get  +y = (21 + y1, 22 + ¥2). In the similar

way r—Yy = (:-771 ~ Y2, T2 — VY1)
Denote a metric hy

de () = supmax(fes (@) = 11 (@)l e2(a) = 2 ()

ael

for z = (1, 22),¥ = (y1,92) € F'

Theorem 2 F¢' is a complete metric space in C(I)?.
Let a Cauchy sequence {zx = (i, 25") €
2,-+-}. It suffieces that there an fuzzy
such that lim d(zn,zg) = 0. Since
n—00

Proof.
Fhook =
number zg € fét

lim d(zn,Zm) = 0, from the well-known the Cauchy's

n,mM—od
theoren in Calculus, there exists an limit g = ( O £

C(I) x C(I) such that the following properties(i)-(iv)
hold.

(1)

lim d{zy,z0) =0
k—oo

0 0 . . .
:cg ) and m(2 ) are non-decreasing, non-increasing
on I, respectively;

zgg)(a) <m< m(zo)(a) for o € I and mgo)(l) =
)
m=mzy'{1).

Iy Ty )€
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Suppose that there exists a number n # m such that
z1(1) = z2(1) = n. This contraicts with the uniform
convergence of the Cauchy‘s squence. Thus a unique
m € R satisfies Theorem1(ii). Denote C = {a € I :
(0)(0.') = 2{%a) = m and a > 0}. In case when
= (0,1}, wegetx( Na) = x(zo)(a) =mfor0<a<l,
wlnch means that Theoreml(iiia) holds. In case C' #
{0,1], by the continuity of x, s, there exists a real
number ¢ such that 0 < ¢ < 1 and that ¢ satisfies the
following statements {1) and (2) hold.
(1) z1(a) = z2{a) for o € e, 1]; (2) r1(a) < z2(a)
for a € (0,¢).
This means that Theorem1 (iiib) holds. Therefore, zo €
F:t and the metric space (Fy', d) is complete. Q.E.D.

3 Induced Linear Spaces of Fuzzy
Numbers

According to the extension principle of Zadeh, for re-
spective membership functions p,, i, of ¢,y € FE' and
A € R, the following addition and a scalar product are
given as follows :

priy(€) = sup{a€(0,1]:
E = 61 +&, &6 € La(l‘r)’g'l (S La(.“’y)};
6 02D
o = o A=0,€£0)
o(®) sup pal) (=0, € =0)
n:

In [5] they introduced the following equivalence rela-
tion (z,y) ~ (u,v) for (z,y), (u,v) € Ft x Fl e,

(z,y) ~ (u,v) <=z +v=u+y (3.4)

PUt‘t‘ing T = (l‘hz'});y = (y15y’2)7u = ('U-],’U,Q),'U -
(vy,v0) by the parametric representation, the relation
(3.4) means that the following equations hold.

sty =ui+y (1=1,2)

Denote an equlvalpnce class by [z,y] = {(u,v) € F&' x
Fe o (u,v) ~ (z,9)} for 2,y € FEt and the set of
equiva.lence classes by

Ft ~=A{lz,y): 2y € '
such that one of the following cases (1) and (ii) hold:
(1) if(z
(i) if (z,y) # (w0),

L) ~ (u,v), then [z, y] = [u,v];

then [z, y] N u,v] = 0.
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Then Fgt/ ~ is a linear space with the following addi-
tion and scalar product

[z, y] + [u,v] = [z +u,y + 2] (3.5)
= 1Oz (A>0)
Mo = { [((—/\;/y, (=Mz)] (A<0) (3.6)

for X € R and [z,y], [u,v] € F5t/ ~ . They denote a
norm in F/ ~ by

| lz.y] lI= Sl;l’;dH(La(M:)» Lo(py))-

Here dy is the Hausdorff metric is as follows:

dH(La-(F'J:)% ch(ﬂ'y))

= max{ sup inf

€€La(us) M€ alky

)lE—nl)

sup inf
n€La(pe) E€Lalny

It can be easily seen that || [z, y] ||= deo{z, ¥).
Note that || [z,9] [=0in 7'/ ~ifandonlyif z =y
m Fgt

4 Schauder’s Fixed Point Theo-
rem in Complete Metric Spaces

In the following theorem we show that the complete
metric space F2' has an induced Banach space.

Theorem 3 Let S be a bounded closed subset in
FEE. Assume that S contains any segments of z,y €
Syie Az + (1 — ANy € § for A € I. Let V be an
into continuous mapping on S. Assume that the clo-
sure cl(V(S)) is compact in F£'. Then V has at least
one fired point © in S,ie.,V(z) = z.

Proof. Denote X = {[z,0] € F/ ~ =z € F'}.
We shall prove that X is a Banach space. Let {[z, 0}, :
i:=1,2,---} be a Cauchy sequence in X. Without loss
of generality we denote [z,0], = [z,,0] for z, € FS¢
with || {z,,0] — [£m,0] || 0 as n,m — 20, which
means that . }l&mmdw(‘xn,zm) = 0. By the complete-

ness of F*, there exists an element zo € Ff such that
lim doo(xy, o) = O from Theorem 2. This measn that
n—oo

im || [z5, 0] = [z0.0] |- 0 and X is a Banach space.

Put a subset S; = {[z,0] € X : © € S}. Then §;
is clearly bounded in X. Denote a mapping on S; by
Vi([z,0}) = [V(z), 0] for [z,0] € S;. It follows that for
[%,0} = [v,0] € X we have v = v and Vi([u,0]) =

[V (w),0] = [V(v),0] = Vi([v,0]). We get V] is an into
mapping on Si.

Let z € F2¢ be a limit of a sequence {y, € §} such
that d(y,,z) — 0 as n — oo. From the closedness of
S, it follows that z € S and as long as d(y,,z) =||
[4r, 0] = [2,0] |— O (n — o0) with [yn,0] € 51 and
[z,0] € X, we have [z,0] € S;. Thus 5y is closed. For
z,y € § it follows that Az + (1 — A)y € § and

Nz, 0] + (1 = N[y, 0] = [hz + (1 — Ay, 0] € Sy.

Therefore S; is convex in the Banach space X. When
y — « in FgY, by the continuity of V, we have

I Valy, 0) = Va(fz, O]) |l Il V(y),0 — [V(=), 0] |

I V), Vi)l
doe(V(z),V(y)) — 0.

It

Thus V; is continuous on S.

Finally, we shall prove the relative compactness of
V1(51). Let {Vi({zr,0]) : n=1,2, -} be a sequence in
S1. Because of the relative compactness of V' (S), there
exists a subsequence {V; ([7mr, 01} € {V1([zm, 0])} such
that

lim doo(V/(77), v)

M-00

= 0, where y € d(V(S)). Since

dec (V (T), 9) IV @m), vl

IV (Zw), 0 = [v.0 |,

we have [y, 0] € cl(V1(S1)). Thus cl(V1(S1)) is compact
in X.

Therefore the mapping Vi : S; — 1, where S is a
bounded closed and convex subset in the Banach space
X, is continuous. Here ¢l{V}(51)) is relatively compact
in X. By Schauder’s fixed point theorem in Banach

spaces, there exists a fixed point of V1 in 81, 1.e., [V (2),0] =

[z,0], which means that V(z) =z in S.

Q.E.D.

In the following theorem complete metric spaces have
at least one fixed point of the induced Banach space.

Theorem 4 Let F be a complete metric space with
a metric d. Assume that F is closed under addition
and scalar product, and that d(Az,0) = |A|d(x,0) for
the scalar product Az and A € R,z € F. Denote X =
{|z,0} : 2,0 € F}. Here [z,y] for z.y € F are equiva-
lence classes of (3.4) and 0 is the origin. Then X is a
Banach space concerning addition (3.5), scalar product
(3.6) and norm || [, 0] |= d(z, 0} for [£,0] € X.

Moreover let S be a bounded closed subset in F. As-
sume that S contains any segments of z,y € S in the
same meaning of Theorem 3. Let V be an into contin-
uous mapping on S. Assume that the closure d(V(S))



is compact in F. Then V has at least one fized point
in S.

Proof. It can be seen that X is a linear space. || [z, 0] ||
is a norm in X. For |z,0], [y, 0] € X it follows that

Iz 0+ [0l = |z+v0|
= d{z+y,0)
< d(z+y.y)+dy,0)
= d(z,0) +d(y,0)
= =0+ || [v: 0,

since we have [z +y,y] = [z, 0land d(z +y,y) = d(x, 0)
for z,y € F. It i1s clearly that | [=,0] || is positive
definite and for A € R

I 1A=, 0] {l=d(Az,0) = |A || [=,0] || -

In the same way as the discussion of Theorem 3, X is
complete.

Denote a subset S; = {[z,0] € X : z € S} and a
mapping V; such that Vi ([z,0}) = [V (z), 0] for {z,0] €
S1. The following properties (i)-(iii) can be proved in
the similar way in the proof of Theorem 3.

(i)  S; is bounded closed and convex in X;
(i)

(iii)

V] is an into continuous mapping on Sj;
cl(V1(841)) is relatively compact in X.

Then, by Schauder’s fixed point theorem, there exists
at least one fixed point [, 0] of Vi in Sy,4.e., V (z0) =
zo in S.

Q.E.D.

Example 2 (1)
space with

Let (R,d) be the discrete metric

dz,y) =0(z=y) :dlx,y)=1(z#v)

It follows that d(Az,0) = 1 £ |Md(x,0) = |A| for z #
0,|M # 0,1. Then X = {[z,0] : ,0 € R} cannot be a
normed space concerning || |z, 0] |= d(z,0) for z € R,
because || [z, 0} || is not homogeneous.

(2) Let K¢(R™) be the set of all compact convex
subsets in R™. Assume that dy is the Hausdorff metric
in R™ as follows:

dp(A4,B) =max(sup inf || £ —7 ||,sup inf | E—n1)
¢cancB neBEEA

Here A,B € Kc(R™) and || - || is a norm in R”*. Then
we have dg (AA,0) = |Ndu(A,0) for A e Ko(R™), A €
R where MA = {Xa : a € K¢(R™)}. By Theorem 4 1t
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follows that the set of equivalence classes X = {{A,0] €
Ko(R™)/ ~: A € Kc(R™)} is a linear space with a
norm || [A,0] ||= du(A,8). Here the equivalence rela-
tion ~ is given in (3.4). It can be seen that X is a
Banach space by the embedding theorem in [6].

Let S be a bounded closed subset in Ko(R™). As-
sume that S contains any segments of A,B € S in the
same meaning of Theorem 4. Let V' be an into contin-
uous set-valued mapping on S. Assume that the closure
c{V(S)) is compact in Ko(R™). Then V has at least
one fized point Ag € S,i.e.,V(Ap) = Ao.

5 Applications to FBVP

Consider the following boundary value problems of fuzzy
differential equatious
' (t) = f(t,z,z), z(a)=Az(b)=B. (5.7
Here t € J = [¢,b] € R = (—o0,+00) and fuzzy
numbers 4, B € F&t ,which is a set of fuzzy nuinbers
with compact supports and strict quasi-concavity, and
FoJx FEEx Fgt— Fetis a continuous function.
In order to discuss the qualitative properties of solu-

tions to (5.7) we consider the following Fredholm equa-
tion

b
(1) = wit) + / Glt,)f(s,2ls), 2 ())ds

fort € J. Let A, B € F£! be in the same fuzzy numbers
of (5.7). Here a fuzzy function w € C(J; Fg!) and an
R—valued function G € C(R*R) with G(t,s) > 0
such that

Ab-t)+ B(t — a)

w(t) = — (5.8)
Gotiema) (4 < ¢ <5< b)

G(t,s) = bsa - ="= 5.0

o { gl (o cscigp O

In the same way as in the discussion concerning bound-
ary value problems of ordinary differential equation the
following lemma is shown immediately.

Lemma 1 A fuzzy function  is a continuously dif-
ferentiable solution of (5.7) if and only if z is a fived
point of T : CY(J; F&h) — C?(J; F&Y) such that

b ’
[T (z)](t) = w(t) +/ G(t,s)f(s,z(s),z (s))ds.

Assume that the following properties (i) -(iii) hold.
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(1) A function f = (fi, f2) 1 I x Ff x Fgf — Fglis
continuous. Here (f1, f2) is the parametric rep-
resentation of f.

Let 7; > O for 7 = 1, 2. Then there exists a func-
tion h; : [0,00) — [0, 00) such that

[filt, 2,9, @)l < Ra(lyi(a)l)

fort € JJa€l,i=1,2 and |2;(a)| < 7y y =
(y1,y2) € Fg'. Here z = (21,23),y = (y1,42)
are the parametric representation of z,y, respec-
tively.

(i)

(i) Assume that h;, i = 1,2, satisfy
o0
d.
/ 9 o
o hi(n)
We say that the above conditions (i) -(iii) are a fuzzy
type of Nagumo’s conditions and they are applied to

the fuzzy boundary value problem (5. 7) in the same
way as [1].

Lemma 2 Assume that f = (f1, fo) satisfies fuzzy
type of Nagumo’s conditions. Let r; > 0, i = 1,2,
be in fuzzy type of Nagumo’s conditions and a solution
x = (21,22) € C*(J; F5) of (5.7) satisfy |zi(t,a)] < vy
fori=1,2te Jael.

Then, there erist numbers N; > 0,1 =1,2 such that
[z:(t,a)] < N; forte Jael

Proof.
From the above lemmas we get the following exis-

we have an existence theorem of (5.7) by the Schauder’s
. . ’ '
fixed point theorem in Section 4. Here z = (z;, 22, 24, a:,z)T,

u € CHJ;R)? x C(J;R)%,¢c = (4;,42,B1,Bx)T ¢

C{J;R)*,
1 0t O
01 0 ¢ . )

- M - —
X(t) = &M = 00 1 0 with X(0) = E,
0 0 0 1

0 01 0O

. . . . 0 0 0 1

where E is the identity matrix, M = 000 0
0 0 0 0

and £ denotes a bounded linear operator from C*(J; R)?*x
C(J;R)? to C(J; R)* by

L(z) = (z1(a), z2(a), 21 (b), 22 (b)) . Let U satisfy L(X(-)vo) =
1 0 a
01 0 .
10 b 8 vg = Uvp for vg € R*. Putting ¢, (¢) =
01 0
0
t NP RS N 0
[, X (&)X~ (s)F(s,2(s))ds and F(t, 2) = filt,2)
f2(t>:)

Then, in [8], we get the existence theorem on the
Volterra type of (5.7) as follows.

Theorem 6  Assume that positive numbers R, r
satisfy R < e~ gndr > Q-Lgl—((if—l‘}?i%:l Let f sat-
isfy [ maxy., o)<, d(f,0)ds < rR. If A= (Ay, As), B =
(B1, Bs) € F&t satisfy d( A, 0)+d(B,0) < S =B)

G+OIT-IT
L] @, then (5.7) has at least one solution in S. Here

tence theorem on the fredholm equation by the Schauder’sQ : fb max e oy<r (b — 8 + 1)d(f(s, 2), 0)ds.

fixed point theorem in Section 4.

Theorem 5 Assume that the same conditions of
Lemma 2 hold. Let

v 2N; 8r;
[fi(t,z,y. Q)] < min(b iva, ﬁi)
forte J (z,y) € Su(r,N),i=1,2,a€el.
T?Len (5.7) has at least one solution T such that
z(t),z (1)) € Sw(r,N) fort € J and any A, B € Fg'.

The above theorem is proved in [7].
In case where (5.7) is redued to the following Volterra
eqauton

il

XYW e — L(qw) + qu(t)
X(a)U e - L{gw))

/)U~u ds+/a F(s,u{s))ds,

Z(t)

il

References

[1] S.R. Bernfeld and V. Lakshmikantham : An Intro-
duction to Nonlinear Boundary Value Problems,
Academic Press, New York, 1974.

[2] P. Diamonde and Koelden: Metric Spaces of Fuzzy
Sets ; Theory and Applications, World Scientific
(1994).

V. Lakshmikanthan and S.Lella: Nonlinear Dif-
ferential Equations in Abstract Spaces, Pergamon
Press (1081).

3]

[4] V. Lakshmikanthan and R.N. Mohapatra: The-
ory of Fuzzy Differential Equations and Inclusions,
Taylor & Francis (2003).



[5] M.L. Puri and D.A. Ralescu : Differential of Fuzzy
Functions, J. Math. Anal. Appl. 91 (1983) , 552-
558.

{6] H. Radstrom : An Embedding Theorem for Spaces
of Convex Sets, Proc. Amer. Math. Soc. 3 (1952),
165-169.

[7] S. Saito: Qualitative Approaches to Boundary
Value problems of Fuzzy differential Equations
by Theory of Ordinary Differential Equations, J.
Nonlinear and Convex Analysis 5(2004), 121-130.

[8] S. Saito: Boundary Value Problems of Fuzzy Dif-
ferential Equations (to appear in the Proceedings
of 3rd Nonlinear and Convex Analysis 2003).

[9] D. R. Smart: Fixed Point Theorems, Cambridge
Univ. Press (1980).

{10] H.Tuy : Convex Analysis and Global Optimiza-
tion, Kluwer Academic Publ.(1998).

17



