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1 Introduction

The purpose of the present paper is to study the parabolic-elliptic system of
-chemotaxis,

wu=V-(Vu—uVv) inQx(0,7T)
v(-,t)=(G*u)(-,t) inQx(0,T)

ou  Ov
5—1;—u51;—-0 on 69 x (0,T)
u(,0)=u InQ, (1)

where () is a bounded domain in R? with smooth boundary 9%, uo = up(2)
is a non-negative smooth function defined on (2, and

(G*u)(z,t) = LG(z,x’)u(x’,t)dx’,

with G = G(z, z') standing for the Green’s function of a second order linear
elliptic boundary value problem. This system is proposed to describe the



chemotactic aggregation of cellular slime molds [16, 24], the motion of the
mean field of many self-gravitating particles [2, 34], and that of moleculars
under the chemical reaction [11]. Existence of the solution globally in time,
particularly in the context of the threshold of the total mass A = |jug]|,, has
been studied by several authors [15, 21, 22, 4, 12], while its counter part,
the blowup of the solution in finite time, is summarized as the formation of
collapses with the quantized mass [33].

The asymptotic behavior of the solution globally in time, on the other
hand, has not been clarified so satisfactorily, in spite of several suggestions
obtained from the study of stationary solutions [27]. Its counter part is the
classification of the solution blowing-up in infinite time, and [30] conjectured
that this is the case only when the total mass A = |Juo||, is so quantized as
87 or 47 times integer, according to the profile of G(z, 2’) on the boundary.
In more details, each solution, existing globally in time, will converge to a
regular stationary solution if X is disquantized, while the convergence to a
singular limit of the stationary solution will occur in the other case. This
paper continues the study, and shows, among other things, that if the free
energy, defined below, is bounded and the total mass is disquantized, then
the collapses formed in infinite time vanishes almost every moment. This
suggests that the blowup in infinite time does not occur in this case; the
disquantized total mass and bounded free energy.

To describe the results proven in this paper precisely, we refer to several
fundamental facts on (1). See [30, 29, 32, 33] for the proof of them. First,
(1) is written as

ur = Au — f(u) in Q2 x(0,7)
Oou

5 = g(u)  ondQx(0,T)
u(,0)=uy inQ
for

flu) =Vu-VGxu+uA(G*u)

() = uaG*u
g\u) = ov

o0

and the elliptic regularity of G(z, z') combined with the standard fixed point
argument [17] guarantees the unique existence of the solution v = u(z, t) €
C*HO1+82(Q x [0, T)) with T > 0 estimated from below by lwoll cz+e (g, where
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0 < § < 1, and henceforth the supremum of its existence time is denoted by
Tmax € (0, 400]. This solution is non-negative, and preserves the total mass;

/ u(z,t)dz = / wo(z)dz(= N). )
Q Q

Second, the free energy, denoted by F = F(u), acts as a Lyapunov function,
and it holds that

E‘E.}. | w|V(logu —v)|*dz =0, (3)
dt Q

where

Flu) = Au(logu —1)dz — % //QXQG(:L", ) u(z)u(z")dzds'.

In the stationary state, in particular, we have logu — v = constant, or y =

ng’d—z by |lull, = A, and therefore, it follows that

_ Ae?
N fa evdy’

(4)

Gxu=v and U

Henceforth, we consider the case that G(z,2') is the Green’s function to
one of the following elliptic problems;

-Av+v=u in{, in———O on 0}
ov
——Av:u——l—/udx in Q, @=0 on 01}, /vdx=0
12| Ja Ov 0
—Av =1y in v=0 ondQ.

These problems are referred to as the (N), (JL), and (D) fields, respectively.
Then, considering

V= H(Q)

V={UEH1(Q)|/dex=O}

V = Hy(Q),
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provided with the norms

lolly = (I vl + [v]2)"
lolly = Vol
”UHV = ”V'Uuz’

we obtain the isomorphism
ueV' - v= /gG’(-,x’)u(x’)d&:’ ev,
and also the Lagrange functional,
Wiu, v) = /Q'u(logu ~1)dz + 5 ol - /qud:z: (5)

defined for (u,v) € MxxV, where My = {u > 0| ||ull, = A}. This functional
satisfies

W4, V)| e, = F(u)  and WU, V)l uses/ 1 evar = Ta(V)

for (u,v) € My x V, where

I(v) = -;— lv]lZ — Alog (/Q e”d:z) + Alog A = A,

and both F and J, defined on M, and V, respectively, provide equivalent
variational structures to the stationary problem (4).

More precisely, if uo, is a critical point of F defined on M), then v, =
G* Uy is a critical point of 7, defined on V, and conversely, if v, is a critical
point of J» defined on V, then ue = Ae*=/ f,e¥= is a crititical point of F
defined on M, and in both cases it holds that F(uw) = Jx(ve). Henceforth,
E, denotes the set of stationary solutions of v, i.e.,

ev
EA——-{’UGVI'U—G*U, u—)‘fne"dz}
={veV|ig(v) =0},

where A = |juolf;-
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As we mentioned, in the case of Thax < 400, there is a formation of col-
lapses with the quantized mass [33]. More precisely, if G(z,z’') is associated
with the (N) or (JL) field, then it holds that

u(z,t)dz — Z M (20)8gy (dz) + f(z)dz  *-weakly in M(Q)  (6)

2g€S
as t T Tinax, Where M(Q) = C(Q)' denotes the set of measures on Q,
5 = {z € 0 | there exists (zx,tx) — (%o, Tmax) such that u(zx, ts) — +oo}
denotes the blowup set, 0 < f = f(z) € L}(Q)NC(Q\ S), and

87 (20 € Q)
™M (@0) = { 4n (o c 50

Since the total mass is preserved (2), this implies the finiteness of the blowup
points, more precisely,

2 4(QNS) + 460N 8) < [uoll, /(4m)

A similar fact is proven for the case of Tnax = +00 ([30]), that is, in the
(N) or (JL) field, any tx — +o0o admits {t;} C {tx} such that

u(z, t;)dz — Z My (20)04,(dz) + f(z)dz  *-weakly in M(Q), (7)
oS’

where S’ denotes the set of "exhausted” blowup points of {u(:,};)}:
S' = {zo € 0 | there exists z}, — zo such that u(z}, 1)) — +oo}.

Our conjecture on the blowup in infinite time, therefore, is proven in the
affirmative in the (N) or (JL) field, if we can deduce f = 0 from &' % 0 in
(7), because the total mass of the solution is preserved as (2) and hence it
follows that

A= mu(zo) + | fl

zoe8S'

from (7). More precisely, if we can show f =0 by &' # 0, then Trax = +00
and

klirn lu(, k)]l =400  with  tp — 400



is admitted only when A = |luoll; = 3°, s mu(z0) € 47N,

Taking this approach to the problem, we use the weak solution generated
during t;, — +oo. This fact on the generation of the weak solution is proven
for the problem on the flat torus [31], and also for system (1) under the (N)
or (JL) field [33].

In more details, any tx — +o00 admits {¢},} C {tx} such that

u(z, ty +t)dz — p(dr,t)  in Cu(—00, +oo; M(Q), (8)

where 1 = u(dz,t) is a weak solution to (1). This means

/QQD(QU)U(CLL, ty +t)dz — {p, u(dr, ) o Mm@
locally uniformly in ¢t € (—oc, +00) for each ¢ € C(Q0), and if

x:{gecz(ﬁ)l-%:o onaﬂ}

pe(z,2') = VE(z) - VoG(z, ') + VE(2') - Vo G(z, 2)

& ={py | n€ X}
E=E@COAxQ)C LN xQ),

then there is 0 < v = v(t) belonging to L*(~T,T; &) for any T > 0 such
that

V()| c@ixm = 1 ® p(dzdz’,t)  ae t € (—o0,+00).
Furthermore, the mapping
t € (—00,+400) <£,/J'(dx»t)>0(§),M(ﬁ)

is locally absolutely continuous and satisfies

d

1
+§ (pg, U(t»f,g' ae te ('—OO, +OO)

for each £ € X.
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From (7), the Radon-Nikodym-Lebsesgue decomposition of this wu(dz,t)
has the form

p(dz,t) = ps(dz,t) + tac.(dz, t)
n(t)
= Zm*(mi(t))ézi(t)(dx) + f(x,t)d:z:
=1
for each t € (—o0, +00), where S; = {z;(t) | 1 <1 < n(t)} denotes the set of
exhausted blowup points of {u(- t} + 1)} as t}, — 400, and 0 < f = f(-,t) €
LHONCO\S).
The first result proven in this paper is stated as follows.

Theorem 1 If G(z,z) is associated with the (N) or (JL) field, and
A= luoll, & 47N

Tinax = +00
lim F(u(-,t)) > —o0,

t—r 400
then us(dz,t) =0 a.e. t € (—00, +00).

Unfortunately, ¢ € (—o0,+00) — us(dz,t) € M(Q) is generally only
x-weakly upper semi-continuous, and the above theorem is not sufficient to
deduce us(dz,0) = 0, although if this is the case, then we can infer A € 47N

from
Tnax = +00
limsup f|u(:, £)|leo = +00
t—+o00
t&grnwf(u(-,t)) > —00.

If the free energy is unbounded, on the contrary, the solution blows-up in
finite or infinite time; more precisely [29],

lim . = — = 1 ] dr = +o0. 9
Jm F(u(,2)) = —oo Jm | (ulogu)(z, t)dz =+ (9)
This means a kind of concentration as the blowup time approaches, and
Tmex < +00 may occur always in this case, namely, we suspect that Tmax =
400 implies lime4oo F(u(:, 1)) > —00.



The other conjecture of ours is the convergence to a singular limit of
the stationary solution of the total mass quantized non-stationary solution
blowing-up in infinite time. The second theorem of this paper illustrates such
a profile of the solution in a specific case.

Since this theorem is concerned with the (D) field, here we mention some
differences of this problem from the other cases. Actually, in the study of
the (D) field, we have not been able to exclude the boundary blowup point
in both cases of blowing-up in finite time and infinite time. Consequently,
(6) or (7) holds with M(Q) and S replaced by M(Q) = Co(Q)' and S N Q,
respectively, where Cp(Q2) denotes the set of continuous functions on Q with
the value zero on 8. This difficulty arises because C*(Q) N Co(Q) is not
dense in C(R?). Similarly, we have (8) with C,(—c0, +00; M(R)) replaced by
Ci(—00, +00; M(Q)) when G(z, z’) is associated with the (D) field.

In spite of these obstructions, we can show the following theorem.

Theorem 2 If G(z,z') is associated with the (D) field, A = |luol|, = 8,
Tmax = +00, and Egr = 0, then any t, — +oo admits {t}} C {tx} such that

u(z, t), + t)dz = 8mlyy(dz)  in LP(—o0, +00; M(Q))
t € (—o0,+00) — z(t) € is absolutely continuous
lim inf dist(z(t),0Q) > 0

L~ mVRGEW) (oo << +oo) (10)

where R(z) = [G(z,2') + 3 log |z — «'|] ,__ indicates the Robin function.

The first relation of (10) implies that the local L' norm of u(-,t + k)
near 0 becomes arbitrarily small locally uniformly in ¢ € R. Still this is
not enough to exclude the boundary blowup point, but we hope that this
convergence holds actually in C,(—o0, +00; M(Q)).

We recall also that Ey denotes the set of stationary solutions so that
Vo € Ey if and only if it is a (regular) solution to

gy
f Q€™

The condition Fgr = 0 has been studied in detail |6, 20, 9]. This is actually
the case, if @ C R? is simply connected and close to a disc. For such a
domain, any solution u = u(:,t), existing globally in time with |jug||; = 8=,

—AVeo = A in €1, Vo = 0 on 0N

37



38

cannot be uniformly bounded, and therefore, limsup,;,q [|u(- )]l = +00
holds true. Then, thanks to the concentration lemma [25], we can show that
the location of the concentration mass formed during ¢, — +o0 is subject to
the ordinary differential equation given by the last relation of (10). We note
that this is a conjugate form of the vortex equation derived from the Euler
equation [19]:

dz
o= 4rVLR(z(t)) (—o0 <t < 400).

The last result of this paper proves that our conjecture holds in the affir-
mative if the solution is radially symmetric; more precisely,

Theorem 3 IfQ = {r € R?| |z| < R} is a disc, uo = wo(|z|) is radially
symmetric, G(z,z') is associated with the (N) or (JL) field, and A = |lug||; >
87, then the blowup in infinite time does not occur in system (1), that is,

limsup |lu(-, )|, < +o0
tT+o0

holds if Tinax = +00.

In this radially symmetric case, if A € (0,87) then the solution u =
u(z, t) is uniformly bounded, and the stationary problem admits the unique
(constant) solution, denoted by u,, and furthermore, we have

i (1) - 5]l =0.

See [21, 27, 33] and the dicussion in the next section. On the other hand, the
above theorem guarantees the generic blowup in finite time in this problem
if A\ > 8; see [30]. Thus, behavior of the solution global in time has been
almost classifed in this case, using A = ||uol|;.

This paper is composed of five sections and two appendices. We take
preliminaries in the following section, and prove Theorems 1, 2, and 3 in
8§63, 4, and 5, respectively. In the first appendix, we show the proof of (9)
by the method of [29]. The second appendix is devoted to the proof of a
conentration lemma [25] used in the proof of Theorem 2.



2 Preliminaries

In this section, we take several preliminaries and describe the relation be-
tween other works and our theorems. See [30, 29, 32, 33] for details of the
result referred to in this section.

First, as is mentioned in the introduction, the stationary problem (4) has
an equivalent varitational structures, 7 on M, and J» on V. These varia-
tional structures are regarded as an "unfolding” of the Lagrange functional,
and in particular, it holds that

W(u,v) > max{F(u), Jn(v)} for (u,v) € My x V.

This inequality means

/{u(logu—l)—-uv}dz—i—)\log (/ e”dx) —AogA+X12>0 (11)
Q 0

for (u,v) € M, x V, and can be proved directly using Jensen’s inequality
[22, 4, 12]. In any case, it holds that

Flu(,1)) 2 D(v(-1)) (¢ €0, Tmax)) (12)

for the solution (u,v) = (u(:,t),v(-,t)) to (1) with |jug|, = A, because v =
G * u and therefore, 7 = W holds in this system.
Next, if u = u(z, t) is a solution to (1), then it holds that

% <N +3|0)exp(dK2T) (£ € [0, Tay)

for
J=Ju) = /(ulogu+e‘1),
Q

where C, K are positive constants determined by 2, and therefore, in the
case of

Tmax =400  and lim inf/(ulog u)(z,t)dr < 400 (13)
Q

tT4+o00

there are ty — 400, § > 0, and C > 0 such that

/(ulogu)(m,t)d:): <C  (teltats+20), k=12, ).
Q

39
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Then, Moser’s iteration scheme guarantees ||u(-,t)||,, < C with a constant
C independent of t € [t,t; + 6] and k = 1,2,..., and therefore, w(uo) # @
follows from the parabolic regularity, where

w(uo) = {ue | there exists tx — +oo such that u(-, tx) — ues in Cc*(Q)}
denotes the w-limit set of u = u(+,t) obtained from the initial value ug. This
argument of iteration is also valid to the other case, i.e., we obtain

lim /(u logu)(z,t)dz = +o0
tTTmax S
if Trax < +00.

Since system (1) is provided with the Lyapunov function, the standard
argument of the dynamical system [13] guarantees that any ue € w(uo) is a
critical point of F defined on M. In fact, first, if ui, ug € w(uo), then there
are t. — +o0o and t} — 400 such that u(-,t}) — u; and u(-,t}) — up in
C*+%(Q). We may assume t; < t2 < t},, for k =1,2,---, and therefore, it
follows that F(u(-,t},;)) = F(ul(-,t2)) > F(u(:,t})). This implies F(u) >
F(ug) > F(u;) and hence F is constant on w(uo).

If ug € w(ug), on the other hand, the solution to (1) with the initial value
Uoo, denoted by Tiuco, exists globally in time from the local well-posedness
of (1), and it holds that Tyuw € w(ug) for each t > 0 by the definition. This
implies

F(Tito) = F(Uoo) (t>0)

and ‘therefore,

d
a—i}'(ﬂum) o = 0.
Then, we obtain
Uoo = _e=
= T [ev=dr

for e = G * Uoo by (3), and therefore, uo is a stationary solution to (1).
Thus, v = G * U is a critical point of 7, defined on V for each uy €

w(uo). It holds also that J3(ve) = F(uw) from the general theory of dual

variation mentioned in the introduction. From the mass quantization of the
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non-compact stationary solution sequence [23, 26], on the other hand, it
follows that

Iy = v{sn_EfA Ja(v) > —o0

for A & 4n NV in the cases of the (N) and (JL) fields, and for A & 87N in the
case of the (D) field. Therefore, we obtain the following fact [14, 29].

Theorem 4 If F(uo) < j», then limsrr,,, f;(ulogu)(z,t)dz = +oo.

Both cases Trmax = +00 and Ty < +00 are permitted in the above theorem,
but we suspect that F(ug) < 7\ always implies 70,y < +00. Actually, if the
assumptions of Theorem 1 hold, then we have w(up) # @ from the conclusion,
and this is impossible in the case of F(ug) < ji. Thus, we obtain the following
theorem.

Theorem 5 If G(z,2') is associated with the (N) or (JL) field, if
f(ug) < j>\

with A = ||uoll, & 47N, and if Tm;x = +00 holds in the previous theorem,
then limyr,. Flu(-, 1)) = —c0.

We emphasize again what we suspect, that is, Thax = +00 with
im F(u(-, 1)) = —00
lim F(u(1)

will not occur, and therefore, T}, < +00 will hold under the assumption of
Theorem 5. See the descriptions below Theorem 1.

3 Proof of Theorem 1

Given t; — 400, we have {t}} C {t;} satisfying (8), where u = p(dz, 1)
is a weak solution to (1). We shall write ¢ for ¢}, and furthermore, given
T > 0, we may assume tx + 2T < tj4;, passing to a subsequence. From the
assumption lim¢t4 00 F(u(:,t)) > —o0, then we have

te+T
Z/ dt/ u|V{logu — )| (z,t)dz < +00
k tpy—T Q
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and hence it holds that

t+T
lim dt/ u|V(logu —v)|* (z,t)dz = 0.
ko0 t—T Q

We have G(z,z') > —A, and therefore, v(z) > —AM, where A is a con-
stant determined by Q ([1]). This implies

v|V(logu — v)|* = 4¢” |V (ue™ 1/2)' > ge=A ]V(ue'”)1/2]2,

and therefore,

Fulz,t) = (ue )1/2(xt+tk)—|—§)—l (ue=")2(z, t + t4)dz

klim/ dt/lVfot]dx— /f;,xt

This means

satisfies

fe—0 in L*(-T,T;HY{Q)),
and passing to a subsequence (denoted by the same symbol), we obtain
fr(z,t) = 0 a.e. V(x, t)e Qx (-T,T).

On the other hand, we have

IQ|/ 265 < {iél /ue-udm}l/z < (1] Ae—AN)1/2

and therefore, for a.e. t € (=T, T), there is {t;} C {tx} and Co(¢) = 0 such
that

(ue™ )3 (z,t, + 1) = Co(t) ae ze€,
lLe.,

(ue™)(z,t, +t) = Cot)? ae zeq. (14)
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Now, relation (8) implies

n(t)
v(z,t,+1t) — Zm*(mi(t))G(x,xi(t)) +/ Gz, ") f(2',t)dz’
Q

i=1

weakly in Whe(Q) for 1 < ¢ < 2 by the L! elliptic estimate [5] applied to
the second equation of (1). This convergence is strong in LP(Q) for 1 < p <
oo by Rellich-Kondrachov’s theorem, and hence a.e. z € Q, passing to a
subsequence. In case n(t) > 1 and Cp(t) > 0, this implies

/ lim {ev®h+) . e=v@RA gy (1 1) + t)} dz = +00
Q

k--+00
by m. > 4m, but the left-hand side is estimated above by
liminf [ u(z,t) +t)dz = X
—+00 0

from Fatou’s lemma. This is impossible, and therefore, ps(dz,t) # 0 implies
Co(t) =0, ie,

(ue™)(z,t, +t) =0 ae z €. (15)

On the other hand, S = {z:(t) |1 <i < n(t)} is the set of exhausted
blowup points of {u(-,t, +¢)} as t; — oo, and therefore, {v(-,t} + t)} is
locally uniformly bounded in 2\ &; by the elliptic regularity. This implies

u(z,ty+1)— 0 ae zef (16)
by (15). The parabolic regularity guarantees, on the other hand,
u(-tp+1t) = f(-,t)  locally uniformly in Q\ B,

in (8), passing to a subsequence, and therefore, f(z,t) = 0 a.e. z € Q by
(16). This implies the mass quantization, A € 47N, which contradicts the
assumption. Thus, we obtain us(dz,t) =0 ae. t € (=T,T), and hence a.e.
t € (=00, +00). The proof is complete.
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4 Proof of Theorem 2

It is obvious that this theorem follows from the following lemma, where

K(u) = -i; //nxg G(z, ' )u(z)u(z')dzdz’

denotes —1 times the inner (potential) energy. In fact, we have only to
confirm that the first condition of (17), described below, is satisfied for
uk(-,t) = ul-, tx + 1)

Lemma 6 If Gz, ') of (1) is associated with the (D) field, {uk} is a
sequence of the initial values satisfying ||ut||, = 87, and
— k¢,
Ky = zel(%,fr)lc(u (-,t)) — +o0

Fy = sup F(uf(-,1)) £ F < +o0, (17)
te(0,T)

then we have {u*} C {u*} such that
u¥ (z,t)dz — 816,y(dz)  in L2(0,T; M(Q)) (18)

as k' — oo, where u* = u*(z,t) denotes the solution to (1) for the initial
value uk(z), t € (0,T) — z(t) € w is locally absolutely continuous, with
w € § determined by F, and it holds that

dz

= =41VR(z(t)  ae 1€ (0,T) (19)

The show the first condition of (17) for w*(-,t) = u(-, tx + t), we use

lim [ (ulogu)(z,t)dr = +o0. (20)
t1+o0 J
In fact, if this is not the case, then (13) holds, and therefore, there are
tr — +00 and ve € Ey such that v(-, k) — Ve in C?*(Q). This contradicts
the assumption, Esr = @, and we obtain (20).
Now, we have

lim K(u(-,t)) = +o00 (21)

1T+o00



by F(u(-,t)) < F(up), and the proof is complete.

Lemma 6 is obtained from its discrete version, the concentration lemma
[25] described below. Traditionally, such a kind of lemma is stated in terms
of the convergence of the probability measure [7], and we shall adopt this
formulation, putting

P(m={peL1<mlpzo, /Qp<x>dx=1}

z0)=5 [ / @ @)pla)ola)dnds’ - o /Q (olog p)(z)dz

First, the dual form of the Trudinger-Moser inequality [7, 33] assures
sup{Z(p) | p € P(Q)} < +o0, (22)
and therefore, the value
In(z) = sup {likm supZ(px) | {0k} C P(2),
—+c0
pr(z)dz — 6,(dz)  *-weakly in M(Q)} < +oo (23)
is well-defined for each z € Q. Next, we have
1
Ia(z) = Ip,0)(0) + 5 R(x) (24)

for B;(0) = {z € R?| |z| < 1} (Theorem 3.1 of [7]), and therefore, it holds
that

Qr.={z€Q|In(z) > I} €Q (25)
for each I, € R, i.e., there is an open set O such that
Q.cococq. (26)

Given v > 0 with ||ul|; = X, we have f = u/\ € P(Q). Then, it holds
that

Z(f)

:——8715{/ (logu—ldac——//Q><Q z, 2 Yu(z)u(z )dxdx}

1
—T f1—log)
g 1~ logAl,
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and therefore, we have

1
I(f) = —W}'(u) + constant

in the case of A = 87. Thus, Lemma 6 is reduced to the following lemma.

Lemma 7 If u* = 8mpi(z,t) (k = 1,2,---) i8 a solution segeuence to
(1) with pr € L*(0,T; P(Q)) satisfying
tei(r&fT)lC(pk(',t)) — 400
tei(%g,)I(Pk('at)) = I > —00,
then there is a subsequence {pw} C {px} such that
pi (z,t)dx — b0)(dz) in L*(0,T; M(Q))), (27)

wheret € (0,T) — zo(t) € Q. (€ Q) is locally absolutely continuous and
satisfies

%—;’3 = 41V R(Z(t)) a.e. t€ (0,T). (28)

To show the above lemma, we use its discrete version (concentration
lemma), of which proof is given in the second appendix.

Lemma 8 If {px} C P(Q) satisfies
khm K(px) = +o0

lim Z(px) = Ix > —00

k=00

lim / zpe(2)dz = Too
9

k—oo
for some To € R?, then we have T € Q1. and

pr(z)dr — 85 (dz)  *-weakly in M(Q).



Now, we give the following.
Proof of Lemma 7: We define Qj_ by (25) for

Io= Llingotel(%fT)I(pk( t)) > —o0

and take the open set O and £ € C§°(Q) satisfying (26) and €|, = 1, respec-
tively.

From the assumption, u*(z,t) = 8mpi(z,t) is a solution to (1). We take
an arbitrary n € C§°(0,T), and multiply the first equation of (1) by néz;
for 1 = 1,2, where z = (21,22). Then, using the second equation of (1), we

obtéin
- / ) ( / A(xiax))pk(x,t)dx) a
+dn /O ") ( / / QXQE,-(a:,x')pk(m,t)pk(x',t)dxdx'> it (29)

by G(z,2') = G(2/, x), where

Zi(z,2') = V(z:£(2)) - V.G(z,2') + V(23£(2) - Vo Glz, 2').

Here, we have

L log —— + K(z,z')

Glz,z') = e

E-=]

with K € C%*(Q x Q) N CH89(Q x Q) for 0 < 6 < 1, and therefore, it
holds that

n__([@=-a)- (V) - 2;VE('))  (zi—z)(E(x) — (=)
o |z — z')? or |z — 2|
+V.K(z,2') - V(2:{(2)) + Vo K (2,2') - V(zi(2')). (30)

We have also

IZilloo < ClEllc2my »

47
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and therefore, { [, 2:£(z)px(z, -)dz} is uniformly bounded and locally equi-
continuous in (0,T). Consequently, there is {pw} C {pr} that admits the
continuous

t€(0,7) — zo(t) = ,}im / z&(x)pw (z, t)dz € R?,
500

and then, we have z(t) € Qs and
pi (T,8)dx — 85 y(dx)  *-weakly in M(Q).

for each t € (0,T) by Lemma 8. This means (27).
We have also

lim /[A(mﬁ(x))]pk’(x,t)da: =0 (te(0,T))
o}

k' — o0

and

k' — o0

lim / / =iz, 2') e (2, £) pre (2 £) dd’ = %%-(xw(n)
QxQ X;
by &€|, = 1, and therefore, it follow that

OR

T , T
_ /0 ' (t)zt,(t)dt = 4 /O n(t) 5 (Toolt))dt

from (29). Thus, t € (0,T) — z(t) € R? is locally absolutely continuous,
and satisfies (28). The proof is complete.

5 Proof of Theorem 3

We shall descibe the case that G(z,z') is associated with the (JL) field,

because the proof is similar to the other case of the (N) field. This system is
defined by

u =V-(Vu—uVv) inQ x (0,00),
0=Av——)‘—+u in Q x (0, 00)

9]
ou Ov
5—;—5—0 on@Qx(O,oo)



with u = u(r, t), r = |z|, and A = ||luo|),, and therefore, it holds that

0 ou  Ov

— - 2 —— — —

5 lzkru(x,t)dx 7r (6r u@r) r (31)
v / ( A )

—2r— = u(z,t) — — | dz. 32
or  Jizj<r (@) 19| (32)

Still we have (7) with §S < +o0, and therefore, if Tray = 400, u = u(|z|, 1),
and limy—co [|u(:, t)|| = +00 with some ¢ — +o00, then thereis {t,} C {ts}
such that

u(z,t,)dr — 8wdo(dz) + f(z)  »weakly in M(Q) (33)

with 0 < f = f(jz]) € LY(Q) nC(Q\ {0}). Moreover, by the parabolic
and elliptic regularity [21] we obtain the following inequalities, where C is

a constant determined by € € (0,R), A = |luoll;, and |jugl_, and Q. =
{zeR?|e<|z] < R):
sup 4, ) ey < C
£>0
sup [[Vu(-, 8)| o) £ C
£>0
t+1 5
sup [ (), ds < . (34)
t20 Jt
We define
z(rt)=1 (u(xt)—)\>dx (0<r<R,t>0)
T T lzl<r , |Q| ’ ,
satisfying

z—r(u—-i) Zrp = TU -]-u_.._)\_
’ @) T ey

and then it follows that

1 1 A .
L(2) =zt—z,,+;z,— ;zz,—ﬁz—o in (0, R) x (0, 00)

z(0,t) =2(R,t) =0  in (0,00). (35)

49
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Lemma 9 We have W(R,t) < —R? fort >0, where
Wir,t) = / 2(s, )sds.
0

Proof: From the first equation of (1), we have

/ |z|? udz = / - (Vu —uVv)dz

R
— 2 / (z- v)uldo + 4) + 4n / 2 (uv, )dr,
o0 0

while (32) implies

—rv.(r,t) = /OT (u(s t) — K)‘)‘) s (0<r<R).

Thus, we obtain

/0 ® (o) £ = — /O S 1) { /O " su(s, t)ds — 5{!’%} i

1 [ (R N
= -5 {/0 ru(r,t)dr} +-2—T§—| riu(r, t)dr

X :
= @+47TIQI‘/91$| udz,

and therefore,

dm A2 A 9

== 5+ gym — irFu(R) (36)
for
- [ lefule. e
Q
We shall show
2

DX i 2nm >0 (>0 (37)

2r |9



In fact, if this is not the case, we have ¢; > 0 such that

2
D2 2

Then, the standard continuity argument applied to (36) guarantees m; < 0
in (¢;,00), and also m(¢2) < 0 for some t2 > t;. This is a contradiction, and

hence we obtain (37).
R
m{t)=27r/ réu(r, t)d { / )pdp} dr
0

We have, on the other hand,
e [l [l fonnal o]
0 r=0

2
= % ~ 4rW (R, 1),

and therefore, W(R,t) < R? for t > 0 by (37). The proof is complete.

Henceforth, we write ¢}, = t; in (33) for simplicity. Then, z*(r,t) =
z(r,t+tx) (k =1,2,---) is uniformly bounded and locally equi-continuous
in (0, R) x (—00, +00) by the second inequality of (34), and therefore, there is
a subsequence, denoted by the same symbol, converging locally uniformly in
(0, R) x (=00, 00). From the parabolic regularity, this limit function, denoted
by 2°° = z*°(r, t) belongs to C**((0, R) x (—o0, c0)) and satisfies

L(z*)=0 in (0,R) x (—oc, c0). (38)
We have, furthermore, 2> € C([0, R] x (—o0, 00)) and
22(0,t) =4, 2z®(R,t) = for ¢t € (—o0, 0)
2

2 (r, 1) 24-—;&2 for (r,8) € (0,R) x (—00,00)  (39)

by (33) and (35).
Proof of Theorem 8: Using A > 8, we take ¢ € (0, min(\ — 8r,7)) and
then define

)\'I"2 12 D)
om0

zo(r,t) =4 —
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where
£(t) = Rexp (— (1-5) %) e (0, R).
We have
3 , A €
£(2) = [~ €020 - -+ “taonlr)]

+'71? [_}/\7% ol e(t))J - 313 {—%/\7% oy —f(t))“L] o %

(r) = 1 if rek
XET)=Y 0 if réE,

and therefore, if r € (0,£(t)), we have
A A A A

- —2z, =0

T TR TR TIR 10
In the other case of 7 € (£(t), R), we have

L(z.)

L(22) = == (r = L)1) = —5 + (T — £1))
7"2 2
‘ﬂfzzr(r — () [4 B 2:\rR2 t 27r€.}'<22 (r =€) ]

. , £(t)
= —m("" —£(t)) { )+ r(r—£(t))

1 Ar? £ 2 0
. —~9 +
tr (4 27rR2> T ok (r = 2rt(t) + £ (t))}

< =5l - €6 |e0) + g - DL (e- gw"_jrzﬂ
< Si— ) [f0+ 5 (1-£) +1 (s- =
<~ (r — (1) {2’@) + (1 ~ fr—) é—(?} =0
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We have also

A £ A—¢

= —_—— — 2< —
z.(R,t) =4 27r+2wR2(R £(t)) <4 o <0
2,(0,t) =4
Ar?
>} — > — —_
22°(rt—=T)>4 T 2.(r,0)

by (39), and therefore,
2%(r,t) 2 z(r,T+t)  for (r,t) € (0, R) x (0, 00)

for any T' > 0 from the comparison theorem. By making T' — oo, we obtain

/\ - & 2 .
2%(r,t) >4 g’ in (0, R) x (0, 00)
Since € € (0, min(0, A — 87)) is arbitrary, this implies
oo )\17‘2 . 4
< (T:t)24__R§' n (O)R)X(O7OO), ( O)

where Ay = min{\ — 87, 7). If A € (87, 97], then (40) reads;

- 4r? ,
22(r,t) >4 — ¥l in (0, R) x (0, 00). (41)

In the other case of A > 97, we define z., replacing A by A;. Then, from the
same argument it follows that

_ )\27‘2
27 R?
where A2 = min(; — 87, ) = min(A— 97, 7). Repeating this, we obtain (41)

if A > 8.
Lemma 9, on the other hand, guarantees

22(r,t) > 4 in (0, R) x (0, 00),

R
W*(R,t) = / 2%°(r, t)rdr < R?,
0

while (41) implies

R 47.2
Woo(R,t) 2 / (4 - ﬁ) rdr = RQ.
0
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This means
W>(,Rt)=R* in (0,00),
or equivalently,

4r?

22(rt) =4- 2 in (0, R) x (0, 0).
However, this is impossible by
A—8m
L(z7) = 2> #0.
(2%) Q) #

The proof is complete.

A Proof of (9)

We use the Lagrange functional defined by (5):

Wiu,v) = / w(logu — 1)dz + -12- 1ol2 - / wdz,
o Q
which satisfies
W(u('at)av('vt)) = F(U(,t)) < f(’u,o) (42)

for the solution (u,v) = (u(-t),v(-,t)) to (1). Seince ulogu + el >0, we
have

Wi, 0) > |0 e = A— / wdz
Q

and therefore,

lim [ (w)(z,t)dz = K(u(-,t)) =+ (43)
tTTmax Q
from the assumption limgz,,, F(u(+,t)) = —oo. On the other hand, we can

apply the L' elliptic estimate [5] to the second equation of (1) by |lu(-t)|l; =
), and this implies

sup [v(-, t)|lwie < +00 (44)
t€{0,Tmax)
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for each g € [1,2).
By Chang-Yang’s inequality [10], we have a constant K determined by

such that
log( ! / "’dx) < —1—}|Vw!i2+—l—/wdz+l{
1€ ~ 8 2709 Jg

for any w € H!(Q). For each b > 0, therefore, we have

b b 2
log / edr | < — HVv]lg + — vl + K +log|| = b—W(u,v)
e) iQ| 4m

b2
_E./ (logu—l)dx+———/uvdx+ 9] lvll, + K +log |9,

while

b/uvdm</ (logu —1)dz + Xlog (/e'”dx) —Alog A+ A
9)

follows from (11). Using these inequalities, we obtain

bA B\
—_— < —_— —— —
b(l 4ﬂ)/uvdx_ (1 47r> /ﬂu(logu 1)dz

b? b
+ {EW(U,U) + a lvll, + K +log|Q]} — Alog A+ A
Then, taking 0 < b < mm{ I, (%)]/2} and (u,v) = (u(-,1),v(,,1)), we
have
lim [ u(logu~1)(z,t)dz = +0

t1Tmax o)

by (43), (44), and (42). The proof is complete.

B Proof of Lemma 8

We use several terminologies of the statistical mechanics. First, we have
G(z,z") > 0 because it is associated with the (D) field, and therefore, (minus)
potential energy is positive for p € P(Q):

= i/ Gz, z")p(z)p(z")dzdz' > 0.
2JJ axa
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By Proposition 2.1 of [7], we define the entropy functional

£(p) = - /Q o(log p — 1)dz,

and obtain

E(s)= sup £&(p) <40
PEP(Q) K (p)=s

for each s > 0, and furthermore, this value is attained by some element,
denoted by ps € P(Q), satisfying K(ps) = s. Then, Theorem 6.1 of [7] reads;

Theorem 10 Given si — +00, we have {s}} C {sx} such that

ps, (2)dz — b2, (dz)  *-weakly in M(Q)

with T € Q satisfying R(Zw) = SUP,eq R(2).

Our Lemma 8 is an extension, and follows from a similar argument. In
fact, it is easy to see that this lemma is equivalent to the following theorem,

where

Theorem 11 If {pr} C P(Q) satisfies
Jim K(py) = +00
le%loEA(pk) = E2 < 400,
then we have {p}} C {px} such that
p(z)dz — b, (dz) *x-weakly in M(Q)

with Zoo € ) satisfying

1 A
> - —E2.
R(zx) 2 sup R(z) = E%



To prove this theorem, we use a fact obtained in the proof of Lemma 6.2
of [7}, which is regarded as an improved dual Trudinger-Moser inequality. In
fact, usual dual Trudinger-Moser inequality (22) is represented as

sup Zsx(p) < +00,
PEP()

where

Zs(p) = K(p) + ES()

//Qxﬂ (z,2")p(z)p(z' dxd:c——/ (log p — 1)dz.

Lemma 12 Each d > 0 admits C = C(d) such that if m > 0, then we
have B = B(m) > 87 such that Zg(p) < C for any p € P(Q) satisfying

/pdw,/pdzZm,
A Ag

where Ay, Ay C Q0 are measurable sets with dist(A;, Ag) > d.
Now, we give the following.
Proof of Theorem 11: First, we show
lim {1 - Qu(r)} =0 (48)

for each 0 < r « 1, where

Qu(r) = sup / or(z)dz
QNB(y,r)

yeQl

denotes the concentration function of px = px ().
In fact, defining zx € Q by

/ pe(z)dz = Qi(r/2),
QNB(zk.r/2)

we have

1-Qun<1- [ pe)s = [ aw
QNB(z,7) O\ B(z,r)

o7
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and therefore,

min {Qu(r/2),1 = G} < min{ | pelie, [ pla)is).
QNB(zk,r/2) O\B(zx,m)

If we apply Lemma 12 for d = r/2, then we have C = C(d) and § = B(m) >
8 for each m > 0 such that

m < min{Qx(r/2),1 — Qr(r)} = Zs(px) <C.
Proposition 6.1 of [7], on the other hand, guarantees
—8ns— Cy; < E(s) <= sup 8(,0)) (s> 1) (49)
peP(),K(p)=s

with a constant Cj, and hence it follows that

Ta(or) = K(p) + %ewk) — K(pi) - %S%pk) + %E(fqpk))

_ 8 G loa oy,
2(1 ﬁ)quk) =S - 2620 — +o0

as k — oo. From these relations, we obtain
klirglo min{Qx(r/2),1 — Q(r)} = 0.

Here, we have Qx(r) > cr? for k = 1,2,--- and 0 < r < 1 by the standard
convering argument, and therefore, (48) follows.

Next, we show that (46) holds with some 2., € €, passing to a subse-
quence. In fact, since Q@ C R? is bounded, we have

T = /xpk(x)d:c — T € R,
0

passing to a subsequence. Then, for each 0 < 7 <« 1, we have 1-Q4i(r/2) < r
if k is large by (48). In this case, it holds that

< / lz — zi| pr(z)dz
QNB(z,r)

+/ |z — zk| pr(x)dz < 7 + diam Q- pr(z)dz
O\B(zk,r) O\B(z,r/2)

=7 +diam Q- (1 — Qk(r/2)) < (1 + diam Q) r,

i - a1l = | [ (2 - mu)outa)de
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and therefore,
lim ]:L‘_k— Z‘kl = 0.
k'—)m

In particular, it holds that Ze, € Q. Similarly, we have

Clay) - / c<x>pk<x>dz| < /Q ¢(@x) - ¢(2)] pula)de

NB(zk,r)

+ [ el - @)l e = of1)
O\ B(zg,7)

for each ¢ = ((z) € C(Q), and therefore,

Jim ¢(z) = [ (@)pua)da| =0
Thus, using
Clow) - [ <(x)pk<x)dx[ < 1¢(2e) - (&)
+16@) - ¢lanl + clow) - | <<x>pk(x>dx‘,
9}
we have

lim =0,
k—oo

(@) - /Q (@)on(a)de

which means (46).
We show (47) and complete the proof. In fact, we have

1
Z(pr) = Zox(pr) = K{px) + o€ (o)
= - — > -
(o) = g7 E%(08) + g E(K(p1) 2 — =62 (1) — o1
by (49), and therefore,

liin infZ(px) > -0 (50)
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from the assumption. We have
Glz,z') = L log|z — 2| + K(z,2)
27
with R(z) = K(z,z) — —oo as z — 0f), and also
]' = ‘ 7 J
I(o) = 4~ // log|z — &'~ pi(x)px(z')dzdz
s OxQ
1 1
~5 [orlogme)z+; [ Kiz.2)le)ula)dods
87 Ja 2 )/ axa
1 / /
sc+3 [[  Kesnaa)isd
2JJ axa

by the logarithmic Hardy-Littlewood-Sobolev inequality [8, 3], and therefore,
(46) with z € Q implies 2 € € in the case of (50).
Equality (24), on the other hand, implies a sharp form of (49):

. 1
slTIEo {s + é;r—E(s)} = 21618 In(z), (51)
for In(z) defined by (23). (See the proof of Theorem 3.1 of {7].) Then, we
obtain

Io(ze) > limsupZ(pi) = lim sup {IC(pk) + —I—S(IC(pk)) - —I—EA(pk)}

1
EA = - —E&
o = SUp Ia(z) — o B

1

~ lim sup{m(pw " g;equk»} =

by (45). This means (47) and the proof is complete.
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