oboob0o0oOooDOoooO 14160 20050 64-84

64

Positive solutions to some cross-diffusion
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1 Introduction

In this article, we are concerned with the following strongly coupled parabolic sys-
tem; '

u, = A[(1 + av)u] + u(a —u — cv) in Qx(0,7),
1
®) v,:Al(,u+ 1+,Bu)v +ub+du-v) in Qx(0,T),
u=v=>90 on dQ x (0,T),
u(-,H=uy >0, v(-,1)=v=0 on Q,

where Q is a bounded domain in RY with a smooth boundary 6Q ; a, b, ¢,d and y are
all positive constants; @ and f are nonnegative constants. System (P) is one of Lotka-
Volterra prey-predator models with nonlinear diffusion effects. From such an ecologi-
cal model point of view, unknown functions u and v represent population densities of
prey and predator, respectively. In reaction terms, a and b are birth rates of respective
species, ¢ and d mean prey-predator interactions. In the first equation, the nonlinear
diffusion term @A(uv) describes a tendency such that the prey species keep away from
high density areas of the predator species. This term aA(uv) is usually referred as the
cross-diffusion term. A competition population model with cross-diffusion terms was
first proposed by Shigesada-Kawasaki-Teramoto [29]. Since their pioneer work, many
mathematicians have discussed population models with cross-diffusion terms from var-
ious view points, e.g., the global existence of time-depending solutions (111, 31, [8],
[9], [10], [24], [30]) and steady-state problems ([13], [14], [16], [21], [22], [23], [25],
[26], [28]). In the second equation, the fractional type nonlinear diffusion A(—=-) mod-

1+8u
els a situation such that the population pressure of the predator species weakens in high
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density areas of the prey species. To my knowledge, there are few works about such
fractional type nonlinear diffusion effects in a field of reaction-diffusion systems.
In the present article, we will mainly discuss the associate steady state problem;

Al(1 + av)u] + u(a—u—cv) =0 in Q,

1
SP)Y<A (u+ 1+Bu)v
u=v=0 on 0Q.

+vb+du—-v)=0 in Q,

Among other things, we are interested in positive solutions of (SP). From the view point
of the prey-predator model, a positive solution (x,v) means a coexistence steady state.
So it is important to study the positive solution set of (SP). Our first aim is to obtain a
sufficient condition of coefficients («, 8, i, a, b, ¢, d) for existence of positive solutions
to (SP). Our approach to the proof is based on the bifurcation arguments. Throughout
the article, we will regard the coefficient a as a positive bifurcation parameter. Our
strategy is to seek a bifurcation point on the semitrivial solution sets by making use of
the local bifurcation theory ([4]). Here a semitrivial solution means a solution (u, v)
such that either u or v vanishes in Q. We will find a certain number a* = a*(a, u, b, ¢, d)
such that positive solutions bifurcate from the semitrivial solution with u = 0 ata = a”,
if b > (u + 1)A;, where 4, is denoted by the least eigenvalue of —A with the homoge-
neous Dirichlet boundary condition on Q. On the other hand, if & < (u + 1)4,, we
will get a certain a. = a.(,u, b, c,d) such that positive solutions bifurcate from the
semitrivial solution with v = 0 at a = a,. By a combination with the global bifurcation
theory ([27]) and some apriori estimates for positive solutions, we will prove that the
positive solution branch bifurcates from a semitrivial solution at a = @* ora = a, and
extends globally with respect to a. Therefore, we know that (SP) admits at least one
positive solution if & > (u + 1)4, (resp.b < (u+ 1)4;) and a > a” (resp.a > a.).

Our second aim is to derive a large nonlinear diffusion effect of B8 on the positive
solution set to (SP) with a case when @ = 0 and b > (u + 1)A,. For the sake of this
derivation, we will introduce two shadow systems as f — oo in (SP) with @ = 0. Let
{B,} be any sequence with 31_{2 B, = oo and suppose that {(u,,v,)} is any positive solution

sequence to (SP) with @ = 0 and 8 = ,. Under some additional assumptions, we will
prove that subject to a subsequence, one of the following two cases necessarily occurs:

(1) There exists a certain positive solution (&, v) of

Au+ul@-u-cvy=0 in Q,
AV +uvb+du—v)=0 in Q, (1.1)
u=v=>0 on 09,

such that lim(u,,v,) = (u,v) in L=(Q)>.
n—o0
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(ii) There exists a certain positive solution (w, v) of

Aw +w(a—cv) =0 in Q,

A[(,u+ ! )v}+v(b—v)=0 in Q, (1.2)
1+w

=p=0 on 0Q,

such that lim (B,u,, v,) = (w,v) in L2(Q).
n-—-00

Our convergence result (Theorem 3.1) will also assert that if S is sufficiently large,
any positive solution of (SP) (with @ = 0) can be approximated by a certain positive
solution of either (1.1) or (1.2). So it is natural to ask which of (1.1) or (1.2) (or both)
can characterize positive solutions of (SP), in each coefficient (i, a, b, ¢, d) case. There
are many studies about the first shadow system (1.1) (see e.g., 21, [5], [6], (71, [17],
[18], [19], [20], [31]). According to their results, for any (i, b, ¢, d) fixed, we have a
threshold number & (> a*) such that (1.1) admits a positive solution if and only if a > a.
Thus it is a crucial part of this article to study the positive solution set of the second
shadow system (1.2). By regarding a as a bifurcation parameter, we will show that the
branch of the positive solution set of (1.2) bifurcates from a semitrivial solution with
w = 0ata = a', and extends globally with respect to w. (The branch is uniformly
bounded with respect to (v, a).) Furthermore, we will prove that the branch necessarily
blows up with respect to |[wll. ata = a. So this result also implies that positive solution
set of (SP) (with @ = 0) structurally changes near a = &, when 8 is sufficiently large
(Theorem 3.8).

Throughout the article, we will denote by A,(g) the least eigenvalue of the problem

~Au+qg(x)u=Au in Q, u=0 on 0Q,

where g(x) is a continuous function in Q. We simply write A; instead of 4,(0). Itis
well known that the following problem

Au+u@—u)=01in Q, u=0 on 9Q (1.3)

has a unique positive solution u = 6, if and only if a > A,. Then (SP) has a semitrivial
solution (u, v) = (6,,0) if @ > A;. Furthermore it is easily verified that (SP) has another
semitrivial solution (, v) = (0, (u + 1)6/(us1)) if b > (u + 1)4,. Here, 6,(,.1) TEpresents
a positive solution of (1.3) with a replaced by b/(u + 1). The usual norms of the spaces
LP(Q) for p € [1, o0) and C(Q) are defined by

l/p
el := ( f lu(x)I? dx) and [Julle 1= max |u(x)|.
Q xeQ)

In particular, we simply write ||ul| instead of ||ull,.



The contents of the present article are as follows: In Section 2, we first give the
sufficient condition for existence of positive solutions to (SP). Next we give the outline
of the proof. In Section 3, we will discuss a special case when f is sufficiently large.
The above convergence to one of two shadow systems as 8 — oo will be justified in
this section. The solution set of (1.2) will be studied in the latter half of this section.

2 Coexistence Region

2.1 Main Result

In this section, we first give a sufficient condition of existence of positive solutions
to (SP).

Theorem 2.1. If a < Ay, then (SP) has no positive solution. In a case when a > A,
(SP) admits a positive solution if the following condition (2.1) holds true.

C(jl + 1)95/(;“.1) —-a _(b + dHa)(l +B9a) <0
! 1+ a/(,u + 1)6b/@1+1) ,u(l + 36,) + 1 '

)<O and /11( 2.1

Here it is defined that 0y,,41y = 01f b < (u + 1)A;.

We need to explain the meaning of Theorem 2.1. Regarding a and b as positive
parameters, we introduce the following two sets in the (a, b) plane,

b+do)(1 +p6,)
(‘ (1 +B0,) + 1
e+ 16y — a
1+ au+ )01

S1:={(a,b)eRi:/11 )=0 for az/l,},

Szzz{(a,b)eki:,u( ):0 for bz(,u+1)/h}.

The following Lemmas 2.2 and 2.3 mention the shapes of curves S and S, respec-
tively. See [12] for the proofs of Lemmas 2.2 and 2.3.

Lemma 2.2. There exists a certain ap > A, such that S| can be expressed as
S1={@b)eR : b= b(a) for A <a <ayp},

where b = b(a) is a positive continuous function for a € [ Ay, ay), and satisfies the
following properties :

@ b(A) = (u+ DA, lim b(a) = 0.

(i1) b = b(a) is monotone decreasing with respect to a € [ A;,ap |.
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Lemma 2.3. The set S, possesses the expression
S, ={(a,b) € R% : b=b(a) for a> A1},

where b = b(a) is a positive continuous function for a € [ Ay, 0), and satisfies the
following properties

(i) b(a) is a monotone increasing function with respect to a.

(i) b(A) = (e + DAy, lim b(a) = oo.

b S

(y + 1)/11 """

0 /1,] a(,)_

Fig.1 : Coexistence Region

Combining these properties of §; and S, one can deduce from Theorem 2.1 that if
(a, b) lies in a region R surrounded by §; and §;, then (SP) has a positive solution (see
Fig.1). This R, in case a = 8 = 0, corresponds to the exact coexistence region shown
by Lépez-Gémez and Pardo [19]. From a view-point of the bifurcation theory, we will
prove that positive solutions bifurcate from (1, v) = (6,, 0) when (a, b) crosses S, curve.
Similarly positive solutions also bifurcate from (u,v) = (0, (1 + 1)6(.41)) When (a, b)
moves across S ,.

2.2 Apriori Estimates

In the rest part of the section, we give the outline of the proof of Theorem 2.1. In
this subsection, we first introduce a semilinear elliptic system equivalent to (SP), and
next give some apriori estimates of positive solutions to the semilinear system. Such
apriori estimates will make an important rules in the proof. Assume (a,f) # (0,0) in
(SP). As long as we are restricted on nonnegative solutions, it is convenient to introduce
two unknown functions U and V by

U=(1+av)u and V=(u+ )v 2.2)

1+ Bu



There is a one-to-one correspondence between (1, v) > 0 and (U, V) > 0. It is possible
to describe their relations by

u=ulUYV)
_—@V+ D) +pB-1D+ Y{@V+1) - u@B-1DP+4B@V + p)1 + p)
- 2B(aV + 1) BN
v=uvUYV)
_aV— 1—uBU + 1)+ \/{(on— 1) — u(BU + D + 4aV(BU + 1)(1 + p)
2a(1 + p) '

Since we are concerned with nonnegative solutions, (SP) is rewritten in the following
equivalent form

AU+u(a—u—-cv)=0 in Q,
(EP) SAV+u(b+du-v)=0 in Q,
U=V=0 on 99,

where u = w(U,V) and v = v(U, V) are understood as functions of (U, V) defined by
(2.3). It is easy to show that (EP) has two semitrivial solutions

(U,V) =(6,,0) for a> A, and (U, V)= (0, + 1)*0pjqusr)) for b > (u+ 1Ay,

in addition to the trivial solution (U, V) = (0, 0). We obtain the following aprion esti-
mates for positive solutions of (EP).

Lemma 2.4. Suppose that (U, V) is any positive solution of (EP) and that (u,v) is any
positive solution of (SP). Then, for all x € Q,

a if aa<c,
0<u(x <Ux) <M=Ma):=1(+aa) . 0.4
Aae if aa>c,
l .
0<V(x) < (“+1+5M)(b+dm if bB<d,

ub+dM)+b if bB > d,

1( ) .
LY b+dM)  if bB<d,
0< V) v <M\ 1+BM

(b+dM)+5~ if b8 > d.

We refer [12] for the proof of Lemma 2.4. The next lemma yields a lower bound
for V(x) in a special case when b > (u + 1)A4;.
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Lemma 2.5. Let (U, V) be any positive solution of (EP). If b > (u + 1)4,, then
V(x) > 120byu01) (%) forall x€ Q.

Proof. 1t follows from the second equation of (EP) and (2.2) that

1 1

vV Vv
AV =vb+du—v)>vb-v)= [b— }
Topu M+ T

Therefore, we obtain
b Vy .
AV >V|——~-—] in Q.
p+l 2
By the well known comparison theorem, we immediately obtain the assertion. Then
the proof of Lemma 2.5 is accomplished.
m]

The following lemma gives a nonexistence region for positive solutions of (EP).

Lemma 2.6. Ifa < A, or (1 + BM(a))(b + dM(a)) < A,, then (EP) (or equivalently,
(SP)) has no positive solution. Here M(a) is the positive number defined in (2.4).

Proof. Suppose for contradiction that (U, V) is a positive solution of (EP) with the case
(1 + BM(@))(b + dM(a)) < 4,. Since u < U < M(a) by Lemma 2.4, then

~AV =v(b+du—-v) =V +Bu)b+du—v) <(l+Ma)b+dMa)V
in Q. Then by taking L*(€Q) inner product with V, we obtain
IVVI? < (1 + BM(a))(b + dM(@)IVI*. 2.5)

Since |[VV|? > A41||V]|* by Poincaré’s inequality, (2.5) obviously yields a contradiction.
By virtue of U(a —u — cv)/(1 + av) < aU in Q, one can derive the assertion for the case
a < A, in a similar manner.

]

2.3 Bifurcations from Semitrivial Solutions

In this subsection, we will find bifurcation points on the semitrivial solution sets
of (EP) with regarding a as a parameter. Let a be a bifurcation parameter and assume
that all other constants are fixed. Concerning (EP), we will obtain a positive solution
branch which bifurcates from the semitrivial solution curve

(U, V,a) : (U,V) = (6,,0), a> A4} or
((U.V,a) : (U, V) = O, @+ 1?Opyurny), @ > Au}.



By virtue of Lemma 2.2, if b < (u + 1)4,, then there exists a unique a, € (4,, o) such

that
1 (b+d6, )(1+p0.)\ 0
Ny )T
On the other hand, if b > (u + 1)4;, Lemma 2.3 yields a unique a* € (4;, o) such that

(C(/l + 1)91,/(y+1) - a*) -0
\ T+ oG+ Dy

(2.6)

2.7)

In view of (2.6) and (2.7), we introduce two positive functions ¢, and ¢* by solutions
to the problems

_ (b+d6,)(1+4,)

A T Bay + 1

$.=01in Q, ¢.=0 on 9Q, |ig.] =1

and

C(/,t + 1)91,/0“.1) -a' .

—Ad* + =0 in @, ¢ =0 on I, =1, 2.8
¢ e Do ¢ al 28)

respectively. For p > N, we define Banach spaces X and Y by

X = [ W2(Q) N WP(Q) ] x [ WP(Q) n W, 7(Q) ],
Y := [P(Q) x LP(Q).

Lemma 2.7. Suppose that a > A;. Then the following local bifurcation properties (i)
and (ii) hold true

(1) Let b < (u+ 1)A,. Then positive solutions of (EP) bifurcate from the semitrivial
solution curve {(6,,0,a) : a > A} ifand only if a = a.. To be precise, all positive
solutions of (EP) near (6,,,0,a.) € X X R can be expressed as

Iy ={(6a, + s + U(s)), s(@s + V(), als)) : 0< s <8}

for some ¢ € X and § > 0. Here (U(s), V(s),a(s)) is a smooth Sfunction with
respect to s and satisfies (U(0), V(0), a(0)) = (0,0, a,) and j;l V(s)¢, = 0.

(11) Let b > (u + 1)A,. Then positive solutions of (EP) bifurcate from the semitrivial
solution curve {(0, (u+1)*0y;.41y, @) : a > A1} ifand only ifa = a’. More precisely,
all positive solutions of (EP) near (0, (i + 1)%65,¢41), @) € X X R are given by

I = {(s(¢" + U(s)), (+ 1)*Opyuery + s(x + V(5)), als)) : 0< s <)

for some y € X and § > 0. Here (U(s), V(s),a(s)) is a smooth Sfunction with
respect 1o s and satisfies (U(0), V(0),a(0)) = 0,0,a") and [, U(s)¢" = 0.

11
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Proof. Fora > A,, put f(u,v) = u(a —u — cv) and g(u,v) = v(b + du — v). Here, u and
v are regarded as functions with respect to (U, V) (see (2.3)). By Taylor’s expansion at
the centre (U*, V*), we reduce differential equations of (EP) to the form

(a9 )+ ey )= (6 06 v )

(Sw-viv-vm )=o)

(2.9)

where f7 = f,(uw(U*, V), v(U*, V")), uy, == uy(U", V%) and other notations are defined
by similar rules. Here PU - U*, V- V(i = 1, 2) are smooth functions such that
£'(0,0) = pEU,V)(O’O) = 0. Since differentiation of (2.2) yields

10 1+av au D
(o 1)=| 2 L ()
01 u+ vy Uy

(1 + Bup 1+ Bu

some elementary calculations lead us to

a1 +p6,)8,
wy oy ) _ u(1+p6,) + 1
( o ) = AT (2.10)
u(l+86,)+ 1
We note that f(6,,0) = 6,(a - 6,) = —A6, and g(6,,0) = 0. So by virtue of (2.10),
letting (U*, V*) = (6,,0) and U := U - 6, in (2.9) implies

. a- 26, (aa+c- 2a6,)(1 + B6,)6,

(7)) (V) (v )= (o)

p(l +B6a) + 1

_ (2.11)
where p'(U, V;a) (i = 1, 2) are smooth functions satisfying
Pt (0.0:0) = o (0,0;0) = 0 forall a> 4. (2.12)
Define a mapping F : X X R — Y by the left hand side of (2.11);
F(U,V,a)
— —  (aa+c—2a0,)(1 + B6,)6, -
AU + (a —20,)U - V+pMU.,V,
) (a ) Y AES +p'(U,V.a) (2.13)

(b +do,)(1 +56,)
u(l+p6,) +1

AV + V + p¥(U, V,a)




Since (U, V) = (6,,0) is a semitrivial solution of (EP), it turns out F(0, 0, a) = 0 for
a > A;. It follows from (2.12) and (2.13) that the Fréchet derivative of F at (U, V,a) =
(0,0, a) is given by

(aa + ¢ — 2a6,)(1 + B6,)0,
h ~ -
Ah + (a—20,)h A+ 860+ 1

b+ d()aﬁl(l + B6,)
p(l +B8a) + 1
By virtue of (2.6), we see that Ker Fz51,(0, 0, a) is nontrivial for a = a, and that

Ker F 70,0, a,) = span (i, 4.).

h

Here ¢ is defined by

Y= —(-A—a.+28 )_1{(aa*+c~2a9a,)(1 + 9,.)6.. }

u(l+p6,)+1

where (A — a, +26,.) " is the inverse operator of —~A—a. +26,, with the homogeneous
Dirichlet boundary condition on 9Q. (Recall that —A — a. + 26,, is invertible; see,
e.g.,[5].) If (h, k) € Range F ,(0,0,a"), then

(aa, + ¢ — 206, )(1 + B6,.)8,.

Ah . — 20, ))h — =h i ,
+((‘; d("))(l NECEY e k=h inQ
+d6, + 86, - )

Ak : 2k = Q
e poFL ok n £,
h=k=0 on Q)

for some (h,k) € X. It is well known that the second equation has a solution & if and
only if fﬂfap* = (. For such a solution k, the first equation has a unique solution A
because —A—a, +20,, is invertible. Then, it holds that codimRange F 7,,(0,0,a") = 1.

In order to use the local bifurcation theory by Crandall-Rabinowitz [4] at (U, V,a) =
(0,0, a,), we need to verify

F.a00,0.) i ) ¢ Range Fig4,(0,0,2.).

Since pi‘ﬁma(O’ 0,a,) = 0 by (2.12), some elementary calculations from (2.13) enable
us to obtain

F(ﬁ,m(o,o,a*)( (‘i )

1_2% v 0 [(ea+c—2e8,)1 +,B€u)9,,}
_ 0a | =, da w1 +p6,) +1
- ud(1 + B6,)? + B(2d6, + b) +d\ 6,
{ (W1 + B0 + 17 } £71 e

¢.

=0y

13
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Suppose for contradiction that there exists k € W2P(Q) N Wé’p () such that

Ak + (b+d, )1 +p0.), {ud(l + B6,)* + Bdo, + b) + d} ?&

@

a=C.

u(1+86,) +1 (u(1 +p6,) + 1}2 da

Multiplying the above equation by ¢, and integrating the resulting expression, we have

f { pd(1 + B6,)* + B(2d6, + b) + d} 00,
o (1 + B0, + 1 da

which is impossible. Because, the left hand side of (2.14) must be positive by the strict
increasing property of 6, with respect to a. Recall that U = U—-0,, one can immediately
obtain the assertion (i) by applying the local bifurcation theorem ([4]). We note that
the possibility of other bifurcation points except a = a. is excluded by virtue of the
Krein-Rutman theorem. In the case when b > (u+ 1)4;, we can get the assertion (i) by
a similar bifurcation approach. o

¢ =0, (2.14)

a=a.

2.4 Proof of Theorem 2.1

In this subsection, we will accomplish the proof of Theorem 2.1 by making use
of the results in the previous subsections, First we will extend the local bifurcation
branches I'; and I (obtained in Lemma 2.7) as global solution branches. By way of a
result of these extensions, we obtain the following lemma.

Lemma 2.8. Ifb < (u + 1)A, and a > a,, then (EP) possesses at least one positive
solution. Ifb > (u + 1)A, and a > a’, then (EP) admits at least one positive solution.

Proof. Let b satisfy b < (u + 1)4;. For the local bifurcation branch I obtained in
Lemma 2.7, let I, be a maximum extension of I', in the direction a > 4; as a solu-
tion curve of (EP). According to the global bifurcation theory (Rabinowitz [27]), the
following (i) or (ii) must hold true;

(i) [, is unbounded in X X R ;

(ii) I, meets the trivial or a semitrivial solution curve at a certain point except for
(u,v,0) = (0a,,0,a.).

We introduce the following positive cone

P:={(u,v) cu>0,v>0inQ and a—u<0, év—<00n6§2},

ov dv

where v is the unit outward normal to dQ. Assume that (iz, ,d) € [, satisfies (&, D) € OP
and @ > A,. Then it follows that 2 > 0, > 0inx € Q and

t(x0)D(xo) = 0 at some xp € Q (2.15)



or
%(xl)%(xl) = 0 at a certain xy € 0S2. (2.16)
By applying the strong maximum principle to (EP), it is possible to prove that each of
(2.15) and (2.16) leadsustoa =0 or v = 0.

We now recall that positive solutions of (EP) bifurcate from the semitrivial solution
curve {(6,,0,a) : a > 4,} and no positive solution bifurcates from the other semitrivial
solution curve {(0, (u + 1)20b,(,,+1),a) : a > A;}. In addition, it is easily verified that
the trivial solution is non-degenerate. Therefore, we deduce that (&, d,a) = (6,.,0,a.),
which contradicts (i1). Thus (ii) is excluded and (i) must be satisfied. By taking account
for the boundness for positive solutions to (EP) (Lemma 2.4) and the nonexistence
result of positive solutions in the range a < 4;, we can prove that I, must be extended
with respect to @ > 4; as a positive solution curve of (EP). This global bifurcation
property enables us to find at least one positive solution if a > a,.

In the case when b > (1 + 1)4; and a > a*, we can obtain the existence result of
positive solutions to (EP) in a similar way. Thus the proof of Lemma 2.8 is complete.

a

By virtue of a one-to-one correspondence between (u,v) > 0 and (U,V) > 0 in
(2.2), Lemma 2.8 immediately implies Theorem 2.1.

3 A Large Nonlinear Diffusion Case

3.1 Two Shadow Systems as 8/

In what follows, we will concentrate ourselves on a special case when o = 0 and
B is sufficiently large. Our purpose is to derive the large nonlinear effect of 8 on the
positive solution set of (SP). We will denote by (SP), the problem (SP) with a = 0:

Au+ula—u-cv)=0 in Q,

— ) = in O

(SPY, A[ p ﬁu)v]+v(b+du )=0 inQ
u=v=0 on JQ.

The following theorem assures existence of two shadow system as 8 — oo:

Theorem 3.1. Suppose that b > (u + 1)A;. Let & and & be arbitrary small positive
numbers. Then there exists a large number B = B(6, €) such that if

a € (A1, Ay(cpbpy,) — 81U [ A1 (cubyy,) + 6,6 1 1 (=1 1)

and B > B, then any positive solution (u,v) of (SP)o possesses either the next property

i) or (i1) :

15



(i) There exist a certain a,, € I and a certain positive solution (Us, V) of

Al + oo (Ao — Uos — CUx) =0 In Q,
UAVs + Voo(D + Ao — Vo) = 0 in Q, (3.1
Uoo = Uso = 0 on 0Q

such that || — Uslleo + I — Vaollo +1a — @l < &.

(ii) There exist a certain a,, € I5 and a certain positive solution (w, V) Of

Aw + w(ae, — V) =0 in Q,

A[(u bt )vw] toub-v)=0 in Q, 3.2)
1+w

W=l =0 on 0Q

such that ||Bu — wlle + I — Ul + @ — @l < &.

Proof. We will accomplish the proof by a contradiction argument. Suppose that there
exist a certain &, > 0 and a sequence {(a,,8,)} € I; X R, with hm B, = oo such that all

positive solutions (4, v,) of (SP)o with (@, 8) = (@, Bx) satisfy
ltn — @lloo + Vs — lloo + lan — @l = €0
for any positive solution (i, 7, @) of (3.1) and
Bnttn — Wil + s — Vllso + las — @l 2 0

for any positive solution (i, 7, a) of (3.2).
If 1im sup B,llualle = o0, we can choose a subsequence with lim Bulluylle = oo. For
n—x

n— 00

simplicity, we rewrite {(#,,3,)} by such a subsequence. We now remember that Lemma
2.4 gives the following apriori estimates;

1
0<u(x)<a, < 5 0 < V(%) Sva(x) < (b+dM) + % (3.3)

forallxe Qandn € N. Here weput V,, := (u + Hﬁlﬁ)vn. It follows from (3.3) and the
first equation of (SP), that for each p > 1 and n € N, [|Au,ll, < C with some constant
C independent of n. Therefore, the standard elliptic regularity theory ([11]) enables us
to obtain

lallwzr < Colllsallp + 11Auallp) < Cs

for some constants C, and Cs independ_ent of n. With the aid of the Ascoli-Arzela’s
theorem, we can find a certain u,, € C'(Q) with

lim u, = 4o in CHQ) (3.4)

n—oo



subject to a suitable subseguence. In view of (3.3) and the second equation of (SP)g,
we can also find V,, € CY(Q) such that

lim V, = lim

n—oo n—aoo(u+ 1+B u )U” - " Cl(ﬁ) (35)

by way of a subsequence. Next we will verify that

li = lim —————— =0 in C'(Q). 3.6
o TT By~ e T4 Bl 0 €@ G0

Since @, := u,/||u,||. satisfies
A, +idi(a, —u, —cv,) =0 in Q, it,lsq =0, (3.7

then (3.3) and the elliptic regularity theory yield i, € C'(Q) such that lim i, =

fi, 1n Cl(ﬁ). By virtue of ||/l = 1, we see ii, > 0 in Q by the strong maxi-
mum principle. Hence lim B,|lu,ll = oo implies (3.6). Furthermore (3.3) gives some
Us € L*(Q) such that

lim v, = v,, weaklyin L*(Q). (3.8)

n—o0

From (3.5), (3.6) and (3.8), we know that v,, € C'(Q), and moreover that

1 —
lim V, = 1i . = [Us in CHQ). .
lim V lim (u + ] +Bnun)v Uy in C'(£) (3.9

It follows from (3.4) and (3.9) that (1., v.,) satisfies (3.1) with a certain a,, € I;. In or-
der to derive a contradiction, we will verify that both of Uy, and vy, are positive functions
in Q. It follows from Lemma 2.5 and lim v, = v, in C}(Q) that

2

U
o = 0 > 0. 3.10
v nrl bt 1) (3.10)

Suppose for contradiction that u. = 0. Since v,, satisfies
HAVs + Uoo(b —Us) = 0 In Q, voolgn = 0,
together with (3.10), we obtain ve, = 16,,,. Letting n — oo in (3.7) implies
Al + lioo(@o0 — Ctbpy,) = 0 in Q, fislgq = 0.

Since i@, > 0 by the strong maximum principle, we know a, = A1(cuby,,,), which
contradicts to a,, € 75. So we must deduce that (i, Us) is a positive solution of (3.1).

11
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This property of (4, V) gives a contradiction for our assumption. So we accomplish
the proof in a case when lim eup Balltnll = 0.

If hm ,B,,Hu,,llm < oo, then 1 Wy = Bullits]l are uniformly bounded with respect to n.
By mult1p1y1ng B, by the first equation of (SP),, we obtain

Aw, +w,(a, —u, —cv,) =0 in Q, wylsqa =0.
With use of (3.3) and the elliptic regularity, we can find a certain w € C 1(Q) such that

lim w, =w in CY(Q), (3.11)

subject to a subsequence. Hence (3.11) implies

1 S L=
i = Q). 3.12
:}g?ol+w,, 1+me() ( )

Along a similar argument to the previous case, we obtain V., € C'(Q) with

lim V, —hm(u+

n-—-oo

_ P oy
1+w,,)v" =V, in C(Q). (3.13)

Together with the L? weak compactness property of {v,} (see (3.8)), (3.12) and (3.13)
yield Vo, = (u + 5 +w)vm Therefore by letting n — oo in (SP)y with (4,v,a,8) =
(U, Un, G, Br), We see that (w, v.,) satisfies (3.2). Furthermore we can also prove that
(w, ) is a positive solution to (3.2) by a similar argument to the previous case (see

[15] for details). However this conclusion contradicts our assumption. So we complete
the proof of Theorem 3.1. a

3.2 First Shadow System (3.1)

In this subsection, we introduce the positive solution set to the first shadow system
(3.1), which has been discussed by many mathematicians (e.g., [2], [5], [6], [7], [17],
[18], [19], [20], [31]). As a summary of their all results, we know the next result about
the positive solution set of (3.1).

Theorem 3.2. Let a = Ay(cubpy,). If b > udy, then (3.1) has a positive solution if and
only if a > a. From the bifurcation structure point of view, the positive solution set
of (3.1). contains a local bifurcation branch I' = {(u(s),v(s),a(s)) € XX R : s €
(0, 6)}, such that (u(0),v(0), a(0)) = (0, ubs,, @). Furthermore, I'\ can be extended in
the direction a > a as an unbounded positive solution branch of (3.1). In a special case
when N = 1, uniqueness of positive solutions holds true.
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3.3 Second Shadow System (3.2)

In this subsection, we discuss the second shadow system (3.2). Letting

V(x):= (u + )v(x) (3.14)

1+ w(x)

in (3.2), we obtain the following semilinear elliptic system ;

c(1 +w) .
A 7 yi=
w+w{a #(1+w)+1V} 0 in Q,
1+w l+w _ i (3.15)
AV+u(1+w)+1v{b u(1+w)+lv}—0 n £,
w=V=0 on 0S2.

We will concentrate ourselves on (3.15), because we discuss nonnegative solutions.
The following lemma gives apriori bounds of v and V.

Lemma 3.3. Let (w,v) be any positive solution of (3.2) and let (w, V) be any positive
solution of (3.15). Then for all x € Q,

2 )2

" 19b/@+1)(x) <v(x) <

O/ (%), and [P Opyua1y(%) < V(X) < (1 + 1)26,,(x).

This lemma can be proved by a standard comparison argument. We refer to [15]
for the proof. With the aid of Lemma 3.3, we obtain the next nonexistence region of
positive solutions to the second shadow system.

Lemma 3.4. Suppose that b > (u+ DA, If

2

aS/h( e
7

c(u+1)?
" 191,/(/“1)) or az /11 (—(-E———Ob/ﬂ) s

then both of (3.2) and (3.15) have no positive solution.
Proof. From the first equation of (3.2), we see
—Aw + cvw = aw in Q, wlzg =0. (3.16)

Note that w is a positive solution of (3.16) if and only if a = 4,(cv). By taking account
for the monotone increasing property of A,(g) with respect to g € C(£2), we get from

Lemma 3.3 5 e
C. clp+
A (#l-: 191;/(;“1)) <a=A(w) <A (-LH—IT—-Qb/p),

provided w is a positive solution of (3.16), So we complete the proof of Lemma 3.4. O
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In the case when @ = 0, the positive number a* defined in (2.7) can be expressed as
a* = Li(c(u + 1)0pus1y)- (3.17)
In this case, the associate positive eigenfunction ¢* (see (2.8)) satisfies
—A@" + {c(u+ DBpyus1y —a}¢" =0 in Q, ¢ =0 on 0Q, [i¢"ll =1.

Hence (3.15) has a semitrivial solution (w, V) = (0, (u + 1)?05/(u+1)). Positive solutions
of (3.15) bifurcate from the semitrivial solution curve (0, (u + 1)26,/u41),a") € XX R at
the same point a = a* to the original (EP) case:

Lemma 3.5. Suppose that b > (u + 1)A;. Positive solutions of (3.15) bifurcate from
the semitrivial solution curve {(0, (u + 1)29;,/@”1), a) . a>A}ifandonlyifa=a'. To
be precise, all positive solutions of (3.15) near (0, (u + 120,141y, a") € X X R can be
parameterized as

[s:= (5" + W), (u+ D6pny + s( + V(s)),a(s) : 0<5<6)

for some § > 0 and y € X. Here (W(s), V(5), a(s)) is a smooth function with respect to
s and satisfies (W(0), V(0), a(0)) = (0,0,a*) and fg W(s)¢* = 0.

Lemma 3.5 can be proved along a similar bifurcation argument to the proof of
Lemma 2.7 (see [15]). Here we should note that

a’ < a(= (cuby)), (3.18)
if b > (u + 1)A;. We refer to [15] for the proof of (3.18).

Lemma 3.6. Let I's be the local bifurcation branch obtained in Lemma 3.5. If b >
(1t + DAy, then I's (C X X R) can be extended as an unbounded positive solution branch
I of (3.15). Furthermore, I' contains a parametrized subset

{(w(s), V(s),a(s)) e XX R : s € (C,o00)}, (3.19)

such that lim [lw(s)ll = o0, lim V(s) = 11*6y, in C'(Q) and lim a(s) = a, where & is
the positive number defined in (3.18).

Proof. Along a global bifurcation argument as the proof of Lemma 2.8, we can extend
I's as an unbounded positive solution branch I" of (3.15). By virtue of apriori bounds
for v and a (Lemmas 3.3 and 3.4), we must deduce that I'5 is unbounded with respect
to |lwllwi-. Then there exists a positive solution sequence {(w,, V,,a,)} € I’ such that
g;qlllw,,llwm = oco. By the first equation of (3.15), we know ,}ian}ollw,,llw = 00, Since

{a,} is a bounded sequence by Lemma 3.4, we can put 4, := lim a,, subject to a
n—oo



subsequence. Furthermore let @, := w,/|lw,ll-. So a compactness argument as the
proof of Theorem 3.1 enables us to find a certain (@, v.) € C'()* such that

Hm (@, V,) = (i, o) in CH(Q)?,
and moreover,
AD + (s — CUs) =0 in Q,

UAVs + V(D — V) =0 in €, (3.20)
h=0,=0 on 0Q,

by way of a subsequence. Since

s (u+1)

7] < lUe <
P b/ (u+1)

61,/# in Q

by Lemma 3.3, the second equation of (3.20) implies v, = u,,,. Therefore, we obtain
as = A1(cubyy,) by the first equation of (3.20). We refer to [15] for the proof of the
expression (3.19).

m]

By the one-to-one correspondence between (w,v) > 0 and (w, V) > 0 ((3.14), we
obtain such information on the positive solution set of (3.2), as a summary of Lemmas
3.3-3.6:

Theorem 3.7. If b > (u + 1)A,, then the positive solution set of (3.2) contains a
local bifurcation branch I', = {(w(s),v(s),a(s)) € X X R : s € (0,0)}, such that
(w(0),v(0),a(0)) = (0, (i + D)Opjs1),a*). Furthermore, I, can be extended as an un-
bounded positive solution branch [, of (3.2) with the following properties :

(i) Any (w,v,a) € I, satisfies

2 + )2 cu
0 <v< 6 dAa
b/(u+l) < U biu AN 1 (ﬂ 1

2

(c(u+ 1)?

9},/(}“1)) <a<dy 91,/#) .

u+1

(i) I, contains a parametrized subset {(w(s), u(s)a(s)) e XX R : se(C, oo)}, such
that lim [|w(s)||e = oo, lim v(s) = w6y, in C'(Q) and lim a(s) = a.

3.4 Convergence to Limiting Solutions as 5 / o

By a combination of Theorems 3.1, 3.2 and 3.7, we can obtain the next convergence
properties of positive solutions of the original system (SP) as 8 — co. We refer to [15]
for the proof.
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Theorem 3.8. Suppose b > (u + 1)A,. Let {(u,,v,)} be any positive solution sequence
of (SP)o with B = B, and lim B, = oo. Then the following convergence properties (1)
and (i1) hold true .

() Ifa € (&, 00), im(u,,0,) = (4, 0) In L™ (Q)? (subject to a subsequence) with some
positive solution (u,v) of (3.1).

(i) If a € (a*,a), im (B u,,v,) = (W, v) in L®(Q)? (subject to a subsequence) with

some positive solution (w,v) of (3.2). In this case, ||u,l|~ = O(1/B,) for sufficiently
large n.

In the sense of the above theorem, we can say that the positive solution set of (SP)o
changes near a = & structurally, if B is sufficiently large. We should remark that if
a € (a*, ), any positive sotution (i, v) of (SP)o must satisfy [|ull = O(1/p) when 8 is
large enough, because the first shadow system (3.1) has no positive solution if a < a.
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